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An algorithm for compating equisingular deformations

Klaus Altmann

§1. Introdaction.

This paper is a direct continuation of [Al 2]; in particular, we use the same
notations. (Note the only difference: The sheaves of differential forms with

logarithmic poles are denoted by Qy<D> instead of Q(log D).} -

(11) In §2 we fix an arbitrary smooth subdivision I<Z and compute the
tmage Im(ESEx (k[e))— Defy(K[e]) (cf. Proposttion (2.6).

This together with Theorem [Al 2](3.4) imply our main result - an algorithm
for computing all equisingalar first-order deformations in Defg(k[e]) (cf.
Theorem (4.1)). Nome of the smooth subdivisions £<Zg , but only the starting
fr.p.p. decomposition Zg itself is used there, hence, this algorithm seems

to be an easy method to determine B(k[e])' by computers. In particular, for
each equation f we can decide if there are equisingular deformations below T'(f)
or not.

Finally, an example is given in (4.3).

(12) 83 is of purely illustrating character and coinsides partly with §4 of
[A12]. The great distance between, roughly speaking. "maximal” and “minimal"
embedded resolutions (ylelding the over-I'(f)- deformations or all elements of
ES(k[c]), respectively) is subdivided into elementary steps, i.e. single blowing
ups of l'{-coples. In this way, it is possible to regard the equisingular
deformations below I'(f) exactly in the moment of their formation.



82. Computation ef h(-lx(h[n])—l'—- Def,(1{e]) (for a fixed embedded
resolution X)

For this paragraph we fix an arbitrary smooth f.r.p.p. subdivision £<Zg with
the corresponding good resolution n: X —+ 4

{2.1) The connecting morphism of the cohomology sequences of
0 — 8y<-D-Y> — 8x<-D>— Nyjx— 0

yields the following diagram, which may be written in two different versions:
0 (1]

; l
{monomials 2 ['(f)) ——» {monomials 2 I'( f))/( £ — ESExl( )]

[ [ I

kix] - R Defgp(k[e]

kl:g/ <{monomialea (N> R/<m°mm. ATUO> —4 . Coker v
{ { i
0 0 0o
and in th" cohomological anguage
0 ) 0 !

] .
HO. X, Oy (Y0 —— HO(X, Ay, —— HU(X, 6x<-D-Y))

[ |+

HO. X\D Oy V1. —» HOX\D Ayx) — HIX\D, 8x<-D-Y))

|

HL(X, Ox (YN —3— Hl) X, Nyjy) —E— HE X x(-D-Y))

| | |

o . 0 0

(The first columns are identified according to [A11](2.2) - we take

Klxl= H(X\D. Ox( - = m(aiD,) —3% . 1Ox\D, Oy (YD -

and HU(X, oxm)-nl(x Myix) = 0; ‘
for the right hand side we use (2.5)(y) and (4.2) of [Al1] - in the latter one
the vanishing of HZ(X, 8%(-D-Y)) has been proved.)

Definition. For £= 2; Eoxle k[x] ¥HOX\D Ox(Y)) we denote by Er,, the |
image of £ in

k[X)/  ronomiate = rn> = HH(X, Ox(- Zm(a)D,) ¥ HA(X, Ox(Y)) .
Taking the canonical section of k[x]—» IIKu]/ ¢monomials 2 (N>’

we get Epep= rg:o Eoxt.
r<I(Nn

(2.2) Proposition. 1) For i=1,2,3 let

9+ HA (X, Ox(eh) — H} (X, Oy (- Sm(a)D, )) be the multiplication by x £F.
Under the Isomorphlsm
HJ\(X, Ox (- Zm(a)D, )
then

H}(x, oxm) = HE (X, Myyx ).

Cokery = Coker(é’ .
2) Let &= Z' E-xT e kix] deﬂne an element of Defp(kic]) (the infinitesimal '
deformatlon f'( x,£)=£(x) - E(x) ). Then this deformation is induced by
ESEy (kle)) if and only if

sren tlm(l?:tpl) .

