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Task of the research project

Development of theoretical formulations based on the classical tools of
Mathematical Analysis, in particular the methods of the Calculus of
Variations and of the analysis of Partial Differential Equations, for
studying magnetization processes in complex magnetic nanostructures

Strong connection between PoliTO and INRIM, between mathematics
and numerics, with the aim of giving the necessary mathematical
support for developing advanced computational models for the
micromagnetic calculus and the analysis of the nanostructures
produced the INRIM research team

The relevance of such activity is underlined by the more and more
growing attention which has been dedicated, during the last decade, to
the study of micromagnetic problems with the methods of the Calculus
of Variations and, more generally, of the Mathematical Analysis

The basic aim is the comprehension of the connections between the
material properties on the microscopic level and the behavior on the
macroscopic scale, with the idea of giving a modeling interpretation of
the experimental data
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Task of the research project

The attention is focused on the study of the Landau-Lifschitz-Gilbert
(LLG) equation, universally adopted in the prediction of the nonlinear
dynamic of magnetic materials on micron- and submicron-scale
Great importance to the analysis of the minima of the Gibbs free energy
functional, strictly connected to the LLG equation, with the aim of
determining the equilibrium configurations in complex magnetic systems
The development of mathematical models for the analysis of magnetic
nanostructures may present criticalities concerned with the treatment of
the spatial distribution of the physical and structural parameters, whose
combination gives origin to phenomena characterized by a strongly
multiscale nature
In particular, the energy functional is characterized by the simultaneous
presence of energetic terms that deal with very different length scales,
whose interaction must be treated in a very accurate way, in order to
have a correct interpretation of the evolution of magnetic domains
To this end, a first aim will be concerned with the development of
multiscale formulations based on homogenization techniques and on the
Gamma-convergence theory
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Plan of the talk

Nanostructures and nanotechnology

Magnetic nanostructures (examples and polycrystalline magnetic
materials)

Criticalities from the strongly multiscale nature of the magnetization
processes (numerical treatment difficult task)

Our approach and our results
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Nanostructures and nanotecnology

General agreement of the fact that the first person who had intuition
about the potentialities of nanotecnologies was R. Feyman (Nobel Prize
in Physics, in 1965)

In a well known conference in 1959 at the Californian Institute of
Technology said a sentence that became famous: “There is plenty of
room at the bottom” (meaning “at the atomic dimension”)

Feyman intuition was that it could have been possible to manipulate the
matter at the atomic or subatomic scale
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Nanostructures and nanotecnology

 

Figure 1: A nickel sheet where there have been posed atoms singularly
manipulated (From: Marco Bettinelli “Nanostrutture e
nano-tecnologie”(2008))

Nanotechnology: to modify intentionally matter, at the atomic or
subatomic scale (interdisciplinary)
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Magnetic nanostructures

R. Skomski “Nanomagnetis” J. Phys.: Condens. Matter, 15 (2003)
R841-R896.

Thousands of years of human curiosity have led to the discovery of
magnetism, and for many centuries magnetism has stimulated progress
in science and technology

For a long time, the focus had been on macroscopic magnetism, as
exemplified by the compass needle, by the geomagnetic field and by the
ability of electromagnets and permanent magnets to do mechanical
work

Atomic-scale magnetic phenomena, such as quantum-mechanical
exchange, crystal-field interaction or relativistic spin-orbit coupling were
discovered in the first half of the last century and are now exploited, for
example, in advanced permanent- magnet intermetallics

However, only in recent decades it became clear that solid-state
magnetism is, to a large extent, a nanostructural phenomenon
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Magnetic nanostructures

The scientific and technological importance of magnetic nanostructures
has different reasons (overwhelming variety of structures with interesting
physical propertiesc - from naturally occurring nanomagnets and
comparatively easy-to-produce bulk nanocomposites to demanding
artificial nanostructures; involvement of nanoscale effects in the
explanation and improvement of the properties of advanced magnetic
materials; the fact that nanomagnetism opened the door for completely
new technologies)

A naturally occurring biomagnetic phenomenon is magnetite (Fe3O4)
nanoparticles precipitated in bacteria, molluscs, insects and higher
animals

Magnetostatic bacteria live in dark environments and contain chains of
40-100 nm magnetite particles used for vertical orientation
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Magnetic nanostructures

