Rate independent hysteresis as a limit case of slow-fast systems

Pavel Krejčí

Matematický ústav AV ČR, Praha

International Workshop on Hysteresis and Slow-Fast Systems

Wittenberg, December 12, 2011

Pavel Krejčí (Matematický ústav AV CR)

Hysteresis limit

12 Dec 2011 1 / 21

Limit behavior in a singularly perturbed problem

Limit behavior in a singularly perturbed problem

$$\alpha \dot{x}(t) + g(x(t)) = u(t), \quad x(0) = x_0$$

Pavel Krejčí (Matematický ústav AV ČR)

12 Dec 2011 2 / 21

Consider a fluid flow in a tube of length ℓ along the x-axis with a pump at x = 0 and value at $x = \ell$, assuming linear volume-pressure law

 $\begin{array}{rcl} \varrho v_t + \rho_x &=& 0 \\ p_t + \mathcal{K} v_x &=& 0 \end{array} \qquad \qquad \text{for} \quad (x,t) \in \left] 0, \ell \right[\times \left] 0, \infty \right[\, , \end{array}$

where p and v are the pressure and velocity, respectively, ρ is the mass density, and K > 0 is a material constant,

Consider a fluid flow in a tube of length ℓ along the x-axis with a pump at x = 0 and value at $x = \ell$, assuming linear volume-pressure law

where p and v are the pressure and velocity, respectively, ϱ is the mass density, and K > 0 is a material constant, with boundary conditions

$$lpha v_t(0,t) + f(v(0,t)) + p(0,t) = p_e + \overline{p}(t) \\ p(\ell,t) = M v(\ell,t)$$

Consider a fluid flow in a tube of length ℓ along the x-axis with a pump at x = 0 and value at $x = \ell$, assuming linear volume-pressure law

where p and v are the pressure and velocity, respectively, ρ is the mass density, and K > 0 is a material constant, with boundary conditions

$$\begin{array}{rcl} \alpha v_t(0,t) + f(v(0,t)) + p(0,t) &=& p_e + \bar{p}(t) \\ p(\ell,t) &=& M \, v(\ell,t) \end{array}$$

where $\alpha > 0$ is a (small) constant called "pump inertance",

Consider a fluid flow in a tube of length ℓ along the x-axis with a pump at x = 0 and value at $x = \ell$, assuming linear volume-pressure law

$$\begin{array}{rcl} \varrho v_t + p_x &=& 0\\ p_t + K v_x &=& 0 \end{array} \qquad \qquad \text{for} \ \ (x,t) \in \]0,\ell[\times]0,\infty[\ ,$$

where p and v are the pressure and velocity, respectively, ϱ is the mass density, and K > 0 is a material constant, with boundary conditions

$$\begin{array}{rcl} \alpha v_t(0,t) + f(v(0,t)) + p(0,t) &=& p_e + \bar{p}(t) \\ p(\ell,t) &=& M \, v(\ell,t) \end{array}$$

where $\alpha > 0$ is a (small) constant called "pump inertance", f is a continuous (non-monotone) function describing the velocity-pressure characteristic of the pump,

Consider a fluid flow in a tube of length ℓ along the x-axis with a pump at x = 0 and value at $x = \ell$, assuming linear volume-pressure law

$$\begin{array}{rcl} \varrho v_t + p_x &=& 0\\ p_t + K v_x &=& 0 \end{array} \qquad \qquad \text{for} \ \ (x,t) \in \]0,\ell[\times]0,\infty[\ ,$$

where p and v are the pressure and velocity, respectively, ϱ is the mass density, and K > 0 is a material constant, with boundary conditions

$$\begin{array}{rcl} \alpha v_t(0,t) + f(v(0,t)) + p(0,t) &=& p_e + \bar{p}(t) \\ p(\ell,t) &=& M \, v(\ell,t) \end{array}$$

where $\alpha > 0$ is a (small) constant called "pump inertance", f is a continuous (non-monotone) function describing the velocity-pressure characteristic of the pump, M > 0 is the valve parameter,