Proof. 1) By the second diagram of (2.1} it hods
Cokery = HBOGAYIX)/ o o = Coker(HB(X, 0x<-DD)— HA(X, Ayp))
On the other hand, we can lift the surjection @x<-D)> — Aly|x to the
homomorphism 8y<{-D> — QOy(Y) given by ni—
(1) In local coordinates (take the same notations as in the proof of
[A12](2.8): f=xr" f,) we obtain
_nif_ (fy), gS;F!_} .
Since n ¢ 8y{-D) . the section M:;) is regular on X, and !i'ﬂ is indeed
an element of the sheaf Ox(Y).
(i) The projections 8x<-D"—» Ny|x and Ox(Y)—» Ayix are
locally given by
L [fa‘(f“)/(fé) b "(fu)‘ox/(fa)] and
at— [fa:(f“)/(fg) s af, eox/(fu)] , respectively.
- 3 -



Then, the congruence

ﬂfﬂ'fa =nlfy)+ n%?)-fa = 7(f,) (modulo f,)

shows that the diagram

/ Ox(Y)

Ox{-D) —» /'YIX commutes.
Since HL(X, Ox(Y) =+ HL(X, Aly(x) is an isomorphism, we obtain

Coker y = Coker (HL(X, 8x<-DY) — HL(X, Ox(YD).
Finally, the first claim follows by the equation

= )

wh = 2 0q 420
and taking the isomorphism

Ox(-D>—=+ & Ox(e)

2 — (2, ntxe), 3xa)) |
x X2 Xa

2) Eekfx] = HOX\D, Oy(- Zm(a)D,)) ¥ HO(X\D, Ox(Y)) maps onto O¢ Cokery
if and only if

Ecren *HB(X, Ox(- Em(a)D) ¥ H,(X, Ox (YD) vaiishes in Coker(é‘npl). o

(2.3) Our next task will be to describe the maps p; by the methods of
torus embeddings. For this purpose it is usefull to regard the dual version of
these maps: \
i HX(X, ux(Z m(a) D) — HAX, oy (- ,

and the homomorphisms are still given by multiplication by xig{‘.
Now, for reM we define the following sets:

A= {asA /(a,-r)‘-m(a)} = {aeA /(a,r)Zm(a)}

Bly={acd /Gt gp@} with gay= {9 for ::E‘m atel

H, = {uA/(a. ><0}
Then, the convex sets (A\H,) are contained in B”. and the maps "i are equal
to some homomorphisms

7

H 1 1(BE 1,2,3) .
L] '?MH (A.r, k)—_’t?MH (Bi.t'k, (121,23
|lcat.c2.8n
@ k-x" .
20 .
r<I'()

(As we are really interested in the dual of, for instance,
H%(X, wyx(Zm(a)Dy)), the notations are chosen such that A, describes the
cochomology of the -r(th) factor of this sheaf. The relations "<" or "2" ~
instead of the strict ones - in the definitions of A, andBft are induced by
taking wy{divisor) instead of Oy (divisor). )
But, what does q:i' look like ? We have to make some general remarks
concerning the computation of cohomology on torus embeddings:

(2.4) ) Denote by J:T “— Xy a torus embedding in the sense of [Kel.

D) Let L< j,Op=j,k[M]" be an M-graded invertible sheaf with order function
®:|E| — R; for reM let Ap={acA/<ard<®(al}.
Then, if aeX is an arbitrary cone, we obtain

< [€ (Yacx: Card>20(a))
Krix, [% (Jaec: <ar><0(a)) *

hence L(r)jx = HO(x,aNA)@K . In particular, the sheaf L(r) and the pair
(A,A,) yield exactly the same Cech complexes.