Similar magnetite particles have been found in the brains of bees,
pigeons and tuna, and it is being investigated whether and how the
particles serve as field sensors for migration

Magnetite and other oxide particles are also responsible for rock
magnetism, exploited for example in archaeomagnetic dating and for
monitoring changes in the Earth’s magnetic field

A fascinating approach is artificial nanostructuring to create completely
new materials and technologies

Advanced magnetic nanostructures are characterized by a fascinating
diversity of geometries, ranging from complex bulk structures to a broad
variety of low-dimensional systems - Figure 2 shows some examples
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Magnetic nanostructures

 

 

 

 

 

 

 

 

Figure 2: Typical nanostructure geometries: (a) chain of fine particles,
(b) striped nanowire, (c) cylindrical nanowire, (d) nanojunction, (e) vicinal
surface step, (f) nanodots, (g) antidots and (h) particulate medium.
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Micromagnetic numerical models: difficulties

Micromagnetic numerical models common tool for evaluating the
magnetization processes in magnetic nanostructures
Deep understanding of the relationship between structural properties
and magnetic domain formation - outcomes in technological applications
Micromagnetics theory based on a continuum approximation of the
magnetization spatial distribution - different energy contributions
compete to determine magnetic domain configuration
Most important contributions: exchange, magnetostatic, anisotropy and
Zeeman energies whose accurate approximation is essential to correctly
evaluate time and spatial evolution of magnetization within the sample
Energy terms act at different spatial scales (nanometric resolution:
exchange term; sample dim.: long-range magnetostatic interactions)
Magnetic anisotropy expresses the tendency of the magnetization to lie
along certain crystallographic directions - intermediate spatial scale
Magnetic properties are influenced by the size, shape, boundary
properties and orientation distribution of grains
Micromagnetic simulations complex task - simulations often performed
under the hypothesis of single crystal
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Micromagnetic numerical models: difficulties

Assumption of uniaxial or cubic anisotropy (valid for samples having
dimensions comparable than grain size)

Assumption inadequate in presence of polycrystalline materials (grain
orientation and distribution affect the behaviour of the system)

Polycrystalline materials usually modelled within micromagnetic
numerical codes as an array of grains, geometrically constructed using
Voronoi diagrams - each single-crystal grain is assumed to have a
randomly oriented uniaxial anisotropy

Strong impact on the geometry building and meshing, making the
pre-processing phase very complex

We propose an alternative procedure, based on the replacement of the
polycrystalline magnetic material with an homogenized sample having
equivalent anisotropy properties

Magnetic medium modeled as an assembly of monocrystalline grains,
assuming a stochastic spatial distribution of easy axes

The mathematical theory of Γ-convergence is then applied to
homogenize the anisotropic term in the Gibbs free energy
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First results obtained

O. BOTTAUSCIO, V. CHIADÒ PIAT, M. ELEUTERI, L. LUSSARDI, A. MANZIN:
“Determination of the equivalent anisotropy properties of polycrystalline
magnetic materials: theoretical aspects and numerical analysis”, submitted.

The Γ−convergence theory is here adopted to homogenize the
anisotropic contribution in the energy functional and derive the
equivalent anisotropy properties
The reliability of this approach is investigating focusing on the
computation of the static hysteresis loops of polycrystalline magnetic
thin films, starting from the numerical integration of the LLG equation

O. BOTTAUSCIO, V. CHIADÒ PIAT, M. ELEUTERI, L. LUSSARDI, A. MANZIN:
“Homogenization of random anisotropy properties in polycrystalline magnetic
materials”, “Proceedings of the 8th HMM”, Phys. B: Cond. Matt., (2012), DOI:
10.1016/j.physb.2011.06.085.

Focus on the micromagnetic computations of reversal processes in
polycrystalline magnetic thin films (study of precessional switching,
comparing the results for heterogeneous and homogenized media)
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Outline

Homogenization results

Determination of equivalent anisotropy properties

Numerical validation of the homogenization results: computation of
switching processes and of the static hysteresis loops in polycrystalline
magnetic thin films
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Setting of the problem

