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Limit behavior in a singularly perturbed problem

αẋ(t) + g(x(t)) = u(t) , x(0) = x0
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Which is the right convergence concept as α→ 0+?
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Physical motivation: unstable spontaneous pressure oscillations in a
pump-valve system

Consider a fluid flow in a tube of length ` along the x -axis with a pump
at x = 0 and valve at x = ` , assuming linear volume-pressure law

%vt + px = 0

pt + Kvx = 0
for (x , t) ∈ ]0, `[× ]0,∞[ ,

where p and v are the pressure and velocity, respectively, % is the mass
density, and K > 0 is a material constant, with boundary conditions

αvt(0, t) + f (v(0, t)) + p(0, t) = pe + p̄(t)
p(`, t) = M v(`, t)

where α > 0 is a (small) constant called “pump inertance”, f is a
continuous (non-monotone) function describing the velocity-pressure
characteristic of the pump, M > 0 is the valve parameter, pe is a
constant external pressure, and p̄(t) are external pressure fluctuations.
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The method of characteristics

In dimensionless form, the problem reads

vt + px = 0

pt + vx = 0
for (x , t) ∈ ]0, 1[× ]0,∞[ ,

with boundary conditions

αvt(0, t) + f (v(0, t)) + p(0, t) = pe + p̄(t)
p(1, t) = M v(1, t)

The solution is constructed recursively. In each time interval
t ∈ [2k − 2, 2k] , k = 1, 2, . . . , we find functions ϕk , ψk such that
(v + p)(x , t) = ϕk(t − x) , (v − p)(x , t) = ψk(t + x) . The problem is
reduced to the ODE system

αv̇k(t) + g(vk(t)) = ψk(t) + p̄k(t) for t ∈ [0, 2]

ϕk = 2vk − ψk

g(v) = v + f (v)− pe for y ∈ R ,

ψk(t) =
M − 1
M + 1

(ψk−1(t)− 2 vk−1(t)) .
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Practical issue

Engineers want to neglect the inertance and consider α = 0 , in order to
investigate the long time behavior of the pump-valve system as a recurrent
functional relation, without solving the sequence of differential equations.

To justify this procedure, we have to

propose a selection rule in case of multiple solutions;

find a proper function space in which the convergence α→ 0 takes
place;

define a suitable topology;

give rigorous convergence proofs.

Neither the space C [0,T ] of continuous functions, nor the space
BV (0,T ) of functions of bounded variation are the right choice.
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Functions of bounded variation

The space BV (0,T ) of functions of bounded variation on an interval
[0,T ] contains all functions u : [0,T ] → X which admit a constant
C > 0 such that

m∑
k=1

|u(tk)− u(tk−1)| ≤ C

for every division 0 = t0 < t1 < · · · < tm = T of [0,T ] .

Let D0,T be the set of all divisions of [0,T ] . The number

Var
[0,T ]
u := sup

D0,T

m∑
k=1

|u(tk)− u(tk−1)|

is called the total variation of u on [0,T ] .
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Helly selection principle

Let C > 0 be a constant, and let un ∈ BV (0,T ) for n ∈ N be a
sequence such that

|un(0)| + Var
[0,T ]
un ≤ C .

Then there exists a subsequence {unk} of {un} and a function
u ∈ BV (0,T ) such that unk (t) → u(t) for k →∞ for all t ∈ [0,T ] .

Extensions exist in the space of the so-called functions of bounded
p -variation BVp(0,T ) = {f : [0,T ] → R ; p-Var [0,T ] f <∞} for p > 1 ,
where

p-Var
[0,T ]

f := sup
D0,T

m∑
k=1

|f (tk)− f (tk−1)|p .

(Chistyakov and Galkin (1998), J. E. Porter (2005)).
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Functions of bounded ϕ -variation

More generally, for an arbitrary convex function ϕ : [0,∞[→ [0,∞[ such
that ϕ(0) = 0 , we define the ϕ -variation of f : [0,T ] → R as

ϕ-Var
[0,T ]

f := sup
D0,T

m∑
k=1

ϕ(|f (tk)− f (tk−1)|) ,

and denote BVϕ(0,T ) = {f : [0,T ] → R ; ϕ-Var
[0,T ]

f <∞} .

