Anna-Lena Winz
Mathematisches Institut
Freie Universität Berlin
Tel.: (030) 838-75426
anelanna@math.fu-berlin.de

VL "Algebra II"
FU Berlin, Summer 2022

## 12. AUFGABENBLATt Zum 13.7.2022

Problem 101. Let $F$ be a locally free sheaf on an integral, i.e. irreducible and reduced scheme $X$. Show that, for open subsets $U \subseteq X$, the restriction map $\Gamma(X, F) \rightarrow \Gamma(U, F)$ is injective.
Give counter examples for the cases when one of the assumptions is violated.

Problem 102. a) Show directly that the diagonal $\Delta: \mathbb{P}_{\mathbb{C}}^{1} \rightarrow \mathbb{P}_{\mathbb{C}}^{1} \times_{\mathbb{C}} \mathbb{P}_{\mathbb{C}}^{1}$ is a closed embedding. What is the homogeneous ideal of $\Delta\left(\mathbb{P}_{\mathbb{C}}^{1}\right) \subseteq \mathbb{P}_{\mathcal{C}}^{3}$ after additionally using the Segre embedding? Do you see the Veronese embedding within this picture?
b) Let $X:=\mathbb{A}_{\mathbb{C}}^{1} \cup \mathbb{A}_{\mathbb{C}}^{1}$ glued along the common $\mathbb{A}_{\mathbb{C}}^{1} \backslash\{0\}$. Show directly that there are affine open $U_{1}, U_{2} \subseteq X$ such that either $U_{1} \cap U_{2}$ is not affine or that $U_{1} \cap U_{2}=U$ is affine with $U_{i}=\operatorname{Spec} A_{i}$ and $U=\operatorname{Spec} B$ such that $A_{1} \otimes_{\mathbb{C}} A_{2} \rightarrow B$ is not surjective.
c) In the situation of (b) show that $\Delta(X) \subseteq X \times_{\operatorname{Spec} \mathbb{C}} X$ is not a closed subset.

Problem 103. a) Show that $d$-dimensional $k$-varieties (with a perfect field $k$ ) are birational equivalent to hypersurfaces in $\mathbb{P}^{d+1}$.
(Hint: Use the theorem of the primitive element.)
b) Let $f, g \in k[x]$ be two different polynomials with simple roots. Construct a hypersurface of $\mathbb{C}^{2}$ that is birational equivalent to $V\left(y^{2}-f(x), z^{2}-g(x)\right) \subseteq \mathbb{C}^{3}$.

Problem 104. Assume that the ring $A$ is factorial. Show that this implies $\operatorname{Pic}(\operatorname{Spec} A)=$ 0 , i.e. every invertible sheaf on $\operatorname{Spec} A$ is isomorphic to $\mathcal{O}_{\text {Spec } A}$.
(Hint: For invertible sheaves $\mathcal{L}$ one is supposed to use the cocycle description on an open covering $\left\{D\left(g_{i}\right)\right\}$ with $\left.\mathcal{L}\right|_{D\left(g_{i}\right)} \cong \mathcal{O}_{D\left(g_{i}\right)}$, cf. Problem 95 . Via induction by the overall number of prime factors of the $g_{i}$, one can reduce the claim to the special case that all elements $g_{i}$ are prime. Now, using again Problem 95, one can attain that $h_{i j} \in A^{*}$ for all $i, j$.)

Problem 105. Show (by using the toric language via polytopes in $M_{\mathbb{R}}$ ) that the blowing up of $\mathbb{P}^{2}$ in two points is isomorphic to the blowing up of $\mathbb{P}^{1} \times \mathbb{P}^{1}$ in one single point.

