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Limit behavior in a singularly perturbed problem

ax(t) +g(x(t)) = u(t), x(0)=xo
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Which is the right convergence concept as @ — 0+7?
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where a > 0 is a (small) constant called “pump inertance”, f is a
continuous (non-monotone) function describing the velocity-pressure
characteristic of the pump, M > 0 is the valve parameter, p. is a

constant external pressure, and p(t) are external pressure fluctuations.
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The method of characteristics
In dimensionless form, the problem reads
ve + =0
e Px for (x,t) €]0,1[x]0,00][,
pt+ve = 0
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Practical issue

Engineers want to neglect the inertance and consider o = 0, in order to
investigate the long time behavior of the pump-valve system as a recurrent
functional relation, without solving the sequence of differential equations.
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Practical issue

Engineers want to neglect the inertance and consider o = 0, in order to
investigate the long time behavior of the pump-valve system as a recurrent
functional relation, without solving the sequence of differential equations.

To justify this procedure, we have to

o propose a selection rule in case of multiple solutions;

o find a proper function space in which the convergence o — 0 takes
place;

o define a suitable topology;

@ give rigorous convergence proofs.

Neither the space C[0, T| of continuous functions, nor the space
BV(0, T) of functions of bounded variation are the right choice.
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Functions of bounded variation

The space BV/(0, T) of functions of bounded variation on an interval

[0, T] contains all functions v : [0, T| — X which admit a constant
C > 0 such that

D lu(t) — u(tea)l < C

k=1

for every division 0 =ty < t; < --- < tp, =T of [0, T].
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Functions of bounded variation

The space BV/(0, T) of functions of bounded variation on an interval
[0, T] contains all functions v : [0, T| — X which admit a constant
C > 0 such that

D lu(t) — u(tea)l < C

k=1
for every division 0 =ty < t; < --- < tp, =T of [0, T].

Let Dy 1 be the set of all divisions of [0, T]. The number

[0, 7]

m
Var u = sup Y |u(te) — u(te—1)|

is called the total variation of u on [0, T].
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Helly selection principle

Let C > 0 be a constant, and let u, € BV(0, T) for n € N be a
sequence such that

|ua(0)| + Var u, < C.
[0.7]

Then there exists a subsequence {un,} of {un} and a function
u e BV(0,T) such that u,, (t) — u(t) for k — oo for all t € [0, T].
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Helly selection principle

Let C > 0 be a constant, and let u, € BV(0, T) for n € N be a

sequence such that
u,(0)] + Var u, < C.
|un(0)] [O%IC] n =

Then there exists a subsequence {un,} of {un} and a function
ue BV(0,T) such that u,, (t) — u(t) for k — oo for all t € [0, T].

Extensions exist in the space of the so-called functions of bounded
p-variation BV,(0, T) = {f : [0, T] — R; p-Var[g 7 f < oo} for p > 1,
where

p-Var f = sup > [F(tk) — f(ti—1)|”.
[OvT] DO,T k=1

(Chistyakov and Galkin (1998), J. E. Porter (2005)).
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Functions of bounded (-variation

More generally, for an arbitrary convex function ¢ : [0, oo[— [0, co[ such
that ¢(0) = 0, we define the @-variation of f: [0, T] - R as

p-Var f = sup Y o(|f(tk) = F(ti1)]),
[0,7] Do =1

and denote BV, (0, T) = {f : [0, T] = R; ¢-Varf < oo}.
[0,7]

12 Dec 2011 8/21



Functions of bounded (-variation

More generally, for an arbitrary convex function ¢ : [0, oo[— [0, co[ such

that ¢(0) = 0, we define the @-variation of f: [0, T] - R as
p-Var f = sup Y o(|f(tk) = F(ti1)]),
[0,7] !

and denote BV,(0, T) = {f : [0, T] = R; ¢-Varf < oco}.
[0,7]

Clearly, the right and left limits f(t+), f(t—) exist for all ¢, all
feBV,0,T),and all t [0, T], with the convention
f(0—) =f(0),f(T+)=1f(T).
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Regulated functions

A function f : [0, T] — R is said to be regulated, if the right and left

limits f(t+), f(t—) exist for all t € [0, T].
We denote the set of all regulated functions f : [0, T] — R by the symbol

G(0, T). With the norm

[fllee = sup [f(1)],
te[0,T]

G(0, T) is a Banach space,
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Regulated functions

A function f : [0, T] — R is said to be regulated, if the right and left
limits f(t+), f(t—) exist for all t € [0, T].

