Parabolic Obstacle-Type Problems

Daria Apushkinskaya Saarland University

Wittenberg, Germany, 12.12.11

1-PHASE PROBLEM

Optimal regularity of a solution

$$
u \in C_{x}^{1,1} \cap C_{t}^{0,1}
$$

1-PHASE PROBLEM

Optimal regularity of a solution

$$
u \in C_{x}^{1,1} \cap C_{t}^{0,1}
$$

- Remark.

Why $\quad \alpha=1 \quad$ IS DESIRABLE?

WhY $\quad \alpha=1 \quad$ IS DESIRABLE?

$$
\begin{gathered}
u_{r}(x, t)=\frac{u\left(r x, r^{2} t\right)}{r^{2}} \\
H u_{r}=\chi_{\Omega_{r}}
\end{gathered}
$$

If $\alpha=1$ then u_{r} is bounded

We can go for a limit as $r \rightarrow 0$

Why $\quad \alpha=1 \quad$ IS DESIRABLE?

$$
\begin{aligned}
u_{r}(x, t) & =\frac{u\left(r x, r^{2} t\right)}{r^{2}} & u_{r} & \rightarrow u_{0} \\
H u_{r} & =\chi_{\Omega_{r}} & \Omega_{r} & \rightarrow \Omega_{0}
\end{aligned}
$$

If $\alpha=1$ then u_{r} is bounded

We can go for a limit as $r \rightarrow 0$

Moreover,

$$
H u_{0}=\chi_{\Omega_{0}} \text { in } \mathbb{R}_{+}^{n+1}
$$

$$
u_{0}=\left|D u_{0}\right|=0 \text { in } \mathbb{R}_{+}^{n+1}-\Omega_{0}
$$

$$
\left|u_{0}\right| \leq C\left(1+|x|^{2}+|t|\right)
$$

1-PHASE PROBLEM

Regularity of $\partial \Omega$

$$
d \Omega=\{\text { "regular points" }\} \cup\{\text { "singular points" }\}
$$

1-PHASE PROBLEM

Regularity of $\partial \Omega$

1-PHASE PROBLEM

Regularity of $\partial \Omega$

"thickness condition"

$$
\left\{\begin{array}{c}
H u=\chi_{\Omega} \text { in } Q \\
|\mathrm{u}|=|\nabla u|=0 \text { in } Q-\Omega
\end{array}\right.
$$

$$
\partial \Omega \cap R \in C^{1, \alpha}
$$

No contact points !!!

1-PHASE PROBLEM

Regularity of $\partial \Omega$
"thickness condition"
$H u=\chi_{\Omega}$ in Q
$\{|u|=|\nabla u|=0$ in $Q-\Omega$
$\partial \Omega \cap R \in C^{1, \alpha}$
No contact points !!!
$\partial \Omega \in$ Lip

$$
\begin{gathered}
H u=\chi_{\Omega} \text { in } \mathrm{Q}^{+} \\
=|\nabla u|=0 \text { in } \mathrm{Q}^{+}- \\
u=0 \text { on }\left\{\mathrm{x}_{1}=0\right\}
\end{gathered}
$$

$$
\partial \Omega \in C^{1, \alpha} \text { at interior }
$$

points only!!!

Contact points may exists!!!

2-PHASE PROBLEM

Optimal regularity of a solution

∇u is Lipschitz continuous w.r.t. space variables

Vuis Holder continuous with exponent $1 / 2$ w.it. time variable

2-PHASE PROBLEM
 Regularity of $\partial \Omega$

-1-phase points

$$
\begin{aligned}
& \partial\{u>0\} \cap\{|\nabla u|=0\} \\
& \partial\{u<0\} \cap\{|\nabla u|=0\}
\end{aligned}
$$

2-PHASE PROBLEM
 Regularity of $\partial \Omega$

-2-phase nonbranch points

$$
\{u=0\} \cap\{|\nabla u| \neq 0\}
$$

NQEC

2-PHASE PROBLEM
 Regularity of $\partial \Omega$

FBP

Regularity of u

$$
\left\{\begin{array}{c}
H u=\chi_{\Omega} \text { in } \mathrm{Q} \\
|u|=|\nabla u|=0 \text { in } \Omega^{c}
\end{array}\right.
$$

No contact points
$u \in C_{x}^{1,1} \cap C_{t}^{0,1}$
Optimal!
$\partial \Omega=\{$ "regular" $\} \cup\{$ "singular" $\}$
"thickness condition"
$\partial Q=\{$ "regular" $\} \cup\{$ "singular" $\}$
"thickness condition"
\Downarrow
$\partial \Omega \cap \mathbf{R} \in \mathbf{C}^{1, \alpha}$
Regularity of the free boundary

$$
\left\{\begin{array}{c}
H u=\chi_{\Omega} \text { in } \mathrm{Q}^{+} \\
u=|\nabla u|=0 \text { in } \Omega^{c} \\
u=0 \text { on }\left\{\mathrm{x}_{1}=0\right\}
\end{array}\right.
$$

Contact points may exist
$u \in C_{x}^{1!} \cap C_{t}^{(0,1)}$

Optimal!

$$
\begin{aligned}
& H u=\lambda_{+} \chi_{\{u>0\}}-\lambda_{-} \chi_{\{u<0\}} \\
& \nabla u \in C_{x}^{0,1} \cap C_{t}^{0,1 / 2} \\
& H u=\lambda_{+} \chi_{\{u>0\}}-\lambda_{-} \chi_{\{u<0\}} \quad \nabla u \in C^{0,1} \cap C_{1}^{0,1 / 2} \quad\left\{\{u>0\} \cap\{\nabla u=0\} \in C^{1, \alpha}\right. \\
& \{u=0\} \cap\{\nabla u \neq 0\} \in C^{1} \\
& \partial\{u>0\} \cap \partial\{u<0\} \cap\{\nabla u=0\} \in \operatorname{Lip}
\end{aligned}
$$

REFERENCES

1. L.A.Caffarelli, A.Petrosyan, H.Shahgholian, J. Amer. Math. Soc. (2004)
2. D.Apushkinskaya, N.Matevosyan, N.Uraltseva, Indiana Univ. Math. J. (2009)
3. H.Shahgholian, N.Uraltseva, G.Weiss, Adv. Math. (2009)

THA

YOU !!!

