Best rejadi, Man

HUMBOLDT-UNIVERSITÄT ZU BERLIN SEKTION MATHEMATIK

Preprint Nr. 224

(Neue Folge)

Klaus Altmann

An algorithm for computing equisingular deformations

Berlin 1989

Sektion Mathematik, 1086 Berlin, Unter den Linden 6, Psf. 1297, DDR

An algorithm for computing equisingular deformations

by Klaus Altmann

\$1. Introduction.

This paper is a direct continuation of [Al 2]; in particular, we use the same notations. (Note the only difference: The sheaves of differential forms with logarithmic poles are denoted by $\Omega_X\langle D\rangle$ instead of $\Omega(\log D)$.)

(1.1.) In §2 we fix an arbitrary smooth subdivision $\Sigma < \Sigma_0$ and compute the image $\operatorname{Im} \left(\operatorname{ESE}_{X_\Sigma}(k[\epsilon]) \longrightarrow \operatorname{Def}_R(k[\epsilon]) \right)$ (cf. Proposition (2.6)). This together with Theorem [Al 2] (3.4) imply our main result - an algorithm for computing all equisingular first-order deformations in $\operatorname{Def}_R(k[\epsilon])$ (cf. Theorem (4.1)). None of the smooth subdivisions $\Sigma < \Sigma_0$, but only the starting f.r.p.p. decomposition Σ_0 itself is used there, hence, this algorithm seems to be an easy method to determine $\operatorname{ES}(k[\epsilon])$ by computers. In particular, for each equation f we can decide if there are equisingular deformations below $\Gamma(f)$ or not.

Finally, an example is given in (4.3).

(1.2) §3 is of purely illustrating character and coinsides partly with §4 of [Ai 2]. The great distance between, roughly speaking, "maximal" and "minimal" embedded resolutions (yielding the over- $\Gamma(f)$ -deformations or all elements of $ES(k[\varepsilon])$, respectively) is subdivided into elementary steps, i.e. single blowing ups of P_k^1 -copies. In this way, it is possible to regard the equisingular deformations below $\Gamma(f)$ exactly in the moment of their formation.

Herausgeber: Direktor der Sektion Mathematik der Humboldt-Universität zu Berlin

Redaktion: Informationsstelle Tel. 20932358

(25a). B/4252/89. 0.440 ISSN 0863-0976

Die Reihe "Preprint" erscheint aperiodisch. Sie ist sum Tausch bestimmt.

Altmann, Klaus An algorithm for computing equisingular deformations. Berlin: Sektion Mathematik der Humboldt-Universität sa Berlin, 4989, 22 S. (Preprint; 224) Computation of Im(MSH_X(h[a]) → Def_R(h[a]) (for a fixed embedded resolution X)

For this paragraph we fix an arbitrary smooth f.r.p.p. subdivision $\Sigma < \Sigma_0$ with the corresponding good resolution $\pi \colon X \longrightarrow \mathbb{A}^3_k$.

(2.1) The connecting morphism of the cohomology sequences of $0 \longrightarrow \Theta_X \langle -D - Y \rangle \longrightarrow \Theta_X \langle -D \rangle \longrightarrow M_{Y|X} \longrightarrow 0$

yields the following diagram, which may be written in two different versions:

and in the cohomological anguage

(The first columns are identified according to [Al 1] (2.2) - we take $k[\underline{x}] = H^0(X \setminus D, \mathcal{O}_X(-\sum_{a \in Y(1)} m(a) D_a)) \xrightarrow{-1/r} H^0(X \setminus D, \mathcal{O}_X(Y))$ -

and $H^{1}(X, \mathcal{O}_{X}(Y)) = H^{1}(X, \mathcal{N}_{Y|X}) = 0;$

for the right hand side we use (2.5)(γ) and (4.2) of [Al1] - in the latter one the vanishing of $H^2(X,\Theta_X\langle -D-Y\rangle)$ has been proved.)

Definition. For $\xi = \sum_{r \geq 0} \xi_r \cdot x^r \in k[x] \cong H^0(X \setminus D \mathcal{O}_X(Y))$ we denote by $\xi_{< \Gamma(f)}$ the

image of ξ in $\frac{k[\underline{x}]}{(monomials > \Gamma(\xi))} = H^1_D(X, \mathcal{O}_X(-\sum m(a)D_a)) \cong H^1_D(X, \mathcal{O}_X(Y)) \ .$

Taking the canonical section of $k[\underline{x}] \longrightarrow k[\underline{x}]/\langle monomials \ge \Gamma(f) \rangle$, we get $\xi_{<\Gamma(f)} = \sum_{\substack{r \ge 0 \\ r < \Gamma(f)}} \xi_r \cdot x^r$.

(2.2) Proposition. 1) For i=1,2,3 let

 $\varphi_l: H^1_D(X, \mathcal{O}_X(e^l)) \to H^1_D(X, \mathcal{O}_X(-\sum m(a)D_a))$ be the multiplication by $\chi_l \frac{\partial f}{\partial \chi_l}$. Under the isomorphism

 $H^1_D(X,\mathcal{O}_X(-\sum m(a)D_a)) \xrightarrow{-1/_F} H^1_D(X,\mathcal{O}_X(Y)) \xrightarrow{\sim} H^1_D(X,\mathcal{N}_{Y/X})$

Coker γ = Coker $(\stackrel{3}{\oplus} \varphi_i)$.

2) Let $\xi = \sum_{r \ge 0} \xi_r \cdot x^r \in k[x]$ define an element of $Def_R(k[\varepsilon])$ (the infinitesimal deformation $\hat{f}(x,\varepsilon) = f(x) - \varepsilon \xi(x)$). Then this deformation is induced by $ESE_{Y}(k[\varepsilon])$ if and only if

$$\xi_{<\Gamma(f)} \in \operatorname{Im} \left(\stackrel{3}{\oplus} \varphi_i \right)$$

Proof. 1) By the second diagram of (2.1) it holds

Coker $\gamma = H_D^1(X, \mathcal{N}_{Y|X})/K_{er\psi} = \text{Coker}(H_D^1(X, \Theta_X(-D)) \to H_D^1(X, \mathcal{N}_{Y|X}))$.

On the other hand, we can lift the surjection $\Theta_X(-D) \to \mathcal{N}_{Y|X}$ to the

homomorphism $\Theta_X(-D) \longrightarrow \mathcal{O}_X(Y)$ given by $\eta \mapsto \frac{\eta(f)}{f}$ (i) In local coordinates (take the same notations as in the proof of

[A12](2.5):
$$f = x^{r\alpha} f_{\alpha}$$
) we obtain
$$\frac{\eta(f)}{f} = \frac{\eta(f_{\alpha})}{f} + \frac{\eta(x^{r\alpha})}{f}$$

Since $\eta \in \Theta_X(-D)$, the section $\frac{\eta(x^{r\alpha})}{x^{r\alpha}}$ is regular on X, and $\frac{\eta(f)}{f}$ is indeed an element of the sheaf $O_X(Y)$.

