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The play operator

Let r > 0 be a parameter, h(t) a given input function on the
time interval I := [0,T ] and π0(r) ∈ [h(0) − r , h(0) + r ] an
initial state. We consider a variational inequality

|h(t) − π(r , t)| ≤ r ∀t ∈ I ,

πt(r , t)(h(t) − π(r , t) − x) ≥ 0

for a.e. t ∈ I , ∀|x | ≤ r ,

(1)

for the unknown π(r , t). For an input h ∈ W 1,1(I ) this
problem admits a unique solution π(r , t) ∈ W 1,1(I ).
The play operator Pr [h] := π(r , t) with threshold r is defined
as the solution operator for (1).
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The play operator

¾Äh

π(r , t)

0 r

|h(t) − π(r , t)| ≤ r ∀t ∈ I ,

πt(r , t)(h(t) − π(r , t) − x) ≥ 0

for a.e. t ∈ I , ∀|x | ≤ r ,
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Shape memory models

Souza-Auricchio model

very popular in the engineering community
simplicity
small number of model parameters which can easily be
identified

can be equivalently reformulated, in the 1D pure tension
stress-controlled cases, as

ε =
σ

E
+ εLQ

(

1

EhεL

Pr [σ − f (θ)]

)

where σ is the stress, ε is the strain, θ is the absolute
temperature, E > 0 is the elasticity modulus, Eh > 0 is the
hardening modulus, εL > 0 is the reorientation strain, r > 0 is
the yield stress, Q : R → [0, 1] is the projection of R onto
[0, 1], and f is the piecewise affine function f (θ) = b(θ − θM),
where b and θM are positive parameters.
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Preisach model: a two-parametric relay

Let h(t) be a given time dependent uniaxial magnetic field.
Consider an elementary magnet (“relay”) switching between
two possible states: +1 and −1.

�	�v

v−r

v+r

h

mr ,v

+1

−1

Switching occurs at value v ... interaction field
with delay r > 0 ... critical field of coercivity.
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Preisach model
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One-parametric description of the Preisach model

We can eliminate the relays by introducing for each fixed time
t the memory function λt(r) of the memory variable r > 0,
describing the moving interface between the +1 and the −1
regions. The integral

m(t) =
1

2

∫

∞

0

∫

∞

−∞

mr ,v (t)ψ(r , v) dv dr

defines the Preisach operator and can be written as

m(t) =
1

2

(
∫

∞

0

∫ 0

−∞

−

∫

∞

0

∫

∞

0

)

ψ(r , v) dv dr

+

∫

∞

0

∫ λt(r)

0

ψ(r , v) dv dr = C +

∫

∞

0

g(r , λt(r)) dr ,

where we have set

g(r , v) =

∫ v

0

ψ(r , z) dz .
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The play operator

For a fixed memory level r > 0, consider now the function

π(r , t) = λt(r)

as function of time t. Then the mapping h 7→ π(r , t) is the
linear play characterized in each monotonicity interval [t0, t1]
of the input h(t) by the formula

π(r , t) = min{h(t) + r ,max{h(t) − r , π(r , t0)}} .
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Preisach energy balance

With the constitutive law m(t) =

∫

∞

0

g(r ,Pr [h]) dr ,

we associate the potential energy

e(t) =

∫

∞

0

G (r ,Pr [h]) dr

with

G (r , v) =

∫ v

0

z ψ(r , z) dz = v g(r , v) −

∫ v

0

g(r , z) dz ,

and the dissipation function

d(t) =

∫

∞

0

r g(r ,Pr [h]) dr .