2) Let I}, I? < ),Op be M-graded invertible sheaves with ®1, &2 and Al, AZ as
before. Assume that there is an sc<M with x8 Ilc I? (equivalent: #1+52 & as
functions on A).
Then, for each reM there is an inclusion ﬁaﬂc ll,. which provides the
commutative diagram

T(Xg, NN —22s (X, I(r+a))

I |
Hola.unllr)"——-’ﬂo(u,oltﬂllru

Again by taking Cech cohomology we obtain a description of the muitiplication
by x® on the cohomological level:



HO(X, Lh —X— HYX, 1)

n - N n 2
© HUA, A)—2— @ HYA,A)

(¢ is induced by the inclusion A&u < I}r; in particular, ¢ is homogeneous of
degree 8.)
3) Let L‘, O‘.A‘r (i=1,2) as before, assume that there is a Laurent polynomial
g(2) < k[M] with glx-Ds 2.
Then, by M-graduation of both she'aves L and I2, this fact is equivalent
to
x5-Ic 12 forall scsuppg .
Hence, the method of (2) can be applied to describe the maps
HO(x, ) —8XL, gagx, 12) 4 .

(2.5) The third part of the previous general remark applies exactly to the
special maps w',’ regarded in 2 .3). Denoting by Afc A the union of all closed
$-cones not containing el, we obtain the foliowing
Lemma. 1) HYA, k) = { KX (for r20 and r<T(®))  anq ehe perfect
pairing with HA(X Ox(-Zm(a)D,))= @ kx" is built in the obvious way.
r<ref
2) For ::12,3 and teM the cohomology group HY B,i , k) is equal to
(1) Hy(AFNH,) xt (for ¢=-1 and
t,2 0 for all v#);
i Hol Af”""/ﬁ(,({d})"l" (for t;=-1,
ty< -1 (j#i), and the remaining
compounent is 20};
(i) o0 (for t #-1 or t<-(1,1,1) ).
3) Let fix)= uZ' /\,-xs be the explicit description of our starting equation. 1
scsupp 1

r
Let r.i and t be such that HYA_, k), H(BY. k)40 (ie. r20, r<I(f) and . ;
t;= -1, t £-(1.1,1), respectively). i

-6 -

Then. the xt-part of #f(x") is given by
8 Ag-[Hotfa*VcHy(AFNM,)] with s:=-t+r (because of (-t)=s+(-r})
and a'cl‘é”such that <a'r) -m(a").
In particular, this part of o(x ") vanishes, unless s2I(f). )

Proof. 1) A, = A\{aeA/(a,r><m(a)} = A\ (convex set) , and the above con-
ditions for r arise by - r20 iff 0AcA, and
r<I(f) iff A A.

2) ANH € Bft. and the only vertex of 1) in which both sets can differ is el,
Hence, the non-vanishing of H’(Bft.k) implies el ¢ AHL , e‘ert , and we
obtain t;={el,t)=-1.
Assuming this from now on, we see that Bft contains exactly the same ele-
ments of £ as A\[Afnﬂt]. In particular, both subsets of A (consisting
of open or closed halfspaces in every cone of ) are homotopy equivalent and
yield the same cohomology. Without loss of generality we take i=1 and consider
the above three cases:
(1) tp,t320: Then, 3a< A\[AFNH, ], and

HY{(a\[aFnH, ] k) = HytaATNHY follows by the Alexander duality
() ¢p<-1, t320: This means e‘,e3e(A\[A’1: r\llt]) e? &(A\[Afnllt]) and

therefore, the connected component C of eZ in A?ﬂllt has no influence
. on the cohomology: v

H{a\[afnm, ] k) = H{a\[(aFnHgr c] k) =
= Ho([af Nl ] €)= Hol AT NBY /2y, .

(The middle equality again follows by the Alexander duality.)

(i) ¢y, ¢3<-1: By Hy=A we obtain
a\[aFnm,]= ar aF,
andthusetmbeeontmtedtothepolnte‘.