(ii) The projections $\Theta_X(-D) \longrightarrow M_{Y|X}$ and $O_X(Y) \longrightarrow M_{Y|X}$ are locally given by

$$\eta \longmapsto \left[f_{\alpha}\epsilon^{(f_{\alpha})}/(f_{\alpha}^{2}) \longmapsto \eta(f_{\alpha})\epsilon^{O}X/(f_{\alpha})\right] \quad \text{and}$$

$$a \longmapsto \left[f_{\alpha}\epsilon^{(f_{\alpha})}/(f_{\alpha}^{2}) \longmapsto a f_{\alpha}\epsilon^{O}X/(f_{\alpha})\right], \text{ respectively.}$$

Then, the congruence

$$\frac{\eta(f)}{f} \cdot f_{\alpha} = \eta(f_{\alpha}) + \frac{\eta(x^{r\alpha})}{x^{r\alpha}} \cdot f_{\alpha} = \eta(f_{\alpha}) \pmod{f_{\alpha}}$$

shows that the diagram

$$\Theta_X(-D)$$
 \longrightarrow $M_{Y|X}$ commutes

Since $H^1_D(X, \mathcal{O}_X(Y)) \xrightarrow{\sim} H^1_D(X, \mathcal{N}_{Y|X})$ is an isomorphism, we obtain Coker $\gamma = \operatorname{Coker}(H^1_D(X, \mathcal{O}_Y(\neg D)) \longrightarrow H^1_D(X, \mathcal{O}_Y(Y)))$.

Finally, the first claim follows by the equation

$$\eta(\mathbf{f}) = \sum_{i=1}^{3} (\mathbf{x}_{i} \frac{\partial \mathbf{f}}{\partial \mathbf{x}_{i}}) \cdot \frac{\eta(\mathbf{x}_{i})}{\mathbf{x}_{i}}$$

and taking the isomorphism

$$\begin{array}{c} \Theta_{X}\langle -D\rangle \stackrel{\sim}{\longrightarrow} \bigoplus_{i=1}^{3} \mathcal{O}_{X}(e^{i}) \\ \eta \longmapsto \left(\frac{\eta(x_{i})}{x_{i}}, \frac{\eta(x_{2})}{x_{2}}, \frac{\eta(x_{3})}{x_{3}} \right) \end{array}.$$

2) $\xi \in k[x] = H^0(X \setminus D, \mathcal{O}_X(-\sum m(a)D_a)) \cong H^0(X \setminus D, \mathcal{O}_X(Y))$ maps onto $0 \in Coker\gamma$ if and only if

$$\xi_{<\Gamma(f)} \in H^1_D(X, \mathcal{O}_X(-\sum m(a)D_a)) \cong H^1_D(X, \mathcal{O}_X(Y)) \text{ vanishes in } \operatorname{Coker}(\bigoplus_{i=1}^3 \phi_i).$$

(2.3) Our next task will be to describe the maps φ_i by the methods of torus embeddings. For this purpose it is usefull to regard the dual version of these maps:

$$\varphi_i^* : H^2(X, \omega_Y(\sum m(a)D_n)) \longrightarrow H^2(X, \omega_Y(-e^i))$$

and the homomorphisms are still given by multiplication by $x_1 \frac{\partial f}{\partial x_1}$.

Now, for reM we define the following sets:

$$\begin{split} &A_{r} \coloneqq \left\{ a \in \Delta \ \middle/ \ \langle a, \neg r \rangle \leq \neg m(a) \right\} = \left\{ a \in \Delta \ \middle/ \ \langle a, r \rangle \geq m(a) \right\} \ , \\ &B_{l,t}^{\Sigma} \coloneqq \left\{ a \in \Delta \ \middle/ \ \langle a, -t \rangle \leq \varphi_{l}(a) \right\} \ \ \text{with} \ \ \psi_{l}(a) \coloneqq \left\{ \begin{matrix} 0 & \text{for } a \in \Sigma^{(1)}, \ a \neq e^{i} \\ 1 & \text{for } a = e^{i} \end{matrix} \right. \\ &H_{t} \coloneqq \left\{ a \in \Delta \ \middle/ \ \langle a, t \rangle < 0 \right\} \ . \end{split}$$

Then, the convex sets $(\triangle \backslash H_t)$ are contained in $B_{i,t}^{\Sigma}$, and the maps ϕ_i^{\pm} are equal to some homomorphisms

$$\phi_{i}^{*} : \underset{r \in M}{ \oplus} H^{1}(A_{r}, k) \xrightarrow{} \underset{t \in M}{ \oplus} H^{1}(B_{i,t}^{\Sigma}, k) \qquad (i=1,2,3) .$$

$$\parallel (cf.(2.5)) \qquad \qquad \underset{r \geq 0}{ \oplus} k \cdot x^{-r}$$

(As we are really interested in the dual of, for instance,

 $H^2(X, \omega_X(\Sigma m(a)D_a))$, the notations are chosen such that A_r describes the cohomology of the -r(th) factor of this sheaf. The relations "<" or ">" - instead of the strict ones - in the definitions of A_r and $B_{i,t}^{\Sigma}$ are induced by taking $\omega_X(\text{divisor})$ instead of $\mathcal{O}_X(\text{divisor})$.)

But, what does φ_i^* look like? We have to make some general remarks concerning the computation of cohomology on torus embeddings:

(2.4) Denote by $j: T \hookrightarrow X_{\Sigma}$ a torus embedding in the sense of [Ke].

i) Let $L = j_{\bullet} \mathcal{O}_{\overline{1}} = j_{\bullet} k[M]^{\sim}$ be an M-graded invertible sheaf with order function $\Phi: |\Sigma| \longrightarrow \mathbb{R}$; for $r \in M$ let $A_r := \{a \in \Delta / \langle a,r \rangle < \Phi(a)\}$.

Then, if $\alpha \in \Sigma$ is an arbitrary cone, we obtain

$$L(r)|X_{\alpha} = \begin{cases} \mathbb{C} & (\forall a \in \alpha : \langle a,r \rangle \geq \Phi(a)) \\ 0 & (\exists a \in \alpha : \langle a,r \rangle \leq \Phi(a)) \end{cases},$$

hence $L(r)|_{X_{\alpha}} = H^0(\alpha, \alpha \cap A_r) \otimes \underline{k}$. In particular, the sheaf L(r) and the pair (Δ, A_r) yield exactly the same Cech complexes.

2) Let L^1 , $L^2 \in j_{\bullet} \mathcal{O}_{T}$ be M-graded invertible sheaves with Φ^1 , Φ^2 and A_{T}^1 , A_{T}^2 as before. Assume that there is an $s \in M$ with $x^8 \cdot L^1 \in L^2$ (equivalent: $\Phi^1 + s \ge \Phi^2$ as functions on Δ).