We denote the set of all regulated functions f : [0, T] — R by the symbol

G(0, T). With the norm

[fllee = sup [f(1)],
te[0,T]

G(0, T) is a Banach space, with the following properties:

e BV(0,T) C G(0,T) is a dense subspace;
o C([0,T]) C G(0,T) is a closed subspace;

o G(0,T)=[JBV,(0,T);
©
The Helly selection principle does not hold in G(0, T)!

Example: f,(t) =sinnt for t € [0, n].
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The Frankova Theorem (1991)

Let f, € G(0, T) for n € N be a sequence with the property
Ve>0 3L. >0 VYneN Fu,e BV(0,T):

|un — falloo <€, |un(0)] + [\O/:a%] u, < L..

Then there exists a subsequence {f,, } of {f,} and a function
f e G(0,T) such that f, (t) — f(t) for k — oo forall t € [0, T].

Pavel Krej¢i (Matematicky tstav AV CR) 12 Dec 2011 10 / 21



The Frankova Theorem (1991)

Let f, € G(0, T) for n € N be a sequence with the property
Ve>0 3L. >0 VYneN Fu,e BV(0,T):

lun — falloo < €, |ua(0)| + [\O/:a_lg] u, < L.

Then there exists a subsequence {f,, } of {f,} and a function
f e G(0,T) such that f, (t) — f(t) for k — oo forall t € [0, T].

Question: A criterion to check the condition of bounded &-variation?

Pavel Krej¢i (Matematicky tstav AV CR) 12 Dec 2011 10 / 21



The Frankova Theorem (1991)
Let f, € G(0, T) for n € N be a sequence with the property

Ve>0 3L. >0 VYneN Fu,e BV(0,T):
lun — falloo < €, |ua(0)| + [\O/"a%] u, < L.

Then there exists a subsequence {f,, } of {f,} and a function
f e G(0,T) such that f, (t) — f(t) for k — oo forall t € [0, T].

Question: A criterion to check the condition of bounded &-variation?

It is necessary to approximate regulated functions uniformly by
BV-functions, keeping the total variations of the approximations uniformly
bounded and depending only on ¢.

Pavel Krej¢i (Matematicky tstav AV CR) 12 Dec 2011 10 / 21



Variational inequality
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Variational inequality

A standard way to approximate a function f of unbounded variation by a
function v € BV(0, T) consists in solving the differential inclusion

u(t) € Oh—cq(f(t) — u(t)), u(0)=1£(0),

where [j_. ; is the indicator function of [~¢,¢], and 0 is the symbol for
the subdifferential.
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Variational inequality

A standard way to approximate a function f of unbounded variation by a
function v € BV(0, T) consists in solving the differential inclusion

u(t) € Oh—cq(f(t) — u(t)), u(0)=1£(0),

where [j_. ; is the indicator function of [~¢,¢], and 0 is the symbol for
the subdifferential. The mapping that with f associates u is called the
play operator.

This inclusion is formally equivalent to the variational inequality
If —ul|oo < e, u(t)(f(t) —u(t)—z) >0 Vz € [—¢,¢],

which we have to reformulate in terms of the Kurzweil integral

If = ulloc < e, /0(f(7+)—u(7+)—2(7))du(7)20
Vz e G(0,T;[—¢,¢]) Vte][0,T].
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Kurzweil variational inequality
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Kurzweil variational inequality

Given a function f € G(0, T), we look for u € BV(0, T) such that
u(0) = f(0), and

I = o <, /0 (F(r1) — u(r+) — 2(7)) du(r) = 0
Vz e G(0, T;[—¢,e]) Vte]0,T].

In this generality, the problem is uniquely solvable if and only if we admit
functions u with bounded essential variation.
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Kurzweil variational inequality

Given a function f € G(0, T), we look for u € BV(0, T) such that
u(0) = f(0), and

I = o <, /0 (F(r1) — u(r+) — 2(7)) du(r) = 0
Vz e G(0, T;[—¢,e]) Vte]0,T].

