0 as both coordinates.
If we were looking at $T_{(1,1)} \mathbb{C}^{2}$ instead (with the same tangent vector $(2,1)$), then we would have obtained $x \mapsto 1+2 \varepsilon$ and $y \mapsto 1+\varepsilon$ instead. Why didn't I take $T_{(1,1)} Z_{3}$? While $(1,1) \in Z_{3}$, the tangent vector $(2,1)$ does not belong to $T_{(1,1)} Z_{3}$. The latter can be calculated as follows: Substitute $a:=x-1$ and $b:=y-1$, then

$$
\mathbb{C}[x, y] /\left(y^{2}-x^{3}\right)=\mathbb{C}[a, b] /\left(b^{2}+2 b-a^{3}-3 a^{2}-3 a\right),
$$

and we look at the point $(a, b)=(0,0)$. The cotangent space is $(a, b) /\left(a^{2}, a b, b^{2}, 2 b-\right.$ $3 a$), and the vector $(2,1)$ does not define a correct linear map

$$
(a, b) /\left(a^{2}, a b, b^{2}, 2 b-3 a\right) \rightarrow \mathbb{C}, \quad a \mapsto 2, b \mapsto 1 .
$$

On the other hand, it does not make sense to compare the tangent spaces of some X within different points, anyway. We have no parallel transport.

Christian Haase
Mathematisches Institut Freie Universität Berlin Tel.: (030) 838-75426
haase@math.fu-berlin.de

VL "Algebra II"
FU Berlin, Summer 2023

12. Aufgabenblatt zum 10.7.2023

Problem 101. Let F be a locally free sheaf on an integral, i.e. irreducible and reduced scheme X. Show that, for open subsets $U \subseteq X$, the restriction map $\Gamma(X, F) \rightarrow \Gamma(U, F)$ is injective.
Give counter examples for the cases when one of the assumptions is violated.
Solution: W.l.o.g. $X=\operatorname{Spec} A$ with A being a domain and $F=\mathcal{O}_{X}$. Now, all localizations are injective.
Examples for violated assumptions: (i) $X=\mathbb{A}^{1}=\operatorname{Spec} \mathbb{C}[x]$ and $F=\widetilde{M}$ with $M=\mathbb{C}[x] /(x)=\mathbb{C}$ yields the 0-map to $U:=X \backslash\{0\}$, and (ii) $X=\operatorname{Spec}(\mathbb{C} \times \mathbb{C})$ is the disjoint union of two points. Even $F=\mathcal{O}_{X}$ violates the claim now.

Problem 102. a) Show directly that the diagonal $\Delta: \mathbb{P}_{\mathbb{C}}^{1} \rightarrow \mathbb{P}_{\mathbb{C}}^{1} \times_{\mathbb{C}} \mathbb{P}_{\mathbb{C}}^{1}$ is a closed embedding. What is the homogeneous ideal of $\Delta\left(\mathbb{P}_{\mathbb{C}}^{1}\right) \subseteq \mathbb{P}_{\mathcal{C}}^{3}$ after additionally using the Segre embedding? Do you see the Veronese embedding within this picture?
b) Let $X:=\mathbb{A}_{\mathbb{C}}^{1} \cup \mathbb{A}_{\mathbb{C}}^{1}$ glued along the common $\mathbb{A}_{\mathbb{C}}^{1} \backslash\{0\}$. Show directly that there are affine open $U_{1}, U_{2} \subseteq X$ such that either $U_{1} \cap U_{2}$ is not affine or that $U_{1} \cap U_{2}=U$ is affine with $U_{i}=\operatorname{Spec} A_{i}$ and $U=\operatorname{Spec} B$ such that $A_{1} \otimes_{\mathbb{C}} A_{2} \rightarrow B$ is not surjective. c) In the situation of (b) show that $\Delta(X) \subseteq X \times_{\text {Spec } \mathbb{C}} X$ is not a closed subset.