Polycrystalline magnetic sample, occupying a bounded open region
D⊂ R3

M ∈ L2(R3;R3) magnetization vector field, with M = MSχD in R3, MS
being the saturation magnetization; m ∈ L2(R3;R3) m = M/MS
rescaled magnetization

magnetic energy behaviour described by the following functional

F(m,Ha) =
∫

D
A|∇m|2 dx+

∫
D

fan(m,uan)dx

−µ0

2

∫
D

MSHm ·mdx−µ0

∫
D

MSHa ·mdx

Hm = ∇u where ∇2u+∇ ·M = 0 in R3

More general setting for the anisotropy energy function: stochastic
distribution of easy axes
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The Γ−convergence result

K :=
{

m ∈ L2(R3;R3) : m|D ∈ H1(D;R3), |m|= χD a.e. in R3
}

For any m, let v ∈ H1(R3) be the unique solution of the equation

∇
2v+∇ ·m = 0, in D ′(R3)

(Ω,F ,µ) probability space; T 3-dimensional ergodic dynamical system

Let ϕ : R3×R3×Ω→ [0,+∞) be a measurable map such that
ϕ(0,0, ·) ∈ L1(Ω) and

|ϕ(m1,x,ω)−ϕ(m2,x,ω)| ≤ L|m1−m2|

We assume that for any m ∈ R3, the random field ϕ(m, ·, ·) is stationary
and ergodic: therefore ϕ(m,x,ω) = f (m,Txω) for a suitable map
f : R3×Ω→ [0,+∞).
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The Γ−convergence result

For any ε > 0 and ω ∈Ω, let Eε(·,ω) : L2(R3;R3)→ [0,+∞] be defined by

Eε(m,ω) := c1

∫
D
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f
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ε
ω
)

dx+c2

∫
R3
|∇v|2 dx−c3

∫
D

H·mdx

if m ∈ K, and +∞ otherwise.

Theorem

The family (Eε(·,ω))ε>0 Γ-converges, a.s. in Ω as ε → 0+, with respect to
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Michela Eleuteri Polycrystalline magnetic materials



The Γ−convergence result

For any ε > 0 and ω ∈Ω, let Eε(·,ω) : L2(R3;R3)→ [0,+∞] be defined by

Eε(m,ω) := c1

∫
D
|∇m|2 dx+

∫
D

f
(
m,Tx

ε
ω
)

dx+c2

∫
R3
|∇v|2 dx−c3

∫
D

H·mdx

if m ∈ K, and +∞ otherwise.

Theorem

The family (Eε(·,ω))ε>0 Γ-converges, a.s. in Ω as ε → 0+, with respect to
the strong topology of L2(R3;R3), to the functional Ē : L2(R3;R3)→ [0,+∞]
given by
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Determination of equivalent anisotropy properties

The result of the asymptotic problem is applied to the calculation of the
equivalent anisotropy properties of a polycrystalline magnetic sample,
considering a uniform spatial distribution of the magnetization vector:
such a sample is represented as an assembly of grains characterized by
a random distribution of easy axes - Fig. a)

Figure 9: Schematic representation of the polycrystalline sample a) and
definition of local spherical coordinate systems for uan b) and m c)
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Determination of equivalent anisotropy properties

uan Gaussian random variable with a probability density function

P(y) = P(θ ,φ) = ρ(θ)ρ(φ) where ρ(ν) = 1
sν

√
2π

exp
(
−|ν−ην |2

2s2
ν

)
Spherical coordinate system with angular coordinates θ and φ

uan = sinθ cosφ i+ sinθ sinφ j+ cosθk
having assigned to m a specific direction described by angles α1 and α2
the equivalent anisotropy function f̄an is numerically computed as

f̄an(m)=
1∫

π

0
∫ 2π

0 P(θ ,φ)sinθdθdφ

∫
π

0

∫ 2π

0
fan(m,uan)P(θ ,φ)sinθdθdφ

where
fan(m,uan) = fan(α1,α2,θ ,φ) = kan[1− (m(α1,α2) ·uan(θ ,φ))

2].
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uan Gaussian random variable with a probability density function

P(y) = P(θ ,φ) = ρ(θ)ρ(φ) where ρ(ν) = 1
sν

√
2π

exp
(
−|ν−ην |2

2s2
ν

)
Spherical coordinate system with angular coordinates θ and φ

uan = sinθ cosφ i+ sinθ sinφ j+ cosθk
having assigned to m a specific direction described by angles α1 and α2
the equivalent anisotropy function f̄an is numerically computed as

f̄an(m)=
1∫

π

0
∫ 2π

0 P(θ ,φ)sinθdθdφ

∫
π

0

∫ 2π

0
fan(m,uan)P(θ ,φ)sinθdθdφ

where
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2].

