hypersurface. To show openess, we define the closed subset

$$
Y:=\left\{\left.(c, \xi) \in \mathbb{C}^{\binom{n+d}{d}} \times \mathbb{P}^{n} \right\rvert\, \xi \in V_{+}\left(F_{c}\right) \text { is singular }\right\} .
$$

Then, $\mathbb{C}\binom{n+d}{d} \backslash S_{\mathbb{A}}$ is the image of Y via the projection $\pi: \mathbb{C}\binom{n+d}{d} \times \mathbb{P}^{n} \rightarrow \mathbb{C}\binom{n+d}{d}$, and π is a closed map. Hence, $\mathbb{C}^{\binom{n+d}{d}} \backslash S_{\mathbb{A}}$ is closed, too.

Mathematisches Institut
Freie Universität Berlin Tel.: (030) 838-75428
altmann@math.fu-berlin.de

VL "Algebra III"
FU Berlin, Winter 2023/24
15. Aufgabenblatt Zum 14.2 .2024

Problem 137. Let $\Delta \subset M_{\mathbb{R}}$ be a smooth lattice polytope, i.e., its normal fan $\Sigma:=\mathcal{N}(\Delta)$ is supposed to be smooth. Denote $\mathbb{C}[\Delta]:=\{f \in \mathbb{C}[M] \mid \operatorname{supp}(f) \subseteq \Delta\}$. Each $f \in \mathbb{C}[\Delta]$ gives rise to a subvariety $Z(f) \subseteq T=\operatorname{Spec} \mathbb{C}[M]$. Denote by $\bar{Z}(f)$ the closure of $Z(f)$ in $X:=\mathbb{T V}(\Sigma)$.
a) For a given $f \in \mathbb{C}[M]$ and a given chart $\mathbb{T} \mathbb{V}(\sigma) \subseteq X$ describe the closure of $Z(f)$ in $\mathbb{T V}(\sigma)$. Does this set equal $\bar{Z}(f) \cap \mathbb{T} \mathbb{V}(\sigma)$?
b) Show that the set of $f \in \mathbb{C}[\Delta]$ such that $\bar{Z}(f)$ is smooth forms an open, dense subset of $\mathbb{C}[\Delta]$.
c) Denote by $\mathcal{J}(f) \subseteq \mathcal{O}_{X}$ the ideal sheaf of $\bar{Z}(f) \subset X$. Under which assumptions do we obtain $\bar{Z}(f) \cong \mathcal{O}_{X}(-\Delta)$? Is it always true?
d) Show that for smooth, reflexive polyhedra Δ, there is a dense subset of $f \in \mathbb{C}[\Delta]$ such that $\bar{Z}(f)$ is a smooth Calabi-yau variety.

Solution:

To be used only in true emergency (a)

The closure $\bar{Z}(f)$ of $Z(f) \subseteq T$ does not contain any toric prime divisors, i.e., components of $X \backslash T$. Thus, $\bar{Z}(f) \cap \mathbb{T V}(\sigma)$ is the closure of $Z(f)$ in $\mathbb{T V}(\sigma)$.
(b) Either, one argues locally, for each affine chart separately, then we only obtain that the smooth locus is dense. Or, we argue similarily to $136(\mathrm{~b})$.
(c) We need that, for each $a \in \Sigma(1)$, that $\min \langle\operatorname{supp} f, a\rangle=\min \langle\Delta, a\rangle$. This, e.g., satisfied when all vertices of Δ belong to $\operatorname{supp}(f)$.
(d) This follows from the adjunction formula: $\omega_{X} \cong \omega_{X} \otimes \mathcal{J}(f)^{\vee} \cong \mathcal{O}_{X}(-\Delta) \otimes$ $\left.\mathcal{O}_{X}(\Delta)\right|_{\bar{Z}}=\mathcal{O}_{\bar{Z}}$.
Problem 138. Let Σ be the fan in \mathbb{Q}^{3} built from the rays

$$
\Sigma(1)=\left\{e^{i}, a^{i},(-1,-1,-1) \mid i=\mathbb{Z} / 3 \mathbb{Z}\right\}
$$

(with e^{i} denoting the canonical basis vectors and $a^{i}:=(1,1,1)+e^{i}$) and being spanned by the three-dimensional cones $\left\langle(-1,-1,-1), e^{i}, e^{i+1}\right\rangle,\left\langle e^{i}, e^{i+1}, a^{i+1}\right\rangle$, $\left\langle e^{i}, a^{i}, a^{i+1}\right\rangle$, and $\left\langle a^{1}, a^{2}, a^{3}\right\rangle$ for $i=\mathbb{Z} / 3 \mathbb{Z}$. Show that Σ is not the normal fan of a polytope, i.e. that $\mathbb{T V}(\Sigma)$ is complete, but not projective.
soutaon: To be used only in true emergency