3) The linear map H'(A,,k)—HXB{,,k) 15 constructed by the inclusion BYy< A,
(cf. (2.4)); in dual terms this means that Ho(A\A)— Ho(ATNHY)/ 1
induced by

-7 -



(A\Ap & (ANBE,) ~ (AT NH):
Take an element a'c!“(,l) with <a%r) <m(a® (L. acA\A,) assuming s2T(f),
we obtain i
()=’ -(a%e) >0 (e a% H,), v
and x T maps onto the corresponding connected component in A‘i: NH, (multi-
plied by the coeffictent of x* in x4 ). o

(2.6) Now, we are in the position to determine the deformations of
Im(ESEy (k[e]) —¥~ Defp(k{e]) exactly:
Definition. For 1=1,2,3 let My:={reM /r20, T(D-eysr<I(N} ({e).eq,e5) de-
notes the canonical Z-basis of M);
then, we can choose (and fix) a map
a M;— 2§V
r +— a(r) with <a(r),r><m(a(n).

Recall the definitions
H:={acA/<a,t><0} (for teM) and
A= UT/ aeE, déxle n

Proposition. (1) Given the following data
1 1¢{1,2,3},
2) teM with: &) ¢=-1
b) (1) t,20 (ie. eV H,) for all v#i, or
) ty<-1 (i1#)) and the remaining component is 20,
c) there exists an reM; with r-t2I'(f) and {a(r),t+e;)20,
3) a connected component C of Aant not containing any of the
vertices e’,ez,e" .
then, the deformation defined by
Pt LIRS S TCT N

comes from ESEy (ks]).

(an Im(y) s Defk( kl[e]) as a k-vectorspace is spanned by the over-I'(f)-defor-
mations and all deformations contructed in the above way.

Froof. By Proposition (2 .2), Im(y) is spanned by the over-I'(f)-deformations
together with the images of the maps ¥; (i=1,2,3). However, in Lemma (2.5)(2)
it is shown that the data {i,t,C} meeting 1), 2a2), 2b) and 3) of the claim
form a k-basis of

S HAX.Ox(eln = & @ HUBE,.K) (or tts k-cual);
finally, part (3) of the same Lemma gives

(r+1) )\ ( for a(r)¢C)
@1({i.t,C})|k,xr= { ]0 r~t (ot} :.) .

It remains to prove that we are able to restrict ourselves to reM; (instead of
r20, r<I'(f)) and that the additional assumption 2c) for t can be made:
Let {1,t,C} be as before and take an r20, r<I(f) such that o{i, t.c})hl <0
Clatm. <a(r),t)>2-a(r);.
(a(r),t> <-alr); would imply that there is an j4i with <=1 (cf. case (i),
and we would obtain the following situation:
ﬁta{aeA/ {a,t><-a;}c H contains a(r) and ¢J, but not the vertex el.
Hence, there is no cone belcs, b&ﬁt (b¢HM,) meeting alrlel, and a(r)
and eJ must be contained in the same connected component of Afnllt.

-9 -
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Now, (r-t)csuppf implies r-t2I'(f); in particular. we obtain

aln),r-t) 2 m(a( r))
and therefore

<atr),r) 2m(a(r)) - atr),. ‘ o

Remarks. 1) Condition 2c) guarantees that there are only a few (in particular,
a finite namber of) teM fulfiling 2). '

2) The above construction is - of course - independent of the choice of the
function a:My— Z‘S”.

(2.7) In (2.6)-(2.8) of [Al1] we already tried to describe the image of ¥.
For elements & ¢ H!(X,0x(-D-Y) (given explicitly by a 1-cocycle {E,g}) the
induced deformation y( O (s was computed directly. Now, we want to give a
short dictionary to understand this formulae in the cohomological language
used here.
(1) For 1=1,2,3 we obtain elements &(x;) ¢ H(X, °x( = a,D )) (given by
Eqp(x)) in [ALLD.
(i1) The exact sequence
0— Ox(- 3= 4D — Ox — Opp.—0
together with HY(X,Oy)=0, shows that E(x;) can be lifted to an element
by« HO(X, Oy, p )

(In [Al1] these sections are given locally by b?cox:
Eab(xl"b?' 2 for every two cones o,B¢X.)
(ii1) Multiplying by provides a commutative diagram
0— Ox(- xz alDa)‘_’ox_'OZqD.
To s [«
0 — Oy (- Zm(a)Dy) — Oy — Oxm(am.—oo .