Clearly, the right and left limits f (t+), f (t−) exist for all ϕ , all
f ∈ BVϕ(0,T ) , and all t ∈ [0,T ] , with the convention
f (0−) = f (0), f (T+) = f (T ) .
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Regulated functions

A function f : [0,T ] → R is said to be regulated, if the right and left
limits f (t+), f (t−) exist for all t ∈ [0,T ] .
We denote the set of all regulated functions f : [0,T ] → R by the symbol
G (0,T ) . With the norm

‖f ‖∞ = sup
t∈[0,T ]

|f (t)| ,

G (0,T ) is a Banach space,

with the following properties:

BV (0,T ) ⊂ G (0,T ) is a dense subspace;

C ([0,T ]) ⊂ G (0,T ) is a closed subspace;

G (0,T ) =
⋃
ϕ

BVϕ(0,T ) ;

The Helly selection principle does not hold in G (0,T ) !

Example: fn(t) = sin nt for t ∈ [0, π] .
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The Fraňková Theorem (1991)

Let fn ∈ G (0,T ) for n ∈ N be a sequence with the property

∀ε > 0 ∃Lε > 0 ∀n ∈ N ∃un ∈ BV (0,T ) :

‖un − fn‖∞ < ε , |un(0)| + Var
[0,T ]
un ≤ Lε .

Then there exists a subsequence {fnk} of {fn} and a function
f ∈ G (0,T ) such that fnk (t) → f (t) for k →∞ for all t ∈ [0,T ] .

Question: A criterion to check the condition of bounded ε -variation?

It is necessary to approximate regulated functions uniformly by
BV -functions, keeping the total variations of the approximations uniformly
bounded and depending only on ε .
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Variational inequality

A standard way to approximate a function f of unbounded variation by a
function u ∈ BV (0,T ) consists in solving the differential inclusion

u̇(t) ∈ ∂I[−ε,ε](f (t)− u(t)) , u(0) = f (0) ,

where I[−ε,ε] is the indicator function of [−ε, ε] , and ∂ is the symbol for
the subdifferential. The mapping that with f associates u is called the
play operator.

This inclusion is formally equivalent to the variational inequality

‖f − u‖∞ ≤ ε , u̇(t)(f (t)− u(t)− z) ≥ 0 ∀z ∈ [−ε, ε] ,

which we have to reformulate in terms of the Kurzweil integral

‖f − u‖∞ ≤ ε ,

∫ t

0
(f (τ+)− u(τ+)− z(τ))du(τ) ≥ 0

∀z ∈ G (0,T ; [−ε, ε]) ∀t ∈ [0,T ] .
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Kurzweil variational inequality

Given a function f ∈ G (0,T ) , we look for u ∈ BV (0,T ) such that
u(0) = f (0) , and

‖f − u‖∞ ≤ ε ,

∫ t

0
(f (τ+)− u(τ+)− z(τ))du(τ) ≥ 0

∀z ∈ G (0,T ; [−ε, ε]) ∀t ∈ [0,T ] .

In this generality, the problem is uniquely solvable if and only if we admit
functions u with bounded essential variation.
Isolated singularities (i.e. points where f (t) differs from both f (t+) and
f (t−) ) have no influence on future evolution and can be removed. Hence,
we can restrict ourselves e.g. to variational inequalities with left continuous
inputs f ∈ GL(0,T )∫ T

0
(f (τ+)− u(τ+)− z(τ))du(τ) ≥ 0 ∀z ∈ G (0,T ; [−ε, ε])

which admits a unique left continuous solution u ∈ BVL(0,T ) .
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Relation between Kurzweil variational inequalities and ϕ -variation

Theorem 1. Let a set F ⊂ GL(0,T ) and ε > 0 be given. Let there exist a
convex increasing function ϕ and a constant CF > 0 such that

∀f ∈ F : ϕ-Var f ≤ CF .

The the set UF of all solutions u of the Kurzweil variational inequality
with inputs f ∈ F has uniformly bounded variation.

Hence, functions of bounded ϕ -variation satisfy the ε -condition in the
Fraňková Theorem.

Corollary. For every function ϕ , the Helly selection principle holds in
BVϕ(0,T ) .

Theorem 2. A set F ⊂ G (0,T ) has uniformly bounded ϕ -variation for
some function ϕ if and only if it has uniformly bounded oscillation: For
each ε > 0 there exists NF ,ε > 0 such that if n disjoint intervals ]ak , bk [
satisfy the inequality |f (bk)− f (ak)| > ε for some function f ∈ F , then
n ≤ NF ,ε .
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BO -convergence

Definition. We say that a sequence fn of functions from G (0,T )
BO -converges to f ∈ G (0,T ) , if the set {fn : n ∈ N} has uniformly
bounded oscillation, and fn(t) → f (t) for all t ∈ [0,T ] .