Then, for each reM there is an inclusion $A_{T+8}^2 \in A_T^1$, which provides the commutative diagram

$$\Gamma(X_{\alpha}, L^{1}(r)) \xrightarrow{\cdot X^{3}} \Gamma(X_{\alpha}, L^{2}(r+s))$$

$$\parallel \qquad \qquad \parallel$$

$$H^{0}(\alpha, \alpha \cap A^{1}_{r}) \xrightarrow{\leftarrow} H^{0}(\alpha, \alpha \cap A^{1}_{r+s}).$$

Again by taking Cech cohomology we obtain a description of the multiplication by x^8 on the cohomological level:

$$H^{\mathbf{n}}(X, \mathbf{L}^{1}) \xrightarrow{\mathbf{x}^{\mathbf{S}}} H^{\mathbf{n}}(X, \mathbf{L}^{2})$$

$$\parallel \qquad \qquad \parallel$$

$$\bigoplus_{\mathbf{r} \in \mathbf{M}} H^{\mathbf{n}}(\Delta, \mathbf{A}^{1}_{\mathbf{r}}) \xrightarrow{\mathbf{v}} \bigoplus_{\mathbf{r} \in \mathbf{M}} H^{\mathbf{n}}(\Delta, \mathbf{A}^{2}_{\mathbf{r}})$$

(φ is induced by the inclusion $A_{r+s}^2 \in A_r^1$; in particular, φ is homogeneous of degree s.)

3) Let L^1 , Φ^1 , Λ^1_T (i=1,2) as before, assume that there is a Laurent polynomial $g(x) \in k[M]$ with $g(x) \cdot L^1 \subseteq L^2$.

Then, by M-graduation of both sheaves L^1 and L^2 , this fact is equivalent to

$$x^s \cdot L^1 \subseteq L^2$$
 for all $s \in \text{supp } g$.

Hence, the method of (2) can be applied to describe the maps $H^n(X, L^1) \xrightarrow{g(X)} H^n(X, L^2)$

(2.5) The third part of the previous general remark applies exactly to the special maps φ_i^* regarded in 2.3). Denoting by $\Delta_i^{\Sigma} \in \Delta$ the union of all closed Σ -cones not containing e^i , we obtain the following

Lemma. 1) $H^1(A_T, k) = \begin{cases} k \cdot x^{-T} & (\text{for } r \ge 0 \text{ and } r < \Gamma(f)) \\ 0 & (\text{otherwise}) \end{cases}$, and the perfect pairing with $H^1_D(X, \mathcal{O}_X(-\sum m(a)D_a)) = \bigoplus_{\substack{r \ge 0 \\ r \ge 1 \in P}} k \cdot x^T$ is built in the obvious way.

2) For i=1,2,3 and $t\in M$ the cohomology group $H^1(B_{i,t}^{\Sigma},k)$ is equal to

(i)
$$H_0(\Delta_i^{\Sigma} \cap H_t) \cdot x^{-t}$$
 (for $t_i = -1$ and

 $t_{v} \ge 0$ for all $v \ne i$);

(ii)
$$H_0(\Delta_1^{\Sigma} \cap H_t)/H_0(\{e\}) \times^{-t}$$
 (for $t_i = -1$.

 $t_i \le -1$ ($j \ne i$), and the remaining

component is ≥0);

(iii) 0 (for
$$t \neq -1$$
 or $t \leq -(1,1,1)$).

3) Let $f(\underline{x}) = \sum_{\substack{a \in \text{supp } f \\ a \in \text{supp } f}} \lambda_g \cdot x^g$ be the explicit description of our starting equation. Let r, i and t be such that $H^1(A_T, k)$, $H^1(B_{i,t}^{\Sigma}, k) \neq 0$ (i.e. $r \ge 0$, $r < \Gamma(f)$ and $t_i = -1$, $t \not = -(1,1,1)$, respectively).

Then the x^{-t} -part of $\varphi_i^*(x^{-r})$ is given by

$$s_l \ \lambda_s \cdot \left[H_0(\{a^*\}) \in H_0(\Delta_l^\Sigma \cap H_t) \right] \quad \text{with } s := -t + r \text{ (because of } (-t) = s + (-r))$$

$$\quad \text{and} \quad a^* \in \Sigma_0^{\{1\}} \text{ such that } \langle a^*, r \rangle < m(a^*).$$

In particular, this part of $\varphi_i^*(x^{-r})$ vanishes, unless $s \ge \Gamma(f)$.

Proof. 1) $A_r = \triangle \setminus \{a \in \triangle / \langle a,r \rangle < m(a)\} = \triangle \setminus (convex set)$, and the above conditions for rarise by $r \ge 0$ iff $\partial \triangle \subseteq A_r$ and $r \le \Gamma(f)$ iff $A_r \ne \triangle$.

2) $\triangle \setminus \mathbf{H}_t \subseteq B_{i,t}^{\Sigma}$, and the only vertex of $\Sigma^{(1)}$ in which both sets can differ is e^i . Hence, the non-vanishing of $H^1(B_{i,t}^{\Sigma}, k)$ implies $e^i \notin \triangle \setminus \mathbf{H}_t$, $e^i \in B_{i,t}^{\Sigma}$, and we obtain $t_i = \langle e^i, t \rangle = -1$.

Assuming this from now on, we see that $B_{i,t}^{\Sigma}$ contains exactly the same elements of $\Sigma^{(1)}$ as $\Delta \setminus \left[\Delta_i^{\Sigma} \cap H_t \right]$. In particular, both subsets of Δ (consisting of open or closed halfspaces in every cone of Σ) are homotopy equivalent and yield the same cohomology. Without loss of generality we take i=1 and consider the above three cases:

(i) t₂,t₃≥0: Then, ∂Δ ⊆ Δ \ [Δ₁^Σ ∩ H_t], and H¹(Δ \ [Δ₁^Σ ∩ H_t], k) = H₀(Δ₁^Σ ∩ H_t) follows by the Alexander duality.
 (ii) t₂≤-1, t₃≥0: This means e¹, e³ ∈ (Δ \ [Δ₁^Σ ∩ H_t]), e² ∉ (Δ \ [Δ₁^Σ ∩ H_t]) and therefore, the connected component C of e² in Δ₁^Σ ∩ H_t has no influence on the cohomology:

$$H^{1}(\Delta \setminus [\Delta_{1}^{\Sigma} \cap \mathbf{H}_{t}], \mathbf{k}) = H^{1}(\Delta \setminus [(\Delta_{1}^{\Sigma} \cap \mathbf{H}_{t}) \setminus \mathbf{C}], \mathbf{k}) =$$

$$= H_{0}([\Delta_{1}^{\Sigma} \cap \mathbf{H}_{t}] \setminus \mathbf{C}) = H_{0}(\Delta_{1}^{\Sigma} \cap \mathbf{H}_{t}) / H_{0}(\{e^{2}\}).$$

(The middle equality again follows by the Alexander duality.)