Consider a fluid flow in a tube of length ℓ along the x-axis with a pump at x = 0 and value at $x = \ell$, assuming linear volume-pressure law

$$\begin{array}{rcl} \varrho v_t + p_x &=& 0\\ p_t + K v_x &=& 0 \end{array} \qquad \qquad \text{for} \ \ (x,t) \in \]0,\ell[\times]0,\infty[\ ,$$

where p and v are the pressure and velocity, respectively, ϱ is the mass density, and K > 0 is a material constant, with boundary conditions

$$\begin{array}{rcl} \alpha v_t(0,t) + f(v(0,t)) + p(0,t) &=& p_e + \bar{p}(t) \\ p(\ell,t) &=& M \, v(\ell,t) \end{array}$$

where $\alpha > 0$ is a (small) constant called "pump inertance", f is a continuous (non-monotone) function describing the velocity-pressure characteristic of the pump, M > 0 is the valve parameter, p_e is a constant external pressure,

Consider a fluid flow in a tube of length ℓ along the x-axis with a pump at x = 0 and value at $x = \ell$, assuming linear volume-pressure law

$$\begin{array}{rcl} \varrho v_t + p_x &=& 0\\ p_t + K v_x &=& 0 \end{array} \qquad \qquad \text{for} \ \ (x,t) \in \]0,\ell[\times]0,\infty[\ ,$$

where p and v are the pressure and velocity, respectively, ϱ is the mass density, and K > 0 is a material constant, with boundary conditions

$$\begin{array}{rcl} \alpha v_t(0,t) + f(v(0,t)) + p(0,t) &=& p_e + \bar{p}(t) \\ p(\ell,t) &=& M \, v(\ell,t) \end{array}$$

where $\alpha > 0$ is a (small) constant called "pump inertance", f is a continuous (non-monotone) function describing the velocity-pressure characteristic of the pump, M > 0 is the valve parameter, p_e is a constant external pressure, and $\bar{p}(t)$ are external pressure fluctuations.

Pavel Krejčí (Matematický ústav AV CR

In dimensionless form, the problem reads

$$egin{array}{rcl} v_t + p_x &=& 0 \ p_t + v_x &=& 0 \end{array} \qquad \qquad {
m for } (x,t) \in \begin{array}{c} 0,1[\, imes\,]0,\infty[\,\,, \end{array}$$

with boundary conditions

$$\alpha v_t(0,t) + f(v(0,t)) + p(0,t) = p_e + \bar{p}(t) p(1,t) = M v(1,t)$$

In dimensionless form, the problem reads

$$egin{array}{rcl} v_t + p_x &=& 0 \ p_t + v_x &=& 0 \end{array} \qquad \qquad {
m for } (x,t) \in \cite{black} 0, 1[\, imes\,]0, \infty[\,\,, \ \end{array}$$

with boundary conditions

$$\begin{array}{rcl} \alpha v_t(0,t) + f(v(0,t)) + p(0,t) &= p_e + \bar{p}(t) \\ p(1,t) &= M v(1,t) \end{array}$$

The solution is constructed recursively. In each time interval $t \in [2k-2, 2k]$, k = 1, 2, ..., we find functions φ_k , ψ_k such that $(v + p)(x, t) = \varphi_k(t - x)$, $(v - p)(x, t) = \psi_k(t + x)$.

In dimensionless form, the problem reads

$$egin{array}{rcl} v_t + p_x &=& 0 \ p_t + v_x &=& 0 \end{array} \qquad \qquad {
m for } (x,t) \in \cite{black} 0, 1[\, imes\,] 0, \infty[\,\,, \ \end{array}$$

with boundary conditions

$$\begin{aligned} \alpha v_t(0,t) + f(v(0,t)) + p(0,t) &= p_e + \bar{p}(t) \\ p(1,t) &= M v(1,t) \end{aligned}$$