The following convergence theorem for the Kurzweil integral shows that
the BO -convergence is a kind of weak convergence in G (0,T ) .

Theorem 3. Let fn, f ∈ G (0,T ) , fn(t) → f (t) for all t ∈ [0,T ] . Then the
following two conditions are equivalent:

fn have uniformly bounded oscillation;

for each sequence gn ∈ BV (0,T ) such that Var [0,T ] gn ≤ C a
gn → g uniformly, we have∫ T

0
fn(t)dgn(t) →

∫ T

0
f (t)dg(t) .
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Bounded linear functionals on GL(0,T ) a GR(0,T )

Theorem 4 (Hönig; Tvrdý; Brokate and Krejčí). With each bounded linear
functionals PL on GL(0,T ) and PR on GR(0,T ) we can associate
uniquely determined functions gL, gR ∈ BV (0,T ) such that

PL(f ) = gL(T )f (T )−
∫ T

0
gL(t)df (t) ∀f ∈ GL(0,T ) ,

PR(f ) = gR(0)f (0) +

∫ T

0
gR(t)df (t) ∀f ∈ GR(0,T ) ,

with the properties

||PL|| = |gL(0)|+ Var
[0,T ]
gL , ||PR || = |gR(T )|+ Var

[0,T ]
gR .

Corollary. The dual spaces to GL(0,T ),GR(0,T ) are both isometrically
isomorphic to BV (0,T ) .
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Relation between weak convergence and BO -convergence in GL(0,T )

If fn → f uniformly, then they converge both weakly and BO .

The sequence
fn(t) = χ]0,1/n](t)

in GL(0,T ) BO -converges, but does not converge weakly;

Let b1 > a1 > b2 > a2 > · · · > 0 be an infinite sequence of positive
numbers. The sequence

fn(t) =
2n∑
k=n

χ]ak ,bk ](t)

converges weakly in GL(0,T ) , but does not have bounded oscillation.
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Back to a singularly perturbed problem

αẋ(t) + g(x(t)) = u(t) , x(0) = x0

�
x− x+
x

G−

G+

u

u = g(x)
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Uniformly bounded oscillation in singularly perturbed systems

Theorem 5. Let U ⊂ GL[0,T ] be a bounded set with uniformly bounded
oscillation, and let c > 0 be a constant. Then the set X ⊂W 1,∞[0,T ] of
all solutions x to

αẋ(t) + g(x(t)) = u(t) , x(0) = x0

with u ∈ U , x0 ∈ [−c , c] , and α > 0 is bounded and has uniformly
bounded oscillation.

In the proof, the play operator is used in a substantial way.
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Convergence in singularly perturbed systems

Theorem 6. Let u ∈ GL(0,T ) and x0 ∈ R be given. Assume that one of
the following two conditions holds:

(i) x0 /∈ ]x−, x+[ .

(ii) x0 ∈ ]x−, x+[ , u(0+) 6= g(x0) .
Then there exists a function x ∈ GL(0,T ) such that x(t) /∈ ]x−, x+[ and
g(x(t)) = u(t) for every t ∈ ]0,T ] , and xα BO-converge to x .

The choice of x(t) in the multivalued relation g(x(t)) = u(t)
corresponds to the maximal hysteresis rule.

If x0 ∈ ]x−, x+[ , u(0+) = g(x0) , then the subset Y of

U = {û ∈ GL(0,T ) : û(0+) = u(0+), û(t) ∈ [G−,G+] ∀t ∈ [0,T ]}

containing all right hand sides for which xα(t) do not converge for any
subsequence αj → 0 , is of the second Baire category.
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More general nonlinearities

Similar statements hold for a large class of nonlinearities.

�A B x

g(A)

g(B)

u
u = g(x)
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Conclusions

The space of regulated function has a very rich topological structure:
uniform convergence, weak convergence, BO -convergence.

The play operator defined as the solution operator of a Kurzweil
integral variational inequality transforms regulated functions into
BV -functions, and sets with uniformly bounded oscillation into sets
with uniformly bounded variation.

In bounded sets with uniformly bounded oscillation, the Fraňková
extension of the Helly selection principle holds.

Solutions of differential equations with a singular parameter in front
of the derivative BO -converge to a rate independent hysteresis
relation on a non-monotone graph.
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