Therefore, we obtain ﬁ,g{nbl € H°(x. Ozm( “)Da) - still written as a
=’
local Oy-section in [Al1].

(iv) Finally, we recall the isomorphism

Ho )(X oZm(a)D)_""'H (X, °x( Zm(a)D n= kU/(monomhl.h!‘(ﬂ)

$3: Changing the embedded resoiation

(3.1) Let I<%Lg be a smooth subdivision with the following property:

For i=1,2,3 the convex hull conv(a,b) of arbitrary elements
1 > ] (#)
a,bc Z§\{e!} is contained in AT.
Then, we obtain by [A11](2.9):
lm(BSEx (k{e]) — Defp(k{e]) = {isomorphism classes of first
order “over-T'(f)-deformations” }

(3.2) Embedded resolutions Xy meeting the property (s) and the fr.p.p. de-
compositions X, defined in [A12](2.4) represent the two extremal values of

 Im(ESEy;(k{e]) ~— Defg(k[c])) (equal to the set of all overT(f)-deforma-

tions by (3.1) or to ES(k[e]) by [A12](3.4), respectively).

It is possible to connect these "maximal” and "minimal” fr.p.p. decompositions
py a chain of elementary snbdlvl'sbns. and we can try to compare the images
of ESE at each step:

-1 - , Y



(3.3) Definition. Let Z',Z be smooth f.r.p.p.decompositions finer than Z,.
%’ will be called an elementary subdivision of Z if it is obtained by barycentri-
cal subdivision of exactly one 2-dimensfonal cone p_e’c z:

e

o \
] » ) [ ]
(a.b,pzz(".
: g:=e’+pe£'")).
() \\ (%)
L] . P

(The corresponding proper map o: X'— X is the blowing up of the closed
orbit orbpe) = X, which is isomorphic to 1)

(3.4) How do the data of Proposition (4.6)(1) change under elementary

subdivisions ? . '

i,t,M, are independent of the actual f.r p.p. decomposition;

Afc A":' really change iff i= j, but both sets still contain the same elements
of £§V (all bat eb).

Therefore, the crucial point must be the arrangement of the connected compo-

nents of Af NH,, i.e. which elements of Z&n are contained in a common one?

There are only two possibilities for an essential distinction between L' and I:
DabgeH, péH; (le. (a,t‘) <0; <{b,t><0; (p.t)=0)l.
J e

12 -

The two connected components of A’,:nllt that contain a and b, respec-
tively, are joint in A‘i:hllt.
2) a,bp ¢ H,, geH, (e Ca,t>20; <(b,t>20; {p,t>=0). .

el ’ el

(L)
] b

In Af'nllt. there appears a new component containing g but no element
of £§). Therefore, the image of ESE(k[c]) in Defp(kie]) will remain

unchanged.

(3.5) We define two characteristic integers of the elementary subdivision Z'<Z:
k:=det(a,b,el)
d:=det(b,a,p) (ab.pelczPczd, - ’
By construction, k21 is valid.

Lemma. 1) k'p+del=a+b
2) Let Z:= orbpelc X (centre of blowing up); then, k and d eqaal certain
Intersection numbers on X:

(Dy 2) = -k

(Dp2)=d.
3 Nx = Oz(-0)@ Oz(-d). Therefore, the exceptional divisor of the blowing
ap 0:.X'-—— X is isomorphic tu the Hirzebruch surface Fy_q over Z.

Proof 1) By the definitions of k and d and by
det{a,p.el) = det(b.el.p) =1 (% is smooth?),
we obtain
det(a+b,e!,p) = det(a,b,kp+de'} = 0.