(iii) $t_2, t_3 \le -1$: By $\mathbb{H}_t = \Delta$ we obtain

$$\Delta \setminus [\Delta_1^{\Sigma} \cap \mathbf{H_t}] = \Delta \setminus \Delta_1^{\Sigma},$$

and this set can be contracted to the point e1.

3) The linear map $H^1(A_r,k) \longrightarrow H^1(B_{i,t}^{\Sigma},k)$ is constructed by the inclusion $B_{i,t}^{\Sigma} \in A_r$ (cf. (2.4)); in dual terms this means that $H_0(\Delta \setminus A_r) \longrightarrow H_0(\Delta_1^{\Sigma} \cap H_t) / \dots$ is induced by

$$(\Delta \backslash \mathbf{A}_{\bullet}) = (\Delta \backslash \mathbf{B}_{i+}^{\Sigma}) \sim (\Delta_{i}^{\Sigma} \cap \mathbf{H}_{\bullet}):$$

Take an element $a^* \in \Sigma_0^{(1)}$ with $\langle a^*, r \rangle < m(a^*)$ (i.e. $a^* \in \Delta \setminus A_T$); assuming $s \ge \Gamma(f)$, we obtain

$$\langle \mathbf{a}^*, \mathbf{t} \rangle = \langle \mathbf{a}^*, \mathbf{r} \rangle - \langle \mathbf{a}^*, \mathbf{s} \rangle > 0$$
 (i.e. $\mathbf{a}^* \in \mathbf{H}_{\bullet}$),

and x^{-r} maps onto the corresponding connected component in $\Delta_1^{\Sigma} \cap H_{\xi}$ (multiplied by the coefficient of x^{δ} in $x_1 \frac{\partial f}{\partial x}$).

(2.6) Now, we are in the position to determine the deformations of $\operatorname{Im}(\operatorname{ESE}_Y(k[\epsilon]) \xrightarrow{\Upsilon} \operatorname{Def}_D(k[\epsilon]))$ exactly:

Definition. For i=1,2,3 let $M_i := \{r \in M / r \ge 0, \Gamma(f) - e_i \le r < \Gamma(f)\}$ ($\{e_1,e_2,e_3\}$ denotes the canonical Z-basis of M);

then, we can choose (and fix) a map

$$a: M_1 \longrightarrow \Sigma_0^{(1)}$$

$$r \longmapsto a(r)$$
 with $\langle a(r), r \rangle < m(a(r))$.

Recall the definitions

$$\mathbf{H}_{\mathbf{t}} := \{ \mathbf{a} \in \Delta / \langle \mathbf{a}, \mathbf{t} \rangle < 0 \} \text{ (for } \mathbf{t} \in \mathbf{M}) \text{ and } \Delta_{\mathbf{i}}^{\mathbf{\Sigma}} := \bigcup \{ \overline{\alpha} / \overline{\alpha} \in \Sigma, \ \mathbf{e}^{\mathbf{i}} \notin \overline{\alpha} \} \subseteq \Delta.$$

Proposition. (I) Given the following data

- 1) i e {1, 2, 3},
- 2) $t \in M$ with: a) $t_i = -1$
 - b) (i) $t_0 \ge 0$ (i.e. $e^{i\phi} H_t$) for all $i \ne i$, or
 - (ii) $t_i \le -1$ ($i \ne j$) and the remaining component is ≥ 0 ,
 - c) there exists an $r \in M_1$ with $r-t \ge \Gamma(f)$ and $\langle a(r), t+e_1 \rangle \ge 0$,
- 3) a connected component C of $\Delta_1^{\Sigma} \cap H_t$ not containing any of the vertices e^1, e^2, e^3 ,

then, the deformation defined by

$$\sum_{\substack{r \in M_1 \\ a \in r \neq c}} (r_1 + 1) \, \lambda_{r-c} \cdot x^r = \left(x^{t+c_1} \cdot \frac{\partial f}{\partial x_i} \right) |_{M_1 \cap a^{-1}(C)}$$

comes from ESE_X(k[s]).

(II) $Im(\gamma) = Def_R(k[\varepsilon])$ as a k-vectorspace is spanned by the over- $\Gamma(f)$ -deformations and all deformations contructed in the above way.

Proof. By Proposition (2.2), $\operatorname{Im}(\gamma)$ is spanned by the over- $\Gamma(f)$ -deformations together with the images of the maps ϕ_i (i=1,2,3). However, in Lemma (2.5)(2) it is shown that the data $\{i,t,C\}$ meeting 1), 2a), 2b) and 3) of the claim form a k-basis of

$$\bigoplus_{i=1}^{8} H_D^2(X, \mathcal{O}_X(e^i)) = \bigoplus_{i=1}^{8} \bigoplus_{t \in M} H^1(\mathbf{B}_{i,t}^{\Sigma}, k) \text{ (or its } k\text{-dual)};$$

finally, part (3) of the same Lemma gives

$$\varphi_i(\{i,t,C\})|_{k \cdot x^r} = \begin{cases} (r_i+1)\lambda_{r-t} & (\text{for } a(r) \in C) \\ 0 & (\text{otherwise}) \end{cases}$$

It remains to prove that we are able to restrict ourselves to $r \in M_1$ (instead of $r \ge 0$, $r < \Gamma(f)$) and that the additional assumption 2c) for t can be made:

Let $\{i,t,C\}$ be as before and take an $r\ge 0$, $r<\Gamma(f)$ such that $\varphi_i(\{i,t,C\})\big|_{k\ge x}r\ne 0$. Claim. $\langle a(r),t\rangle\ge -a(r)_i$.

 $\langle a(r),t\rangle < -a(r)_i$ would imply that there is an $j\neq i$ with $t_j \leq -1$ (cf. case (ii)), and we would obtain the following situation:

 $\widetilde{\mathbf{H}}_{\mathbf{t}}^{\mathrm{tm}} \{ \mathbf{a} \in \Delta / \langle \mathbf{a}, \mathbf{t} \rangle < -\mathbf{a}_{\mathbf{i}} \} \subset \mathbf{H}_{\mathbf{t}}$ contains $\mathbf{a}(\mathbf{r})$ and $\mathbf{e}^{\mathbf{i}}$, but not the vertex $\mathbf{e}^{\mathbf{i}}$. Hence, there is no cone $\overline{\mathbf{b}} \in \Sigma$, $\mathbf{b} \notin \widetilde{\mathbf{H}}_{\mathbf{t}}$ ($\mathbf{b} \notin \mathbf{H}_{\mathbf{t}}$) meeting $\overline{\mathbf{a}(\mathbf{r})} \in \mathbf{e}^{\mathbf{i}}$, and $\mathbf{a}(\mathbf{r})$ and $\mathbf{e}^{\mathbf{j}}$ must be contained in the same connected component of $\Delta_{\mathbf{i}}^{\Sigma} \cap \mathbf{H}_{\mathbf{t}}$.