For every given time evolution of h(t) and at almost all times
t we have the local energy balance

h(t) ṁ(t) − ė(t) = |ḋ(t)| ≥ 0 .
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A rate dependent variational inequality

|h(t) − π(r , t)| ≤ r , ∀t ∈ I ,

(µ1(t)πt(r , t) + µ2(t)(π(r , t)−h(t)))(h(t)−π(r , t) − x) ≥ 0

for a.e. t ∈ I , ∀|x | ≤ r ,

where h(t) is the input (strain), π(r , t) is the output
(memory state), and µ1, µ2 are given functions,
µ2 = 0, µ1 > 0 - rate independent plasticity - solution
π(r , t) = Pr [h], where Pr [h] is the play operator,
µ1 = 0, µ2 > 0 - linear elasticity - gives a one-to-one
correspondence between h and π, π(r , t) = h(t),
µ2 > 0, µ1 > 0 - viscoelastoplasticity.
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The main idea of the model

To derive a termodynamically consistent Preisach operator, we
assume that the functions µ1, µ2 are temperature-dependent
in such a way, that µ1 vanishes (so the material is elastic) for
high temperatures, and µ2 vanishes (so the material is plastic)
for low temperatures (and the material is viscoelastoplastic in
between).

|h(t) − π(r , t)| ≤ r , ∀t ∈ I ,

(µ1(θ(t))πt(r , t)+µ2(θ(t))(π(r , t)−h(t)))(h(t)−π(r , t)−x) ≥ 0

for a.e. t ∈ I , ∀|x | ≤ r .

(2)
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Assumptions on µ1 and µ2

More precisely, we assume that µ1, µ2 are continuous
nonnegative functions on (0,∞), µ1 is nonincreasing, µ2

nondecreasing and that there exists θc > 0 and constants
p > 1, C > 0 such that µ2(θc) > 0 and

µ1(θ) ≤ C ((θc − θ)+)p.

Let us note that the behaviour of the model is regular as long
as θ(t) < θc or θ(t) > θc .
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Temperature dependent Preisach model

To obtain the Preisach model, the individual contribution
σr (t) at level r is given by the formula

σr (t) := E (r)h(t) − g(r , π(r , t), θ),

where g : [0,∞)× R × R+ → R is a given function such that

∂g(r , π, θ)

∂π
≥ 0 a.e, g(r , 0, θ) = 0,

and macroscopically σ is formally given by the integral

σ(t) = Eh(t) − σp = Eh(t) −

∫

∞

0

g(r , π(r , t), θ(t))dr .
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Thermodynamical consistency of the model

Second principle of thermodynamics: There exist internal
energy U and entropy S as functions of θ and π(r , .) such that
for every h, θ ∈ W 1,1

loc , θ(t) > 0 for all t ∈ (0,T ) we have

−
∂

∂t
U(θ(t), π(r , t)) + σ(t)

∂h(t)

∂t
+ θ(t)

∂

∂t
S(θ(t), π(r , t)) ≥ 0

We consider

U = CV θ +
E

2
h2(t) +

∫

∞

0

Urdr , Ur = G − θGθ − hg + hθgθ,

G (r , π, θ) = πg(r , π, θ) −

∫ π

0

g(r , l , θ)dl

S = CV log

(

θ

θc

)

+

∫

∞

0

Srdr , Sr (θ, π) = −Gθ + hgθ.
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Wellpossedness of the variational inequality

Theorem

Let h ∈ W 1,1(0,T ) and θ ∈ C 0, 1
p [0,T ] be given such that

θ(t) > 0 for every t ∈ [0,T ]. Then for every initial condition
π
−1(r) ∈ {π ∈ W 1,∞(0,∞) : |π

′

| ≤ 1 a.e. } there exists a
unique function π(r , .) ∈ C [0,T ], which satisfies for every
r ≥ 0 the variational inequality (2).

If moreover h1, h2 ∈ W 1,1(0,T ), π1
−1(r), π

2
−1(r) are given and

π(1)(r , .), π(2)(r , .) are the corresponding solutions, then

‖π(1)(r , .) − π(2)(r , .)‖[0,T ] ≤

≤ max
{

|π(1)(r , 0) − π(2)(r , 0)|; ‖h1 − h2‖[0,T ]

}

.