Solution: (a) The Segre embedding $\mathbb{P}^{1} \times \mathbb{P}^{1} \subseteq \mathbb{P}^{3},\left(x_{0}: x_{1}\right),\left(y_{0}: y_{1}\right) \mapsto\left(x_{0} y_{0}\right.$: $\left.x_{0} y_{1}: x_{1} y_{0}: x_{1} y_{1}\right)$ corresponds to the homogeneous coordinate rings $\mathbb{C}\left[z_{0}, \ldots, z_{3}\right] \rightarrow$ $\rightarrow \mathbb{C}\left[z_{0}, \ldots, z_{3}\right] /\left(z_{0} z_{3}-z_{1} z_{2}\right]$. The diagonal $\Delta: \mathbb{P}^{1} \rightarrow \mathbb{P}^{1} \times \mathbb{P}^{1} \subseteq \mathbb{P}^{3} \operatorname{maps}\left(w_{0}:\right.$ $\left.w_{1}\right) \mapsto\left(w_{0}: w_{1}\right),\left(w_{0}: w_{1}\right) \mapsto\left(w_{0}^{2}: w_{0} w_{1}: w_{0} w_{1}: w_{1}^{2}\right)$. In particular, It is obtained from the homogeneous ring homomorphism

$$
\mathbb{C}\left[z_{0}, \ldots, z_{3}\right] \rightarrow \mathbb{C}\left[w_{0}, w_{1}\right], \quad z_{0} \mapsto w_{0}^{2}, z_{1}, z_{2} \mapsto w_{0} w_{1}, z_{3} \mapsto w_{1}^{2}
$$

factoring through $\mathbb{C}\left[z_{0}, \ldots, z_{3}\right] /\left(z_{0} z_{3}-z_{1} z_{2}\right)$. It is a surjection not onto $\mathbb{C}\left[w_{0}, w_{1}\right]$, but onto its even part. In the projective situation, this is sufficient for providing a closed embedding. The kernel is generated by $\left(z_{1}-z_{2}, z_{0} z_{3}-z_{1} z_{2}\right)$. Thus, the embedding $\Delta: \mathbb{P}^{1} \hookrightarrow \mathbb{P}^{3}$ factors via the second Veronese embedding $\mathbb{P}^{1} \hookrightarrow \mathbb{P}^{2}$, followed by a linear embedding $\mathbb{P}^{2} \hookrightarrow \mathbb{P}^{3}$.
(b) In $X:=U_{1} \cup U_{2}\left(\right.$ with $U_{i}=\mathbb{A}^{1}$ for $\left.i=1,2\right)$ the intersection of U_{1} and U_{2} is, via definition, $U_{12}=\mathbb{A} \backslash\{0\}$. The restriction maps ϱ_{i} on the coordinate rings are both the localization maps $\varrho_{i}: \mathbb{C}[x] \rightarrow \mathbb{C}[x]_{x}$. The two copies of $\mathbb{C}[x]$ do not generate the larger ring $\mathbb{C}[x]_{x}$.
(c) Just looking at the closed points, X consists of $\mathbb{A}_{\mathbb{C}}^{1} \backslash\{0\}$ and two points 0_{A} and 0_{B}. In $X \times X$, all 4 pairs $\left(0_{A}, 0_{A}\right),\left(0_{A}, 0_{B}\right),\left(0_{B}, 0_{A}\right),\left(0_{B}, 0_{B}\right)$ belong to the closure of $\Delta\left(\mathbb{A}_{\mathbb{C}}^{1} \backslash\{0\}\right)=\{(t, t) \mid t \neq 0\}$. However, $\Delta\left(\mathbb{A}_{\mathbb{C}}^{1}\right)$ contains only two of them, namely $\left(0_{A}, 0_{A}\right)$ and $\left(0_{B}, 0_{B}\right)$.