To derive equivalent anisotropy parameters, f̄an(m) numerically
interpolated by an equivalent uniaxial anisotropy function of the form
f ∗an(m) = k∗an[1− γ(m ·uan(ηθ ,ηφ )

2)] with k∗an equivalent anisotropy
constant and γ a dimensionless interpolating coefficient
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Determination of equivalent anisotropy properties
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In the case of uniform distribution of vector uan in the (x1,x2)-plane, the
following equivalent planar anisotropy function is used as interpolator
f ∗an(m) = k∗an[1− γ(mx1 uan,x1(ηθ +mx2 uan,x2(ηφ )

2)]
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Determination of equivalent anisotropy properties

Figure 3: Asymptotic behaviour of the equivalent parameters k∗an and γ

at the increase of the standard deviation s, here assumed identical for
the two angular coordinates (that is s = sθ = sφ ), having also assumed
ηθ = π/2 and ηφ = 0. The interpolation is made under the hypothesis
of equivalent unidirectional anisotropy
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Determination of equivalent anisotropy properties

An example of the asymptotic behaviour of parameters *
ank  and ! at the increase of the standard 

deviation s, here assumed identical for the two angular coordinates (that is s = s" = s#), is shown in 
Fig. 2, having assumed $" = %/2 and $# = %. The plots of the equivalent anisotropy functions and the 
corresponding energy surfaces are shown in Fig. 3 for two values of the standard deviation s. At the 
increase of s, the equivalent anisotropy energy surface tends to a sphere, since there is an 
asymptotic behaviour towards isotropy. 
 

 

Fig. 2  Asymptotic behaviour of the equivalent parameters *
ank  and ! at the increase of the standard deviation s, having 

assumed $" = %/2 and $# = %.  
 

 

 
(a)      (b) 

 
Fig. 3  Equivalent anisotropy function ( )anf m  and corresponding energy surfaces, for s = 0.16 rad (a) and s = 0.63 rad 

(b), having assumed $" = %/2 and $# = %. 
 
4. Numerical validation of the homogenization results 
 
In order to validate the homogenization procedure, we compare the micromagnetic simulations on a 
magnetic thin film composed of grains with Gaussian randomly distributed anisotropy direction uan, 

Figure 4: Equivalent anisotropy function and corresponding energy
surfaces for the Gaussian distribution, for s = 0.16 rad (a) and s = 0.63
rad (b), where ηθ = π/2 and ηφ = π . At the increase of s, the
equivalent anisotropy energy surface tends to a sphere, since there is
asymptotic behavior towards isotropy.
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Determination of equivalent anisotropy properties

Figure 5: Equivalent anisotropy function and corresponding energy
surfaces, for Gaussian distribution with s = π/6 (a) and for the uniform
distribution (b)
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Numerical validation of the homogenization results

The homogenization procedure described so far 1) has been validated
by simulating a precessional switching of a polycrystalline magnetic film

A film with size and thickness equal to 20nm is considered

In the film plane (xy-plane) the grains have a square shape with ; in
each grain a given anisotropy direction uan is assumed, randomly
distributed over the entire sample

by integrating the Landau-Lifschitz-Gilbert equation

∂M
∂ t

=− γG

(1+α)2

[(
(M×Heff)+

α

MS
M× (M×Heff)

)]
,

with |M|= MS; Heff = Ha +Han +Hex +Hm and

Hex =
2kex

µ0M2
S

∇
2M; Hm =∇u, ∇

2u=−MS∇ ·m; Han =−
1
µ0

∂ fan(M)

∂M
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Numerical validation of the homogenization results
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Numerical validation of the homogenization results

The homogenization procedure described so far 1) simulating a
precessional switching 2) computation of the static hysteresis loop

A film with size 4µm×4µm /2µm×2µm and thickness equal to 20nm
is considered

In the film plane (xy-plane) the grains have a square shape with size of
20nm /dimension ranging from 20nm to 100nm; in each grain a given
anisotropy direction uan is assumed, randomly distributed over the entire
sample

Micromagnetic simulations are performed /The time evolution towards
equilibrium states in the computation of the static hysteresis loop is
calculated by integrating the Landau-Lifschitz-Gilbert equation