Jana Kopfová Temperature-dependent Preisach shape memory model



Convergence result

Theorem

Let h(n) ∈ W 1,1(0,T ) and θ(n) ∈ C 0, 1
p [0,T ] for n ∈ N be

given, such that limn→∞
‖h(n) − h‖[0,T ] = 0,

limn→∞
‖θ(n) − θ‖[0,T ] = 0, there exists a constant

independent of n such that

|θ(n)(t) − θ(n)(s)| ≤ C |t − s|1/p ∀t, s ∈ [0,T ], ∀n ∈ N.

Let πn
−1 be a sequence of admissible initial conditions,

πn
−1 → π

−1 uniformly in [0,∞). Let π(n) for n ∈ N and π be
the solutions to (2) corresponding to θ(n), h(n) and θ, h
respectively. If θ(0) 6= θc , then

lim
n→∞

‖π(n)(r , .) − π(r , .)‖[0,T ] = 0, ∀r ≥ 0.
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Idea of the proof
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Idea of the proof

Domain with low temperature θ < θc
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Idea of the proof

Domain with low temperature θ < θc
time discrete model
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Idea of the proof

Domain with low temperature θ < θc
time discrete model

time continuous model
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Idea of the proof

Domain with low temperature θ < θc
time discrete model

time continuous model

Local behaviour of the model in the neighborhood of a
singularity
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Idea of the proof

Domain with low temperature θ < θc
time discrete model

time continuous model

Local behaviour of the model in the neighborhood of a
singularity

Global well-posedness
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Derivation of the model problem

Equation of motion - the field equation governing the space-
time evolution:

ρ utt = σx + f1

where ρ > 0 is a constant referential density, u is the
displacement, f1 is the volume force density and the stress is in
the form

σ(t) = σv+Eh(t)−σp = αht(t)+Eh(t)−

∫

∞

0

g(r , π(r , t), θ(t))dr .

The balance law of internal energy:

Ut = σ uxt − qx + f2

where q is the heat flux, q = −k θx from the Fourier law, U is
the total internal energy and f2 is the heat source density.
Small deformation hypothesis h = ux .
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Balance equations

Consider the system

utt − (Eux − σp + αuxt)x
= f1(θ, x , t) ,

Ut − θxx = (−σp + αuxt) uxt + f2(θ, x , t)

with suitable initial and boundary conditions. Here, U is the
internal energy functional

U = CV θ +

∫

∞

0

Ur dr ,Ur = −hg+hθgθ+G−θGθ .

A necessary condition for the wellposedness of the problem is
the positivity of the specific heat, that is,

ĈV = CV − θ

∫

∞

0

(hgθθ − Gθθ) dr > 0 .
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Idea of the existence proof
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Idea of the existence proof

Space discretization
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Idea of the existence proof

Space discretization

Contraction mapping principle to show the existence and
uniqueness of the discretized system
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Idea of the existence proof

Space discretization

Contraction mapping principle to show the existence and
uniqueness of the discretized system

A-priori estimates
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Idea of the existence proof

Space discretization

Contraction mapping principle to show the existence and
uniqueness of the discretized system

A-priori estimates

Limit procedure using compact embeddings
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Space discretization

Let n > 1 be a given integer. We get the following system of
ODEs for unknown functions u1, . . . , un−1, θ1, . . . , θn,

ük = n(σk+1 − σk) + fk(θk , t),

d

dt
(CV θk + U [εk , θk ]) = n2 (θk+1 − 2θk + θk−1)

+ ε̇k(P[εk , θk ] + αε̇k) + hk(θk , t),

εk = n(uk − uk−1),

σk = Eεk − P[εk , θk ] + αε̇k ,

u0 = un = 0, θ0 = θ1, θn+1 = θn,

fk(θ, t) = n

∫ k
n

k−1
n

f (θ, x , t) dx , hk(θ, t) = n

∫ k
n

k−1
n

h(θ, x , t) dx ,

uk(0) = u0

(

k

n

)

, u̇k(0) = u1

(

k

n

)

, θk(0) = θ0

(

k

n

)

,

k = 1, . . . , n − 1
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