Problem 103. a) Show that d-dimensional k-varieties (with a perfect field k) are birational equivalent to hypersurfaces in \mathbb{P}^{d+1}.
(Hint: Use the theorem of the primitive element.)
b) Let $f, g \in k[x]$ be two different polynomials with simple roots. Construct a hypersurface of \mathbb{C}^{2} that is birational equivalent to $V\left(y^{2}-f(x), z^{2}-g(x)\right) \subseteq \mathbb{C}^{3}$.
Solution: (a) $k=$ perfect \Rightarrow for each field extension $K=k\left(\alpha_{1}, \ldots, \alpha_{m}\right) \supseteq k$ there is an $e \subseteq\left\{\alpha_{1}, \ldots, \alpha_{m}\right\}$ with $K \supseteq k(e) \supseteq k$ (separable|transzendent), cf. [ZS, ch. II, Th $30+31, \mathrm{~S} .104]$. "Satz vom primitiven Element" $\Rightarrow d$-dimensional k-varieties are birational equivalent to hypersurfaces in \mathbb{P}^{d+1}.
(b) Let $\pm y$ and $\pm z$ be the respective roots of the minimal polynomials $m_{y}(t)=$ $t^{2}-f(x)$ and $m_{z}(t)=t^{2}-g(x)$ over $k(x)$. Theorem of the primitive element (actually, its proof $) \leadsto$ every $\gamma:=y+c z$ with $c \in k(x)$ such that $y+c z \neq(-y)+c(-z)$, i.e., $c \neq-y / z$ generates the extension field $K:=k(x)(y, z)$ over $k(x)$.
With $c:=1$, i.e., $\gamma:=y+z$, we obtain $\left(\gamma^{2}-(f+g)\right)^{2}=4 f g$. This leads to the hypersurface equation $\gamma^{4}-2(f+g) \gamma^{2}+(f-g)^{2}=0$.

Problem 104. Assume that the ring A is factorial. Show that this implies $\operatorname{Pic}(\operatorname{Spec} A)=$ 0 , i.e. every invertible sheaf on $\operatorname{Spec} A$ is isomorphic to $\mathcal{O}_{\operatorname{Spec} A}$.
(Hint: For invertible sheaves \mathcal{L} one is supposed to use the cocycle description on an open covering $\left\{D\left(g_{i}\right)\right\}$ with $\left.\mathcal{L}\right|_{D\left(g_{i}\right)} \cong \mathcal{O}_{D\left(g_{i}\right)}$, cf. Problem 95 . Via induction by the overall number of prime factors of the g_{i}, one can reduce the claim to the special case that all elements g_{i} are prime. Now, using again Problem 95, one can attain that $h_{i j} \in A^{*}$ for all i, j.)
Solution: Let p be a prime divisor of $g_{1} \cdots g_{N}$ - via induction by the number of prime divisors of $g_{1} \cdots g_{N}$ we may assume that \mathcal{L} is trivial on $D(p)=\operatorname{Spec} A_{p}$. On the other hand, (prime divisors of $\left.g_{1} \cdots g_{N}\right) \supseteq\left(g_{1}, \ldots, g_{N}\right)=(1)$. Thus, we may suppose that all g_{i} are prime.
Now, every $h_{i j} \in A_{g_{i} g_{j}}^{*}$ (using the notation of Problem 95) can be expressed as $h_{i j}=u_{i j} \cdot g_{i}^{e_{i}} / g_{j}^{e_{j}}$ with $u_{i j} \in A^{*}$. The elements $u_{i j}$'s do still satisfy the cocycle condition. Hence, we can represent them as $u_{i j}=u_{i 0} / u_{j 0}$.
Problem 105. Show (by using the toric language via polytopes in $M_{\mathbb{R}}$) that the blowing up of \mathbb{P}^{2} in two points is isomorphic to the blowing up of $\mathbb{P}^{1} \times \mathbb{P}^{1}$ in one single point.
Solution:

Aufgabenblätter und Nicht-Skript: http://www.math.fu-berlin.de/altmann