- 13



Therefore, the vectors a+b and kp+de‘ are contained in "Bnpe' i.e. there
exists a A¢Q with kp+del =\ (a+b).
Finally, we have
k = det(a,kp,el) = det(a,kptdel,¢)) = \-det(a,atb,e)) =
= )det(a,be!) = A k.
2) For re Z3 the divisors (x")=.l§"(a,r)-D‘l vanish in PicX. In particular, we
get the following equations between the corresponding intersection numbers:
(De'2) + py(Dy2) + & + by = ([Det+pDp+ 2Dy +byDp]-Z) = 0
and
PDy2) +ay+ by = ([pD, +aD, +bDY1Z) = 0 (for J40).
3) Z’Dan.i ylelds
Pzix = Nzip,® Mzip,y = OZ(D;2)© Of((Der-2).

and the rest then is clear by [Ha)(11, § 8). n]

(3.6) Let us return to the situation of (3.4):

‘We had the following conditions for t, which are nessecary for the arrangement
of connected components of AT 1 NH, to be changed:

ty=Ketd =1,

{pt>=0,

[<at>. B> <0 (cf. (M), or <a,t).<BLtY 20 (cf. (20)].
Now, the first part of the previous Lemma ylelds

{a,t> +<b,t) = Ckp+del,t) = k- (p, O +d- (el t) = -d,
and we have to distinguish between two cases:
Casel d<i
Only <a,t>,{b,t) 0 can appear, and as already mentioned in (3.4)(2),
ESEy{(k{e]) and ESEx(k[s]) induce the same image in Defp(k[e].
Case 2. d22
The only possibility iz (a,t>,{b,t) <0, t.e. two connected components C; and
Cy of A":nllt are jotut to a common one, namely C of AT NH,.
In order to see what happens, let us write down the map

(@7): & HheX. Oyt — Hh(X, Ox(- Zm(aDy)

- 14 -

as a matrix Ay:
The colnmns and rows correspond to the data (i,t,C) and the elements re Ulli

) (cf. Proposition (2.6)), respectively. Each column represents an equulnguhr

deformation of type (1) or (i) (cf. {IX(2b) of Proposition (2.6)), and in this way
Im(y) is spanned by all columns of the matrix Ay.

Now, joining the components Cy and Cy means the construction of a new
matrix by

' a) summing up the columns (i,t,Cy) and (i,t,Cp) to a common one (1,£,C)

(if neither C; nor Cy contain one of the vertices el e,ed), or
b) deleting these colums (otherwise).
(The latter version can only be actual by dealing with type-(ii)-deformations;
then one of the triples (i,t,C,) did already not appear as a column of the
starting matrix, i.e. only one column vanishes really.)

. Altogether, for d22 there are exactly (d-1) values of t<M that imply a

changing of the connected components of A’,:nllt. Therefore, almost this

number of columns must be deleted (maybe after adding some of them to

other ones) in order to get the matrix Ay from Ay; we obtain
dimy Im(y) - dimy Im(y?) = rank Ay - rank Ay £ a-1.

Remark. The map 0:X'— X is the blowing up of an "admissible centre” in

the sense of [Kaw]. By Theorem 2 of this paper we obtain '
(R*0,M(Oy{-D'-YD) = 8x{-D-Y){-Z>

which yields the exact sequence

BO(X Ngjp ) — HI(X, 0y <-D-Y»)— HUX, 8x(-D-Y))— HIOX, Agjp ) — 0

Il 2 : | s
HO(Z, Oz(-a» ' HY(Z, Oz(-d) .
Again, we have the above two cases for d:

Case'l. dsi

Then HX(Z, Oy(-d)=0, and the map ESEy.(k[e])— ESEy(k[c]) must be
surjective.
- 15 -



Case 2. d22
By HO(Z,05(-d)=0, we can compute the difference of the ESE-functors:
0 — ESEy(k[e]) — ESEx(k[e])— k91— 0.
But in order to recognize the difference of the images in Defp(k[c]), a compa-
rison of the above matrices Ay and Ay wiil still be necessary.