The solution is constructed recursively. In each time interval $t \in [2k-2,2k]$, k = 1, 2, ..., we find functions φ_k , ψ_k such that $(v + p)(x, t) = \varphi_k(t - x)$, $(v - p)(x, t) = \psi_k(t + x)$. The problem is reduced to the ODE system

In dimensionless form, the problem reads

$$egin{array}{rcl} v_t + p_x &=& 0 \ p_t + v_x &=& 0 \end{array} \qquad \qquad {
m for } (x,t) \in \begin{array}{c} 0,1[\, imes\,]0,\infty[\,\,, \end{array}$$

with boundary conditions

$$\begin{aligned} \alpha v_t(0,t) + f(v(0,t)) + p(0,t) &= p_e + \bar{p}(t) \\ p(1,t) &= M v(1,t) \end{aligned}$$

The solution is constructed recursively. In each time interval $t \in [2k-2,2k]$, k = 1, 2, ..., we find functions φ_k , ψ_k such that $(v + p)(x, t) = \varphi_k(t - x)$, $(v - p)(x, t) = \psi_k(t + x)$. The problem is reduced to the ODE system

 $lpha \dot{v}_k(t) + g(v_k(t)) = \psi_k(t) + \overline{p}_k(t) \quad \text{for } t \in [0,2]$

In dimensionless form, the problem reads

$$egin{array}{rcl} v_t + p_x &=& 0 \ p_t + v_x &=& 0 \end{array} \qquad \qquad {
m for } (x,t) \in \begin{array}{c} 0,1[\, imes\,]0,\infty[\,\,, \end{array}$$

with boundary conditions

$$\begin{aligned} \alpha v_t(0,t) + f(v(0,t)) + p(0,t) &= p_e + \bar{p}(t) \\ p(1,t) &= M v(1,t) \end{aligned}$$

The solution is constructed recursively. In each time interval $t \in [2k-2,2k]$, k = 1,2,..., we find functions φ_k , ψ_k such that $(v + p)(x, t) = \varphi_k(t - x)$, $(v - p)(x, t) = \psi_k(t + x)$. The problem is reduced to the ODE system

 $\begin{aligned} \alpha \dot{\mathbf{v}}_k(t) + \mathbf{g}(\mathbf{v}_k(t)) &= \psi_k(t) + \bar{\mathbf{p}}_k(t) \quad \text{for } t \in [0, 2] \\ \varphi_k &= 2\mathbf{v}_k - \psi_k \end{aligned}$

Pavel Krejčí (Matematický ústav AV ČR)

In dimensionless form, the problem reads

$$egin{array}{rcl} v_t + p_x &=& 0 \ p_t + v_x &=& 0 \end{array} \qquad \qquad {
m for } (x,t) \in \begin{array}{c} 0,1[\, imes\,]0,\infty[\,\,, \end{array}$$

with boundary conditions

$$\begin{aligned} \alpha v_t(0,t) + f(v(0,t)) + p(0,t) &= p_e + \bar{p}(t) \\ p(1,t) &= M v(1,t) \end{aligned}$$

The solution is constructed recursively. In each time interval $t \in [2k-2,2k]$, k = 1, 2, ..., we find functions φ_k , ψ_k such that $(v + p)(x, t) = \varphi_k(t - x)$, $(v - p)(x, t) = \psi_k(t + x)$. The problem is reduced to the ODE system

$$\begin{aligned} \alpha \dot{v}_k(t) + g(v_k(t)) &= \psi_k(t) + \bar{p}_k(t) \quad \text{for } t \in [0,2] \\ \varphi_k &= 2v_k - \psi_k \\ g(v) &= v + f(v) - p_e \text{ for } y \in \mathbb{R} \,, \end{aligned}$$

In dimensionless form, the problem reads

$$egin{array}{rcl} v_t + p_x &=& 0 \ p_t + v_x &=& 0 \end{array} \qquad \qquad {
m for } (x,t) \in \begin{array}{c} 0,1[\, imes\,]0,\infty[\,\,, \end{array}$$

with boundary conditions

$$\begin{aligned} \alpha v_t(0,t) + f(v(0,t)) + p(0,t) &= p_e + \bar{p}(t) \\ p(1,t) &= M v(1,t) \end{aligned}$$