∂M
∂ t

=− γG

(1+α)2
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α

MS
M× (M×Heff)

)]
,
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Numerical validation of the homogenization results:
simulating a precessional switching

The spatial discretization of the LLG equation is performed by using the
finite element method with linear basis functions, assuming the
Cartesian components of Heff as nodal unknowns
Then, the magnetization update is performed via a norm-conserving
scheme based on the Cayley transform
To accelerate the computation, the magnetostatic field due to “far”
dipoles is evaluated by a multipole expansion technique
In the simulations the following physical parameters have been
considered: MS = 800kA/m, A = 15pJ/m and α = 0.02
The thin film is discretized into volume elements with size ∼ 6.6nm. We
assume that kan = 50kJ/m3 and vector uan is randomly distributed over
the film plane (i.e. angle θ is fixed to π/2), while angle φ has a
Gaussian distributionwith standard deviation sφ and expected value ηφ

The precessional switching is simulated starting from a uniform spatial
distribution of the magnetization along the x1−axis and applying a
constant field Ha, with amplitude equal to 100kA/m, along the x2−axis
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Numerical validation of the homogenization results:
simulating a precessional switching

Figure 6: The precessional switching is simulated starting from a
uniform spatial distribution of the magnetization along the x1−axis and
applying a constant field Ha, with amplitude equal to 100kA/m, along
the x2−axis
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Numerical validation of the homogenization results:
simulating a precessional switching

In the next pictures we show the results obtained for a standard
deviation sφ of π/6, π/2 and π respectively

The fitting parameters k∗an/kan and γ are equal to 0.977 and 0.921 for
sφ = π/6, while they are equal to 0.88 and 0.567 for sφ = π

The results are validated by comparison to the ones obtained for the
heterogeneous structure, putting in evidence a good agreement, also
when considering grains having bigger size

Some discrepancies arise at the increase of the standard deviation,
since the heterogeneities in the anisotropy term becomes more
important

To highlight the effect of grains on anisotropy properties, we have also
computed the magnetization time evolutions obtained in the absence of
anisotropy (kan = 0) or assuming a uniform uniaxial anisotropy along
x1−axis
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Scheme of the precessional switching 1/5

(a)

(b)

(c) 

Figure 7: Time evolution of magnetization components assuming an
anisotropy constant kan equal to 50kJ/m3 and a variable standard
deviation sφ . The grain size is equal to 20nm. The results obtained with
the heterogeneous structure are compared with those given by
considering homogenized parameters sφ = π/6.
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Scheme of the precessional switching 2/5
(a)

(b)

(c) 

Figure 8: Time evolution of magnetization components assuming an
anisotropy constant kan equal to 50kJ/m3 and a variable standard
deviation sφ . The grain size is equal to 20nm. The results obtained with
the heterogeneous structure are compared with those given by
considering homogenized parameters sφ = π/2.
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Scheme of the precessional switching 3/5

(a)

(b)

(c) 

Figure 9: Time evolution of magnetization components assuming an
anisotropy constant kan equal to 50kJ/m3 and a variable standard
deviation sφ . The grain size is equal to 20nm. The results obtained with
the heterogeneous structure are compared with those given by
considering homogenized parameters sφ = π .
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Scheme of the precessional switching 4/5

Fig. 4  Time evolution of magnetization components assuming an anisotropy constant kan equal to 50 kJ/m3 and a 
variable standard deviation s!. The grain size is equal to 20 nm. The results obtained with the heterogeneous structure 
are compared with those given by considering homogenized parameters: (a) s! = "/6, (b) s! = "/2, (c) s! = ". 

 
 

 
Fig. 5  Time evolution of magnetization components disregarding anisotropy or assuming an anisotropy constant kan 
equal to 50 kJ/m3 uniformly distributed along x-axis. 