In this generality, the problem is uniquely solvable if and only if we admit
functions u with bounded essential variation.

Isolated singularities (i.e. points where f(t) differs from both f(t+) and
f(t—)) have no influence on future evolution and can be removed. Hence,
we can restrict ourselves e.g. to variational inequalities with left continuous
inputs f € G.(0,T)

T
/0 (f(7+) — u(t+) — z(7))du(7) >0 Vz e G(0, T;[—¢,¢])

which admits a unique left continuous solution v € BV, (0, T).
12 Dec 2011 12 /21
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Relation between Kurzweil variational inequalities and @-variation

Theorem 1. Let a set F C G((0, T) and € > 0 be given. Let there exist a
convex increasing function ¢ and a constant Cg > 0 such that

VfeF: o-Var f < Cg.

The the set Ur of all solutions u of the Kurzweil variational inequality
with inputs f € F has uniformly bounded variation.
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Theorem 1. Let a set F C G((0, T) and € > 0 be given. Let there exist a
convex increasing function ¢ and a constant Cg > 0 such that

VfeF: o-Var f < Cg.

The the set Ur of all solutions u of the Kurzweil variational inequality
with inputs f € F has uniformly bounded variation.

Hence, functions of bounded ¢-variation satisfy the ¢-condition in the
Frankova Theorem.

Corollary. For every function ¢, the Helly selection principle holds in
BV,(0,T).

Theorem 2. A set F C G(0, T) has uniformly bounded ¢ -variation for
some function ¢ if and only if it has uniformly bounded oscillation: For
each € > 0 there exists Ng . > 0 such that if n disjoint intervals |ay, b|
satisfy the inequality |f(bx) — f(ak)| > & for some function f € F, then
n< N,:78 .
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BO -convergence

Definition. We say that a sequence f, of functions from G(0, T)
BO -converges to f € G(0, T), if the set {f, : n € N} has uniformly

bounded oscillation, and f,(t) — f(t) for all t € [0, T].
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BO -convergence

Definition. We say that a sequence f, of functions from G(0, T)
BO -converges to f € G(0, T), if the set {f, : n € N} has uniformly
bounded oscillation, and f,(t) — f(t) for all t € [0, T].

The following convergence theorem for the Kurzweil integral shows that
the BO-convergence is a kind of weak convergence in G(0, T).

Theorem 3. Let f,,f € G(0,T), f,(t) — f(t) forall t € [0, T]. Then the
following two conditions are equivalent:
o f, have uniformly bounded oscillation;
o for each sequence g, € BV(0, T) such that Varjy 118, < C a
gy — & uniformly, we have

T T
/ f,,(t)dg,,(t)—>/ £(t) dg(t).
0 0
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Bounded linear functionals on G, (0, T) a Gg(0, T)

Theorem 4 (Honig; Tvrdy; Brokate and Krejci). With each bounded linear
functionals Py on G(0, T) and Pgr on Gg(0, T) we can associate
uniquely determined functions g;,gr € BV(0, T) such that

)
PUF) = au(T)A(T)— /0 gu(t)dF(t) VF e G(0.T),

T
Pr(f) = gR(O)f(0)+/ gr(t)df(t) VYfe Ggr(0,T),
0
with the properties

P,|| = |g (0)| + V: Pp|| = V.
[|[PL]| = law( )I+[O§;]gL, ||Pr|| = |gr(T)| + yer 8 -
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Bounded linear functionals on G, (0, T) a Gg(0, T)

Theorem 4 (Honig; Tvrdy; Brokate and Krejci). With each bounded linear
functionals Py on G(0, T) and Pgr on Gg(0, T) we can associate
uniquely determined functions g;,gr € BV(0, T) such that

)
PUF) = au(T)A(T)— /0 gu(t)dF(t) VF e G(0.T),

T
Pr(f) = gR(O)f(O)+/ gr(t)df(t) VYfe Ggr(0,T),
0
with the properties

P,|| = |g (0)| + V: Pp|| = V.
[|[PL]| = law( )I+[O§;]gL, ||Pr|| = |gr(T)| + yer 8 -