Now, $(r-t) \in \text{supp } f$ implies $r-t \geq \Gamma(f)$; in particular, we obtain $\langle a(r), r-t \rangle \geq m(a(r))$

and therefore

$$\langle a(r), r \rangle \ge m(a(r)) - a(r)_1$$

Remarks. 1) Condition 2c) guarantees that there are only a few (in particular, a finite number of) teM fulfilling 2).

- 2) The above construction is of course independent of the choice of the function a: $M_i \longrightarrow \Sigma_0^{(1)}$.
- (2.7) In (2.6)-(2.8) of [Al1] we already tried to describe the image of γ . For elements $\xi \in H^1(X,\Theta_X\langle -D-Y\rangle)$ (given explicitly by a 1-cocycle $\{\xi_{\alpha\beta}\}$) the induced deformation $\gamma(\xi)_{<\Gamma(f)}$ was computed directly. Now, we want to give a short dictionary to understand this formulae in the cohomological language used here.
- (i) For i=1,2,3 we obtain elements $\xi(x_i) \in H^1(X, \mathcal{O}_X(-\sum_{a>0} a_i D_a))$ (given by $\xi_{\alpha\beta}(x_i)$ in [Al1]).
- (ii) The exact sequence

 $b_i \in H^0(X, \mathcal{O}_{\sum_{a \in D_a}})$

$$0 \longrightarrow \mathcal{O}_X(-\sum_{a\geq 0} a_iD_a) \longrightarrow \mathcal{O}_X \longrightarrow \mathcal{O}_{\sum a_iD_a} \longrightarrow 0 \quad ,$$
 together with $H^1(X,\mathcal{O}_X)=0$, shows that $\xi(x_i)$ can be lifted to an element

(In [Ai1] these sections are given locally by $b_i^{\alpha} \in \mathcal{O}_X$: $\xi_{\alpha\beta}(x_i) = b_i^{\beta} - b_i^{\alpha} \quad \text{for every two cones } \alpha, \beta \in \Sigma.)$

Therefore, we obtain $\sum_{i=1}^{a} \frac{\partial f}{\partial x_i} b_i \in H^0(X, \mathcal{O}_{\sum m(a)D_a})$ - still written as a local \mathcal{O}_X -section in [Al1].

(iv) Finally, we recall the isomorphism

$$H^0_{(D)}(X, \mathcal{O}_{\sum m(a)D_a}) \xrightarrow{-\infty} H^1_{D}(X, \mathcal{O}_{X}(-\sum m(a)D_a)) = \frac{k[x]}{\langle monomial a \rangle \Gamma(\Omega)}.$$

\$3: Changing the embedded respiration

(3.1) Let $\Sigma < \Sigma_0$ be a smooth subdivision with the following property: For i=1,2,3 the convex hull conv(a,b) of arbitrary elements $a,b \in \Sigma_0^{(1)} \setminus \{e^i\}$ is contained in Δ_i^{Σ} .

Then, we obtain by [Al1](2.9):

$$\begin{split} \operatorname{Im} \left(\operatorname{ESE}_{X_{\widetilde{\Sigma}}}(k[\epsilon]) &\longrightarrow \operatorname{Def}_{R}(k[\epsilon]) \right) = \left\{ \text{isomorphism classes of first} \\ & \text{order "over-}\Gamma(f)\text{-deformations"} \right\}. \end{split}$$

(3.2) Embedded resolutions X_{Σ} meeting the property (*) and the f.r.p.p. decompositions Σ_{\parallel} defined in [Al2](2.4) represent the two extremal values of $\operatorname{Im}\left(\operatorname{ESE}_{X_{\Sigma}}(\Bbbk[\epsilon]) \longrightarrow \operatorname{Def}_{R}(\Bbbk[\epsilon])\right)$ (equal to the set of all over- $\Gamma(f)$ -deformations by (3.1) or to $\operatorname{ES}(\Bbbk[\epsilon])$ by [Al2](3.4), respectively).

It is possible to connect these "maximal" and "minimal" f.r.p.p. decompositions by a chain of elementary subdivisions, and we can try to compare the images of ESE at each step: (3.3) Definition. Let Σ', Σ be smooth f.r.p.p.decompositions finer than Σ_0 . Σ' will be called an elementary subdivision of Σ if it is obtained by barycentrical subdivision of exactly one 2-dimensional cone $\overline{pe}^j \in \Sigma$:

(The corresponding proper map $o: X' \longrightarrow X$ is the blowing up of the closed orbit $\overline{orb \ \overline{pe}^j} \subseteq X$, which is isomorphic to \mathbb{P}^1_k .)

(3.4) How do the data of Proposition (4.6)(1) change under elementary subdivisions?

i,t,H, are independent of the actual f.r p.p. decomposition;

 $\Delta_i^{\Sigma} \subseteq \Delta_i^{\Sigma'}$ really change iff i=j, but both sets still contain the same elements of $\Sigma_i^{(1)}$ (all but e^i).

Therefore, the crucial point must be the arrangement of the connected components of $\Delta_1^{\Sigma} \cap \mathbf{H_t}$, i.e. which elements of $\Sigma_0^{(1)}$ are contained in a common one?

There are only two possibilities for an essential distinction between Σ' and $\Sigma\colon$

1) $a,b,g \in H_t$, $p \notin H_t$ (i.e. $\langle a,t \rangle < 0$; $\langle b,t \rangle < 0$; $\langle p,t \rangle = 0$)

The two connected components of $\Delta_1^{\Sigma} \cap \mathbb{H}_t$ that contain a and b, respectively, are joint in $\Delta_1^{\Sigma} \cap \mathbb{H}_t$.

2) $a,b,p \notin H_t$, $g \in H_t$ (i.e. $\langle a,t \rangle \ge 0$; $\langle b,t \rangle \ge 0$; $\langle p,t \rangle = 0$).

In $\Delta_1^{\Sigma'} \cap H_t$, there appears a new component containing g but no element of $\Sigma_0^{(1)}$. Therefore, the image of $\mathrm{ESE}(k[\epsilon])$ in $\mathrm{Def}_R(k[\epsilon])$ will remain unchanged.

(3.5) We define two characteristic integers of the elementary subdivision $\Sigma' < \Sigma$: $k := \det(a, b, e^{i})$

$$d:=\det(b,a,p)$$
 $(a,b,p,e^{i}\in\Sigma^{(i)}\subseteq\mathbb{Z}^{3}).$

By construction, k≥1 is valid.