The solution is constructed recursively. In each time interval $t \in [2k-2,2k]$, k = 1, 2, ..., we find functions φ_k , ψ_k such that $(v + p)(x, t) = \varphi_k(t - x)$, $(v - p)(x, t) = \psi_k(t + x)$. The problem is reduced to the ODE system

$$egin{array}{rcl} lpha \dot{v}_k(t) + g(v_k(t)) &= \psi_k(t) + ar{p}_k(t) & ext{ for } t \in [0,2] \ arphi_k &= 2v_k - \psi_k \ g(v) &= v + f(v) - p_e & ext{ for } y \in \mathbb{R} \,, \ \psi_k(t) &= rac{M-1}{M+1} (\psi_{k-1}(t) - 2\,v_{k-1}(t)) \,. \end{array}$$

Engineers want to neglect the inertance and consider $\alpha = 0$, in order to investigate the long time behavior of the pump-valve system as a recurrent functional relation, without solving the sequence of differential equations.

Engineers want to neglect the inertance and consider $\alpha = 0$, in order to investigate the long time behavior of the pump-valve system as a recurrent functional relation, without solving the sequence of differential equations.

To justify this procedure, we have to

• propose a selection rule in case of multiple solutions;

Engineers want to neglect the inertance and consider $\alpha = 0$, in order to investigate the long time behavior of the pump-valve system as a recurrent functional relation, without solving the sequence of differential equations.

To justify this procedure, we have to

- propose a selection rule in case of multiple solutions;
- find a proper function space in which the convergence $\alpha \rightarrow 0$ takes place;

Engineers want to neglect the inertance and consider $\alpha = 0$, in order to investigate the long time behavior of the pump-valve system as a recurrent functional relation, without solving the sequence of differential equations.

To justify this procedure, we have to

- propose a selection rule in case of multiple solutions;
- find a proper function space in which the convergence $\alpha \rightarrow 0$ takes place;
- define a suitable topology;

Engineers want to neglect the inertance and consider $\alpha = 0$, in order to investigate the long time behavior of the pump-valve system as a recurrent functional relation, without solving the sequence of differential equations.

To justify this procedure, we have to

- propose a selection rule in case of multiple solutions;
- find a proper function space in which the convergence $\alpha \rightarrow 0$ takes place;
- define a suitable topology;
- give rigorous convergence proofs.

Engineers want to neglect the inertance and consider $\alpha = 0$, in order to investigate the long time behavior of the pump-valve system as a recurrent functional relation, without solving the sequence of differential equations.

To justify this procedure, we have to

- propose a selection rule in case of multiple solutions;
- find a proper function space in which the convergence $\alpha \rightarrow 0$ takes place;
- define a suitable topology;
- give rigorous convergence proofs.

Neither the space C[0, T] of continuous functions, nor the space BV(0, T) of functions of bounded variation are the right choice.

Functions of bounded variation

The space BV(0, T) of functions of bounded variation on an interval [0, T] contains all functions $u : [0, T] \to X$ which admit a constant C > 0 such that

$$\sum_{k=1}^{m} |u(t_k) - u(t_{k-1})| \leq C$$

for every division $0 = t_0 < t_1 < \cdots < t_m = T$ of [0, T].

Functions of bounded variation

The space BV(0, T) of functions of bounded variation on an interval [0, T] contains all functions $u : [0, T] \to X$ which admit a constant C > 0 such that

$$\sum_{k=1}^{m} |u(t_k) - u(t_{k-1})| \leq C$$

for every division $0 = t_0 < t_1 < \cdots < t_m = T$ of [0, T].

Let $\mathcal{D}_{0,T}$ be the set of all divisions of [0, T]. The number

$$\operatorname{Var}_{[0,T]} u := \sup_{\mathcal{D}_{0,T}} \sum_{k=1}^{m} |u(t_k) - u(t_{k-1})|$$

is called the total variation of u on [0, T].