Corollary. The dual spaces to G (0, T), Gr(0, T) are both isometrically
isomorphic to BV(0, T).
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Relation between weak convergence and BO-convergence in G (0, T)

o If f, — f uniformly, then they converge both weakly and BO.
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Relation between weak convergence and BO-convergence in G (0, T)

o If f, — f uniformly, then they converge both weakly and BO.

o The sequence
fn(t) = X]O,l/n](t)

in G.(0, T) BO-converges, but does not converge weakly;

o Let by > a1 > by > ap > --- > 0 be an infinite sequence of positive
numbers. The sequence

2n
fal(t) =Y X5 (1)
k=n

converges weakly in G (0, T), but does not have bounded oscillation.
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Back to a singularly perturbed problem

ax(t) +g(x(t)) = u(t), x(0)=x

Y

|
|
|
|
|
|
|
|
Y

Y
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Uniformly bounded oscillation in singularly perturbed systems

Theorem 5. Let U C G.[0, T] be a bounded set with uniformly bounded
oscillation, and let ¢ > 0 be a constant. Then the set X C W%*°[0, T] of
all solutions x to

ax(t) +g(x(t)) = u(t), x(0)=x

with u € U, xg € [—c,c], and a > 0 is bounded and has uniformly
bounded oscillation.
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Uniformly bounded oscillation in singularly perturbed systems

Theorem 5. Let U C G.[0, T] be a bounded set with uniformly bounded
oscillation, and let ¢ > 0 be a constant. Then the set X C W1>°[0, T] of
all solutions x to

ax(t) +g(x(t)) = u(t), x(0)=x

with u € U, xg € [—c,c], and a > 0 is bounded and has uniformly
bounded oscillation.

In the proof, the play operator is used in a substantial way.
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Convergence in singularly perturbed systems
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Convergence in singularly perturbed systems

Theorem 6. Let u € G;(0, T) and xo € R be given. Assume that one of
the following two conditions holds:

(i) xo ¢]X_,X_|_[.

) %0 €]xoxel, u(0+) # g(x0).

Then there exists a function x € G (0, T) such that x(t) ¢ |x_, x4 and
g(x(t)) = u(t) for every t €]0, T], and x, BO-converge to x.
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Convergence in singularly perturbed systems
Theorem 6. Let u € G;(0, T) and xo € R be given. Assume that one of
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() x0 €lxosxel, u(0+) # glx).

Then there exists a function x € G (0, T) such that x(t) ¢ |x_, x4 and
g(x(t)) = u(t) for every t €]0, T], and x, BO-converge to x.

The choice of x(t) in the multivalued relation g(x(t)) = u(t)
corresponds to the maximal hysteresis rule.
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Convergence in singularly perturbed systems

Theorem 6. Let u € G;(0, T) and xo € R be given. Assume that one of
the following two conditions holds:

(i) xo ¢]X_,X_|_[.

) %0 €]xxel, u(04) # g(x).

Then there exists a function x € G (0, T) such that x(t) ¢ |x_, x4 and
g(x(t)) = u(t) for every t €]0, T], and x, BO-converge to x.

The choice of x(t) in the multivalued relation g(x(t)) = u(t)
corresponds to the maximal hysteresis rule.

If xo €x_,x+[, u(0+) = g(xo), then the subset Y of
U={ioe G0, T):u(0+)=u(0+), 0(t) e [G_,G4] Vt € [0, T}

containing all right hand sides for which x,(t) do not converge for any
subsequence oj — 0, is of the second Baire category.
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More general nonlinearities
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More general nonlinearities

Similar statements hold for a large class of nonlinearities.

Y
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Conclusions

o The space of regulated function has a very rich topological structure:
uniform convergence, weak convergence, BO-convergence.
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Conclusions

o The space of regulated function has a very rich topological structure:
uniform convergence, weak convergence, BO-convergence.

@ The play operator defined as the solution operator of a Kurzweil
integral variational inequality transforms regulated functions into
BV -functions, and sets with uniformly bounded oscillation into sets
with uniformly bounded variation.

@ In bounded sets with uniformly bounded oscillation, the Frarikova
extension of the Helly selection principle holds.

o Solutions of differential equations with a singular parameter in front
of the derivative BO-converge to a rate independent hysteresis
relation on a non-monotone graph.
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