(3.7) Finally, we want to consider what happens with the matrix Ay by not
only one single elementary subdivision but by reaching the property (#) of (3.1)
at once:

(#) means that all elements of 26” contained in A’i:'nllt even belong to the
same connected component. In particular, there are no type-(ii)- deformations
(eJe AT nllt !) that are contained in Im(y’) - the corresponding columns of

Ay will be totally deleted by turning to the matrix Ag.

On the other hand, all columns of Ay that correspond to a pair (1,t) of type (€3]
{(cf. Proposition (2.6)(I)(2)) will be summed up. thus obtaining only one single
- column of Ay. that represents the trivial deformation x“el-s-,{‘.

§4. An algorithm to deterntine the equisingular deformations below I'(f)

(4.1) Analogously to Proposition (2.6) it is possible to compute all
deformations of ES(k[e]) < Defp(k[e]). The corresponding algorithm does not
use any of the smooth subdivisions of Ly regarded before, but only the sts-
ting f.r.p.p. decomposition Ig itself.

Let A= U{a /%Sy, €45 )< A (121,2,3) and take the definition of M= M,
a:M;— 2§1 and nt of (2.6).

Theorem. (1) Given the following data
D 1e{8,2,3},
2) ¢eM with: a) 4=-1
b) (1) t,20 (ie. eV4 M) for all v41, or

- 16 -

() tjs—! (14}]) and the remaining component is 20,

c) there exists an reM; with r-t2I(f) and (alr) t+e) 20,
3)a wnnected component C of A;NH,, not containing any of the
vertices e’,ex.e" i
then, the deformation defined by
) trey. _
= (50 Ay * = (2% 8 g na-teor
alris .
is contained in ES(kle]).

(ID ES(k{&]) = Defp (k[e]) as a k-vectorspace Is spanned by the over-I'(f)-defor-
mations and all deformations contructed in the above way.

Proof. Take the three resolutions I, (v=1,2,3) of [A12])(2.4). Then, by

Theorem [A12](3.4) and Proposition (2.6) the above claim were valid if the A;
would be replaced by all AT¥ (v=1,2,3) simultaneously.

Step 1. Let 1,v¢{1,2,3}, tcM be fixed. By construction it is clear that Ay A,
hence A;NH, s AT NH, .

Now, both sets contain the same elements of 26”. and the connected compo-
nents of ATV, (restricted to A;NH,) are built by taking the union of
several complete components of A;NH,.

For the deformations induced by Af'\'nllt this means that they split into
sums of deformations induced by A;NH;.

Step 2. The connected components of 4A;NH, and A,'nllt correspond to

' each other and contain the same elements of 26".

Let a,be¢ Zal)n[Alnllt] be contained in different components of A;NH,,
then theymbeuparmdbynllneug:‘lento—e’ (contained in 2 cone of Zg)
with c ¢ H,.




By the construction of £; (cf. [A12](2.4)), this fr.p.p. decomposition contains
We‘ as one cone of the carionical partition of Gel. Because of t=-1,
{c,t>20 implies (Py(c),t>20, and Fi(:)—ei will separate a and b as elements of
Af‘ NH,. (The opposite direction was already done in step1.) 0
Remark. 1) Similar to (3.7), all type-(i)-deformations in ES(k[e]) consist of
pieces of trivial deformations.
2) The k-dimensions of ES(k{ec]) and ES( k[e])/ <monomials x T(H> €20 be ob-
tained by computing the rank of the following matrix A (cf. (3.6), Case 2).

The rows correspond to elements re Ql“i s

the colamns correspond to triples (i,t,C) with (I),(1)-(3) of the
above Theorem and

a i {(q'fl)- At for a(rieC

r.(1,t.C) 0 otherwise

(Of course, this matrix does not depend on the special choice of the function

a:M;— 26‘).)

_ 3) Compare with Theorem (5.8) of [Al1]: If the .ets A, are convex, there will

be no type-(ii)-deformations, and all deformations of type (1) will be trivial.