Lemma. 1) $k \cdot p + d \cdot e^i = a + b$

2) Let $Z:=\overline{orb\ pe^i}\subseteq X$ (centre of blowing up); then, k and d equal certain intersection numbers on X:

$$(D_{\mathbf{p}} \cdot Z) = -k$$

$$(D_{pl}\cdot Z)=-\mathbf{d}.$$

3) $\bigwedge_{Z/X} \simeq \mathcal{O}_Z(-k) \oplus \mathcal{O}_Z(-d)$. Therefore, the exceptional divisor of the blowing up $\sigma: X' \longrightarrow X$ is isomorphic to the Hirzebruch surface F_{k-d} over Z.

Proof 1) By the definitions of k and d and by

 $det(a, p, e^i) = det(b, e^i, p) = 1$ (Σ is smooth!),

we obtain

$$det(a+b,e^{i},o) = det(a,b,kp+de^{i}) = 0$$
.

Therefore, the vectors a+b and kp+deⁱ are contained in $\overline{ab} \cap \overline{pe^i}$, i.e. there exists a $\lambda \in \mathbb{Q}$ with kp+deⁱ = λ (a+b).

Finally, we have

$$k = \det(a, kp, e^i) = \det(a, kp + de^i, e^i) = \lambda \cdot \det(a, a + b, e^i) =$$
$$= \lambda \cdot \det(a, b, e^i) = \lambda \cdot k.$$

2) For $r \in \mathbb{Z}^3$ the divisors $(x^r) = \sum_{a \in \mathbb{Z}^{(1)}} \langle a, r \rangle \cdot D_a$ vanish in Pic X. In particular, we get the following equations between the corresponding intersection numbers:

$$(D_{e^i} \cdot Z) + p_i(D_p \cdot Z) + a_i + b_i = ([D_{e^i} + p_i D_p + a_i D_a + b_i D_b] \cdot Z) = 0$$

and

$$p_i(D_D \cdot Z) + a_i + b_i = ([p_iD_D + a_iD_a + b_iD_b] \cdot Z) = 0$$
 (for j i).

3) Z=D_n∩D_ni yields

(3.6) Let us return to the situation of (3.4):

We had the following conditions for t, which are nessecary for the arrangement of connected components of $\Delta_1^{\Sigma} \cap \mathbb{H}_*$ to be changed:

$$t_i = \langle e^i, t \rangle = -1,$$

 $\langle p, t \rangle = 0,$

$$\left[\langle a,t\rangle,\langle b,t\rangle<0 \text{ (cf. (1)), or }\langle a,t\rangle,\langle b,t\rangle\geq0 \text{ (cf. (2))}\right].$$

Now, the first part of the previous Lemma yields

$$\langle a,t \rangle + \langle b,t \rangle = \langle kp + de^i,t \rangle = k \cdot \langle p,t \rangle + d \cdot \langle e^i,t \rangle = -d$$

and we have to distinguish between two cases:

Case 1. d ≤1

Only $\langle a,t\rangle,\langle b,t\rangle \ge 0$ can appear, and as already mentioned in (3.4)(2),

 $ESE_{X'}(k[\epsilon])$ and $ESE_{X}(k[\epsilon])$ induce the same image in $Def_{R}(k[\epsilon])$.

Case 2. d≥2

The only possibility is $\langle a,t \rangle, \langle b,t \rangle < 0$, i.e. two connected components C_1 and C_2 of $\Delta_1^\Sigma \cap H_t$ are joint to a common one, namely C of $\Delta_1^{\Sigma} \cap H_t$.

$$\Big(\overset{\bullet}{\underset{i=1}{a}} \phi_i \Big) \colon \overset{\bullet}{\underset{i=1}{a}} H^1_D(X, \boldsymbol{\mathcal{O}}_X(e^i)) \longrightarrow H^1_D(X, \boldsymbol{\mathcal{O}}_X(-\sum_m(a)D_a))$$

as a matrix A₅:

The columns and rows correspond to the data (i,t,C) and the elements $\mathbf{r} \in \bigcup_{i=1}^{N} \mathbf{M}_i$ (cf. Proposition (2.6)), respectively. Each column represents an equisingular deformation of type (i) or (ii) (cf. (I)(2b) of Proposition (2.6)), and in this way $\operatorname{Im}(\gamma)$ is spanned by all columns of the matrix \mathbf{A}_{Σ} .

Now, joining the components \mathbf{C}_1 and \mathbf{C}_2 means the construction of a new matrix by

a) summing up the columns (i,t,C_1) and (i,t,C_2) to a common one (i,t,C) (if neither C_1 nor C_2 contain one of the vertices e^1,e^2,e^3), or b) deleting these columns (otherwise).

(The latter version can only be actual by dealing with type-(ii)-deformations; then one of the triples (i,t,C_{ν}) did already not appear as a column of the starting matrix, i.e. only one column vanishes really.)

Altogether, for d>2 there are exactly (d-1) values of $t \in M$ that imply a changing of the connected components of $\Delta_1^E \cap H_t$. Therefore, almost this number of columns must be deleted (maybe after adding some of them to other ones) in order to get the matrix A_{Σ^*} from A_{Σ} ; we obtain

$$\dim_k \operatorname{Im}(\gamma) - \dim_k \operatorname{Im}(\gamma') = \operatorname{rank} A_{\Sigma} - \operatorname{rank} A_{\Sigma'} \leq \operatorname{d-1}.$$

Remark. The map $o: X' \longrightarrow X$ is the blowing up of an "admissible centre" in the sense of [Kaw]. By Theorem 2 of this paper we obtain

$$(\mathbb{R}^{+_{G_{\mathbf{x}}}})(\Theta_{\mathbf{Y}}\cdot\langle-\mathbf{D}'-\mathbf{Y}'\rangle)=\Theta_{\mathbf{Y}}\langle-\mathbf{D}-\mathbf{Y}\rangle\langle-\mathbf{Z}\rangle$$

which yields the exact sequence

$$\begin{array}{c} H^0(X,\bigwedge_{Z|D_p}) \longrightarrow H^1(X,\; \Theta_X\cdot\langle -D\cdot -Y'\rangle) \longrightarrow H^1(X,\; \Theta_X\langle -D-Y\rangle) \longrightarrow H^1(X,\bigwedge_{Z|D_p}) \longrightarrow 0 \\ & \quad \|\; (3.5)(2) \\ & \quad \quad \| (3.5)(2) \\ & \quad \quad \| (2,C_2(-d)) \end{array}$$

Again, we have the above two cases for d:

Case: 1. d ≤1

Then $H^1(Z, \mathcal{O}_Z(-d))=0$, and the map $ESE_{X'}(k[\epsilon]) \longrightarrow ESE_{X'}(k[\epsilon])$ must be surjective.

Case 2. d≥2

By $H^0(Z, \mathcal{O}_Z(-d)) = 0$, we can compute the difference of the ESE-functors: $0 \longrightarrow \text{ESE}_{X'}(k[\epsilon]) \longrightarrow \text{ESE}_{X}(k[\epsilon]) \longrightarrow k^{d-1} \longrightarrow 0$.