 
Fig. 6  Time evolution of magnetization components assuming an anisotropy constant kan equal to 100 kJ/m3 and a 
standard deviation s! = "/6. The grain size is equal to 20 nm. The results obtained with the heterogeneous structure are 
compared with those given by considering homogenized parameters. 
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Figure 10: Time evolution of magnetization components disregarding
anisotropy or assuming an anisotropy constant kan equal to 50kJ/m3

uniformly distributed along x−axis.
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Scheme of the precessional switching 5/5

Fig. 4  Time evolution of magnetization components assuming an anisotropy constant kan equal to 50 kJ/m3 and a 
variable standard deviation s!. The grain size is equal to 20 nm. The results obtained with the heterogeneous structure 
are compared with those given by considering homogenized parameters: (a) s! = "/6, (b) s! = "/2, (c) s! = ". 
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Fig. 6  Time evolution of magnetization components assuming an anisotropy constant kan equal to 100 kJ/m3 and a 
standard deviation s! = "/6. The grain size is equal to 20 nm. The results obtained with the heterogeneous structure are 
compared with those given by considering homogenized parameters. 
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Figure 11: Time evolution of magnetization components assuming an
anisotropy constant kan equal to 100kJ/m3 and a standard deviation
sφ = π/6. The grain size is equal to 20nm. The results obtained with the
heterogeneous structure are compared with those given by considering
homogenized parameters.
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Numerical validation of the homogenization results:
computation of the static hysteresis loop

The spatial discretization of the LLG equation is performed by using the
finite element shape functions, assuming the Cartesian components of
m as nodal unknowns
To speed-up the computation and limit the memory requirements, the
magnetostatic field due to “far” dipoles is evaluated by a multipole
expansion technique
A norm-conserving scheme, based on the Cayley transform is adopted
to time integrating the LLG equation, so that the magnitude of m is
preserved during the time evolution towards equilibrium states
To compute the descending branch of the static hysteresis loop, the
simulation starts from a uniform magnetization in the direction x1, then
an external field of 200kA/m is applied along the same direction and
reduced in steps of 4 kA/m until the magnetization is reversed
For each step of the applied field, the magnetization time evolution is
computed until the equilibrium state, assumed to be reached when the
maximum nodal value of the misalignment between magnetization and
effective field, |m×Heff|, is lower than a fixed threshold Θ
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Numerical validation of the homogenization results:
computation of the static hysteresis loop

In the simulations here reported, the following physical parameters are
considered: MS = 800kA/m and A = 15pJ/m
The magnetic film is discretized into a 2-D mesh with element size
∼ 6.6nm, comparable with the exchange length (∼ 6.1nm)
We assume that kan = 100kA/m and anisotropy vector uan is randomly
distributed over the film plane (x1x2), that is θ = π/2
In the following table, the values of the fitting parameter k∗an/kan and γ ,
derived from the homogenization process, are reported, with reference
to two limit cases of random distribution

Case k∗an/kan γ

sφ = π/6 0.993 0.796
Uniform distribution 0.5 −1

In the first case, we consider a narrow Gaussian distribution (sφ = π/6),
i.e. the easy axis is mainly oriented towards the expected value
(ηφ = 0); in the second case a uniform distribution in the film plane is
imposed.
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Numerical validation of the homogenization results:
computation of the static hysteresis loop

Figure 12: Comparison between the descending branches of the static
hysteresis loops with randomly distributed anisotropy direction
(heterogeneous medium) and with equivalent properties (homogenized
medium). We assume a Gaussian distribution with standard deviation
sφ = π/6 in the film plane. The grain dimension is 20 nm.
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Numerical validation of the homogenization results:
computation of the static hysteresis loop

In the following figure instead we compare the results of the
micromagnetic simulations performed on the magnetic film effectively
composed of grains with randomly distributed anisotropy direction uan,
with those obtained by considering equivalent homogenized properties
The grain dimension is here fixed to 20nm. The approximation given by
the homogenization approach provides qualitatively good results,
leading to hysteresis loops having similar shapes
Anyway, some discrepancies arise in the prediction of the coercive field
and of the remanent magnetization. The approximation is strongly
influenced by the type of anisotropy random distribution: in particular,
with the narrow Gaussian distribution a larger value of the coercive field
is found, since the magnetization results much more pinned along the
preferential direction
The opposite behavior occurs with a uniform distribution in the film
plane, as a consequence of the strong reduction of the equivalent
anisotropy constant. Similar results have been found when considering
grains having bigger size (100nm).
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Numerical validation of the homogenization results:
computation of the static hysteresis loop

Figure 13: Comparison between the descending branches of the static
hysteresis loops computed with randomly distributed anisotropy
direction (i.e. heterogeneous medium) and with equivalent properties
(i.e. homogenized medium). Here we assume a uniform distribution in
the film plane. The grain dimension is assumed to be equal to 20 nm.
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