\\

(4.2) Corollary. The k-vectorspace ES(KeD/ =~ = @ ;> and. in par-
ticular, the fact whether ES is exactly the fanctor of over-I(f)-deformations
or not, are independent of the coefficients Ay of £ with

a,s) 2m(a} + max{ay,ay a3} for all ae ZJ’& feleZed.

Proof. Let \; be a coefficlent of f that appears in the matrix A (defined in
the previous remark). If
r,(1,6,C) = 8" Ay (s=r-t),
then we take the element a:=a(r)c Zg}\_(e’,ez.ea}, and now we obtain
{a,r) <m(a) (by definition of a(r)),
(a.t)z-al (by {I}(2c) of the Theorem),
hence  {a,8) <m(a)+y. (8]

(4.3) Bmmple. Let fix,y,2):= x3+y6+25+y3:2 (cf. [Al1], 83); we get

o

v

Ios (a=(12,10,18); m(2)=60 and
b=(1,1,1); m(b)=$§).

o o

First, two important properties of Ly become obvious:

1) A1 is convex

2) %‘\(e‘.ez.ea) = {a,b}, and these two elements are connected in 2‘0

directly.

.

Therefore, all type-(i}-deformations of f have to be trivial, and non-trivial
deformations of type (ii) can only be obtained by

i=2, and b.eacl-lt are separated by?iz , or

i=3, and n,ezellt are separated by Bed.

Now, we will investigate these two cases. if ever possible we shorten the
" algorithm of (4.1) by additional restrictions to r and t - decreasing their
number is very useful for making the computation by hand.

Case 1. I=2
1) We look for all reMy with

{a,r> > m(a) (otherwise a=a(r) would be possible)
m(b)-byg < <b,r> <m(b) (because of b=a(r)).

It follows that
12ry+10ry +15r3 2 60 and \

ry+rgtrg=4 , le: 15r +15ry +1Srg i?O,

and the only solution is r = (0,0,4).
2) For t<M we obtain the following conditions:

t;20, ty=-1, ty<-1 (cf. part (I)(2a,b) of Theorem (4.1));
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N,

N\

.

and



(0,0,4)-t 2 T(f) (cf. (1N 2c)), hence t;=0;
{b,t>2-by (cf.(D(2c)), hence t32-t;=0,
which yields a contradiction.

“Case 2. 1=3
1) Again we start with the search for possible reMg:
m(a)-ag < {a,r) <m(a) and
{b,r> = m(b)

yleld the conditions -

12r; +10rg+15rg < §9 and even
rp+rptry=8§.
2) Conditions for teM:
120, tg<-1, tg=-1 similar t:o the first case;
{a,t><0, (b,t>20 (acHy, bé¢H,).
It follows that '
| 124410ty <15 but
tittg z1 (Le. 12¢)+12ty 2 12),
hence 2ty 2 -2.
Therefore, we obtain tg=-1 together with
12¢) <25 and t;22,
le. t=(2,-1,-1).
3) Because of
{a,(2,-1,-1)> = 24-10-15= -1,

we obtain a new condition for the elements r<Mg to represent a non-trivial

row of the matrix A:
r=(2,-1,-0) 2 T(f) implies
{a,r>+1amla),

hence 12ry+10rg+ 1873 = 59.

’!?rom,dlla we get the condition
2ry+Sr3=9 and

rntrgtrg=3§ : .

with the only solution r=(2,2,1).

Altogether we obtain the following description of the matrix A (cf. Remark
of (4.1)):
The only cojumn not representing a trivial deformation is given by
i=3, t=(2.-1,-1), C=connected component of a¢A;
the only non-vanishing element on this column is
{rp#))-Apg = 2)(,3,2) (in the row corresponding to r=(2,2,1)).

Since (0 3,2)¢ M reprezents a vertex of I'(f), the coefficient )‘(0'3,2) can never
vanish () (o 3’2)=1 in our special example). Therefore, we have proved

ES( k[s])/<monomhln=l"(f)> = k xzyzz ’

not only for the special equation f, but for all equations having this special
Newton boundary.
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