But in order to recognize the difference of the images in $Def_R(k[\epsilon])$, a comparison of the above matrices A_{Σ^*} and A_{Σ} will still be necessary.

- (3.7) Finally, we want to consider what happens with the matrix A_{Σ} by not only one single elementary subdivision but by reaching the property (*) of (3.1) at once.
- (*) means that all elements of $\Sigma_0^{(1)}$ contained in $\Delta_1^{\Sigma_1} \cap \mathbb{H}_t$ even belong to the same connected component. In particular, there are no type-(ii)-deformations $(e^j \in \Delta_1^{\Sigma_1} \cap \mathbb{H}_t!)$ that are contained in $\operatorname{Im}(\gamma')$ the corresponding columns of A_{Σ} will be totally deleted by turning to the matrix $A_{\Sigma'}$.
- On the other hand, all columns of A_{Σ} that correspond to a pair (i,t) of type (i) (cf. Proposition (2.6)(1)(2)) will be summed up thus obtaining only one single column of A_{Σ} that represents the trivial deformation $x^{\xi+e_1} \frac{\partial f}{\partial x}$.

94. An algorithm to determine the equisingular deformations below I(f)

(4.1) Analogously to Proposition (2.6) it is possible to compute all deformations of $\overline{\mathrm{ES}}(\mathbf{k}[\epsilon]) \subset \mathrm{Def}_{R}(\mathbf{k}[\epsilon])$. The corresponding algorithm does not use any of the smooth subdivisions of Σ_{0} regarded before, but only the starting f.r.p.p. decomposition Σ_{0} itself.

Let $\Delta_i := \bigcup \{\overline{\alpha} / \overline{\alpha} \in \Sigma_0, e^i \notin \overline{\alpha} \} \subseteq \Delta$ (i=1,2,3) and take the definition of $M_i \subseteq M$, a: $M_i \longrightarrow \Sigma_0^{(1)}$ and H_i of (2.6).

Theorem. (1) Given the following data

1) 1 e {1, 2, 3},

2) tcM with: a) ti = -1

b) (t) $t_0 \ge 0$ (i.e. $e^{y} \ne H_0$) for all $y \ne i$, or

(ii) t_j≤-1 (1+j) and the remaining component is ≥0,
 c) there exists an r∈M_i with r-t≥Γ(f) and ⟨a(r),t+e_i⟩≥0,

3) a connected component C of $\Delta_i \cap \mathbb{H}_{\xi}$, not containing any of the vertices e^1, e^2, e^3

then, the deformation defined by

we denomination defined by
$$\sum_{\substack{r \in M_1 \\ airhC}} (r_i + 1) \lambda_{r-t} \cdot x^r = \left(x^{t+e_i} \cdot \frac{\partial f}{\partial x_i}\right) |_{M_i \cap a^{-1}(C)}$$

is contained in ES(k[s]).

(II) $ES(k[\varepsilon]) \subseteq Def_{\mathbb{R}}(k[\varepsilon])$ as a k-vectorspace is spanned by the over- $\Gamma(f)$ -deformations and all deformations contructed in the above way.

Proof. Take the three resolutions Σ_{ν} ($\nu=1,2,3$) of [Al2](2.4). Then, by Theorem [Al2](3.4) and Proposition (2.6) the above claim were valid if the $\Delta_{\bf i}$ would be replaced by all $\Delta_{\bf i}^{\Sigma_{\nu}}$ ($\nu=1,2,3$) simultaneously.

Step 1. Let $i, v \in \{1, 2, 3\}$, $t \in M$ be fixed. By construction it is clear that $\Delta_i \subseteq \Delta_i^{\Sigma_i} v$, hence $\Delta_i \cap H_t \subseteq \Delta_i^{\Sigma_i} \cap H_t$.

Now, both sets contain the same elements of $\Sigma_0^{(1)}$, and the connected components of $\Delta_1^{\Sigma_0} \cap \mathbb{H}_t$ (restricted to $\Delta_1 \cap \mathbb{H}_t$) are built by taking the union of several complete components of $\Delta_1 \cap \mathbb{H}_t$.

For the deformations induced by $\Delta_1^{\Sigma_0} \cap H_t$ this means that they split into sums of deformations induced by $\Delta_i \cap H_t$.

Step 2. The connected components of $\Delta_1 \cap H_t$ and $\Delta_1^{\Sigma_1} \cap H_t$ correspond to each other and contain the same elements of $\Sigma_0^{(1)}$.

Let $a,b\in\Sigma_0^{(1)}\cap\left[\Delta_i\cap H_t\right]$ be contained in different components of $\Delta_i\cap H_t$, then they can be separated by a line segment \overline{ce}^i (contained in a cone of Σ_0) with $c\notin H_t$.

- 17 -

By the construction of Σ_i (cf. [Al2](2.4)), this f.r.p.p. decomposition contains $\overline{P_i(c)}e^i$ as one cone of the canonical partition of $\overline{ce^i}$. Because of $t_i=-1$, $\langle c,t\rangle \ge 0$ implies $\langle P_i(c),t\rangle \ge 0$, and $\overline{P_i(c)}e^i$ will separate a and b as elements of $\Delta^{\Sigma_i}_{-1}\cap H_i$. (The opposite direction was already done in step 1.)

Remark. 1) Similar to (3.7), all type-(i)-deformations in $ES(k[\epsilon])$ consist of pieces of trivial deformations.

2) The k-dimensions of $ES(k[\varepsilon])$ and $ES(k[\varepsilon])/_{(monomials > \Gamma(f))}$ can be obtained by computing the rank of the following matrix A (cf. (3.6), Case 2):

The rows correspond to elements $r \in \bigcup_{i=1}^{n} M_i$,

the columns correspond to triples (i,t,C) with (I),(1)-(3) of the above Theorem and $\{(r,+1): \lambda_{n-k} \text{ for } a(r) \in C\}$

 $a_{r,(i,t,C)} = \begin{cases} (r_i+1) \cdot \lambda_{r-t} & \text{for } a(r) \in C \\ 0 & \text{otherwise} \end{cases}$ (Of course, this matrix does not depend on the special choice of the function

(Of course, this matrix does not depend on the special choice of the function $a: M_1 \longrightarrow \Sigma_0^{(1)}$.)

3) Compare with Theorem (5.8) of [Al1]: If the zets Δ_i are convex, there will be no type-(ii)-deformations, and all deformations of type (i) will be trivial.

(4.2) Corollary. The k-vectorspace $ES(k[\varepsilon])/\langle monomials \ge \Gamma(f) \rangle$ and, in particular, the fact whether ES is exactly the functor of over- $\Gamma(f)$ -deformations or not, are independent of the coefficients λ_s of f with

$$\langle a,s\rangle \geq m(a) + \max\{a_1,a_2,a_3\}$$
 for all $a \in \Sigma_0^{\{1\}}$ $\{e^1,e^2,e^3\}$.

Proof. Let λ_g be a coefficient of f that appears in the matrix A (defined in the previous remark). If

$$a_{r,(j,t,C)} = s_i \lambda_s \quad (s=r-t),$$

then we take the element $a := a(r) \in \Sigma_0^{1/2}(e^1, e^2, e^3)$, and now we obtain $\langle a, r \rangle < m(a)$ (by definition of a(r)).

$$\langle a,t\rangle \geq -a_i$$
 (by (I)(2c) of the Theorem),

hence
$$\langle a, s \rangle < m(a) + a_i$$
.

(4.3) Example. Let $f(x,y,z) := x^5 + y^6 + z^5 + y^3z^2$ (cf. [Al1], §3); we get $\Sigma_0 = \begin{cases} a = (12,10,15); & m(a) = 60 \text{ and } b = (1,1,1); & m(b) = 5 \end{cases}.$

First, two important properties of Σ_0 become obvious:

- 1) Δ_1 is convex
- 2) $\Sigma_0^{(1)} \{ e^1, e^2, e^3 \} = \{a, b\}$, and these two elements are connected in Σ_0 directly.

Therefore, all type-(i)-deformations of f have to be trivial, and non-trivial deformations of type (ii) can only be obtained by

$$i=2$$
, and $b, e^3 \in \mathbb{H}_t$ are separated by \overline{ae}^2 , or

i=3, and a,e²∈H_t are separated by be³.

Now, we will investigate these two cases, if ever possible we shorten the algorithm of (4.1) by additional restrictions to r and t - decreasing their number is very useful for making the computation by hand.

Case 1. i=2

1) We look for all reMo with

$$\langle a,r \rangle \ge m(a)$$
 (otherwise $a=a(r)$ would be possible) and $m(b)-b_2 \le \langle b,r \rangle < m(b)$ (because of $b=a(r)$).

It follows that

$$12r_1 + 10r_2 + 15r_3 \ge 60$$
 and $r_1 + r_2 + r_3 = 4$, i.e.: $15r_1 + 15r_2 + 15r_3 = 60$,

and the only solution is r = (0,0,4).

2) For teM we obtain the following conditions:

$$t_1 \ge 0$$
, $t_2 = -1$, $t_3 \le -1$ (cf. part (I)(2a,b) of Theorem (4.1));

 $(0,0,4)-t \ge \Gamma(f)$ (cf. (I)(2c)), hence $t_1=0$; $\langle b,t\rangle \ge -b_2$ (cf. (I)(2c)), hence $t_3\ge -t_1=0$, which yields a contradiction.

Case 2. 1=3

1) Again we start with the search for possible reMa:

$$m(a) - a_3 \le \langle a, r \rangle < m(a)$$
 and $\langle b, r \rangle \ge m(b)$

yield the conditions

$$12r_1 + 10r_2 + 15r_3 \le 59$$
 and even $r_1 + r_2 + r_3 = 5$.

2) Conditions for t M:

$$t_1 \ge 0$$
, $t_2 \le -1$, $t_3 = -1$ similar to the first case;
 $(a,t) < 0$, $(b,t) \ge 0$ $(a \in \mathbb{H}_+, b \notin \mathbb{H}_+)$.

It follows that

$$12t_1 + 10t_2 < 15$$
 but $t_1 + t_2 \ge 1$ (i.e. $12t_1 + 12t_2 \ge 12$),

hence $2t_2 \ge -2$.

Therefore, we obtain $t_2 = -1$ together with

$$12t_1 < 25$$
 and $t_1 \ge 2$,

i.e. t = (2, -1, -1).

3) Because of

$$\langle a, (2,-1,-1) \rangle = 24 - 10 - 15 = -1$$

we obtain a new condition for the elements $r \in M_3$ to represent a non-trivial row of the matrix A:

$$r-(2,-1,-1) \ge \Gamma(f)$$
 implies $\langle a,r \rangle + 1 \ge m(a)$.

(4, r/ + 1 ≤ m)(a)

hence $12 r_1 + 10 r_2 + 15 r_3 = 59$.

From this we get the condition

$$2r_1 + 3r_3 = 9$$
 and $r_1 + r_2 + r_3 = 5$

with the only solution r = (2, 2, 1).

Altogether we obtain the following description of the matrix A (cf. Remark of (4.1)):

The only column not representing a trivial deformation is given by

$$i=3$$
, $t=(2,-1,-1)$, C=connected component of $a \in \Delta$;

the only non-vanishing element on this column is

$$(r_i+1)\cdot \lambda_{r-t}=2\lambda_{(0,3,2)}$$
 (in the row corresponding to $r=(2,2,1)$).

Since $(0.3,2) \in M$ represents a vertex of $\Gamma(f)$, the coefficient $\lambda_{(0,3,2)}$ can never vanish $(\lambda_{(0,3,2)}=1)$ in our special example). Therefore, we have proved

$$\overline{ES}(k[\varepsilon])/\langle monomials > \Gamma(f) \rangle = k \cdot x^2y^2z$$
,

not only for the special equation f, but for all equations having this special Newton boundary.

References

- [Al 1] Altmann, K.: Equisingular deformations of isolated 2-dimensional hypersurface singularities. Invent. Math. 88, 619-634 (1987)
- [Al 2] Altmann, K.: Relations between ordinary and embedded equisingularity of deformations of hypersurface singularities (in \mathbb{A}^3). Berlin: Sektion Mathematik der Humboldt-Universität zu Berlin, 1989. (Preprint 205)
- [Ha] Hartshorne, R.: Algebraic geometry. Graduate Texts in Mathematics, vol. 52. Berlin Heidelberg-New York. Springer 1977
- [Ka] Karras, U: Equimultiplicity of deformations of constant Milnor number. In: Proceedings of the Conference on Algebraic Geometry, Berlin 1985. Teubner-Texte zur Mathematik, vol. 92. Leipzig: Teubner 1986
- [Kaw] Kawamata, Y.: On deformation of compactifiable complex manifolds. Math. Ann. 235, 247-265 (1978)

- [O] Oka, M.: On the Resolution of the Hypersurface Singularities. In:

 Advanced Studies in Pure Mathematics 8, 405-436 (1986) (Complex Analytic Singularities)
- [Va] Varchenko, a.n.: Zeta-function of monodromy and Newton's diagram. Invent. Math. 37, 253-262 (1976)
- [Wai] Wahl, J.: Equisingular deformations of plane algebroid curves. Trans.

 Am. Math. Soc. 193, 143-170 (1974)
- [Wa2] Wahl, J.: Equisingular deformations of normal surface singularities, I. Ann. Math. 104, 325-356 (1976)