Helly selection principle

Let C>0 be a constant, and let $u_n\in BV(0,T)$ for $n\in\mathbb{N}$ be a sequence such that

$$|u_n(0)| + \operatorname{Var}_{[0,T]} u_n \leq C.$$

Then there exists a subsequence $\{u_{n_k}\}$ of $\{u_n\}$ and a function $u \in BV(0, T)$ such that $u_{n_k}(t) \to u(t)$ for $k \to \infty$ for all $t \in [0, T]$.

Helly selection principle

Let C>0 be a constant, and let $u_n\in BV(0,T)$ for $n\in\mathbb{N}$ be a sequence such that

$$|u_n(0)| + \operatorname{Var}_{[0,T]} u_n \leq C.$$

Then there exists a subsequence $\{u_{n_k}\}$ of $\{u_n\}$ and a function $u \in BV(0, T)$ such that $u_{n_k}(t) \to u(t)$ for $k \to \infty$ for all $t \in [0, T]$.

Extensions exist in the space of the so-called functions of bounded p-variation $BV_p(0, T) = \{f : [0, T] \to \mathbb{R}; \text{ p-Var}_{[0, T]} f < \infty\}$ for p > 1, where

$$\underset{[0,T]}{\text{p-Var}} f := \sup_{\mathcal{D}_{0,T}} \sum_{k=1}^{m} |f(t_k) - f(t_{k-1})|^p.$$

(Chistyakov and Galkin (1998), J. E. Porter (2005)).

Functions of bounded φ -variation

More generally, for an arbitrary convex function $\varphi : [0, \infty[\rightarrow [0, \infty[$ such that $\varphi(0) = 0$, we define the φ -variation of $f : [0, T] \rightarrow \mathbb{R}$ as

and denote $BV_{\varphi}(0, T) = \{f : [0, T] \to \mathbb{R}; \varphi$ -Var $f < \infty\}$. [0,T]

Functions of bounded φ -variation

More generally, for an arbitrary convex function $\varphi : [0, \infty[\rightarrow [0, \infty[$ such that $\varphi(0) = 0$, we define the φ -variation of $f : [0, T] \rightarrow \mathbb{R}$ as

and denote $BV_{\varphi}(0, T) = \{f : [0, T] \to \mathbb{R}; \varphi$ -Var $f < \infty\}$. [0,T]

Clearly, the right and left limits f(t+), f(t-) exist for all φ , all $f \in BV_{\varphi}(0, T)$, and all $t \in [0, T]$, with the convention f(0-) = f(0), f(T+) = f(T).

Pavel Krejčí (Matematický ústav AV CR)

A function $f : [0, T] \to \mathbb{R}$ is said to be regulated, if the right and left limits f(t+), f(t-) exist for all $t \in [0, T]$. We denote the set of all regulated functions $f : [0, T] \to \mathbb{R}$ by the symbol G(0, T). With the norm

$$\|f\|_{\infty} = \sup_{t\in[0,T]} |f(t)|,$$

G(0, T) is a Banach space,

A function $f : [0, T] \to \mathbb{R}$ is said to be regulated, if the right and left limits f(t+), f(t-) exist for all $t \in [0, T]$. We denote the set of all regulated functions $f : [0, T] \to \mathbb{R}$ by the symbol G(0, T). With the norm

$$\|f\|_{\infty} = \sup_{t\in[0,T]} |f(t)|,$$

G(0, T) is a Banach space, with the following properties:

A function $f : [0, T] \to \mathbb{R}$ is said to be regulated, if the right and left limits f(t+), f(t-) exist for all $t \in [0, T]$. We denote the set of all regulated functions $f : [0, T] \to \mathbb{R}$ by the symbol G(0, T). With the norm

$$\|f\|_{\infty} = \sup_{t\in[0,T]} |f(t)|,$$

G(0, T) is a Banach space, with the following properties:

• $BV(0, T) \subset G(0, T)$ is a dense subspace;

A function $f : [0, T] \to \mathbb{R}$ is said to be regulated, if the right and left limits f(t+), f(t-) exist for all $t \in [0, T]$. We denote the set of all regulated functions $f : [0, T] \to \mathbb{R}$ by the symbol G(0, T). With the norm

$$\|f\|_{\infty} = \sup_{t\in[0,T]} |f(t)|,$$

G(0, T) is a Banach space, with the following properties:

- $BV(0, T) \subset G(0, T)$ is a dense subspace;
- $C([0, T]) \subset G(0, T)$ is a closed subspace;
Regulated functions

A function $f : [0, T] \to \mathbb{R}$ is said to be regulated, if the right and left limits f(t+), f(t-) exist for all $t \in [0, T]$. We denote the set of all regulated functions $f : [0, T] \to \mathbb{R}$ by the symbol G(0, T). With the norm

$$\|f\|_{\infty} = \sup_{t\in[0,T]} |f(t)|,$$

G(0, T) is a Banach space, with the following properties:

- $BV(0, T) \subset G(0, T)$ is a dense subspace;
- $C([0, T]) \subset G(0, T)$ is a closed subspace;
- $G(0,T) = \bigcup_{\omega} BV_{\varphi}(0,T);$

Regulated functions

A function $f : [0, T] \to \mathbb{R}$ is said to be regulated, if the right and left limits f(t+), f(t-) exist for all $t \in [0, T]$. We denote the set of all regulated functions $f : [0, T] \to \mathbb{R}$ by the symbol G(0, T). With the norm

$$\|f\|_{\infty} = \sup_{t\in[0,T]} |f(t)|,$$

G(0, T) is a Banach space, with the following properties:

- $BV(0, T) \subset G(0, T)$ is a dense subspace;
- $C([0, T]) \subset G(0, T)$ is a closed subspace;

•
$$G(0,T) = \bigcup_{\varphi} BV_{\varphi}(0,T);$$

The Helly selection principle does not hold in G(0, T)!

Example: $f_n(t) = \sin nt$ for $t \in [0, \pi]$.

The Fraňková Theorem (1991)

Let $f_n \in G(0, T)$ for $n \in \mathbb{N}$ be a sequence with the property

 $\forall \varepsilon > 0 \; \exists L_{\varepsilon} > 0 \; \forall n \in \mathbb{N} \; \exists u_n \in BV(0, T) :$

$$\|u_n-f_n\|_{\infty} < \varepsilon, \ |u_n(0)| + \operatorname{Var}_{[0,T]} u_n \leq L_{\varepsilon}.$$

Then there exists a subsequence $\{f_{n_k}\}$ of $\{f_n\}$ and a function $f \in G(0, T)$ such that $f_{n_k}(t) \to f(t)$ for $k \to \infty$ for all $t \in [0, T]$.

The Fraňková Theorem (1991)

Let $f_n \in G(0, T)$ for $n \in \mathbb{N}$ be a sequence with the property

 $\forall \varepsilon > 0 \; \exists L_{\varepsilon} > 0 \; \forall n \in \mathbb{N} \; \exists u_n \in BV(0, T):$

$$\|u_n-f_n\|_{\infty} < \varepsilon, \ |u_n(0)| + \operatorname{Var}_{[0,T]} u_n \leq L_{\varepsilon}.$$

Then there exists a subsequence $\{f_{n_k}\}$ of $\{f_n\}$ and a function $f \in G(0, T)$ such that $f_{n_k}(t) \to f(t)$ for $k \to \infty$ for all $t \in [0, T]$.

Question: A criterion to check the condition of bounded ε -variation?

The Fraňková Theorem (1991)

Let $f_n \in G(0, T)$ for $n \in \mathbb{N}$ be a sequence with the property

 $\forall \varepsilon > 0 \quad \exists L_{\varepsilon} > 0 \quad \forall n \in \mathbb{N} \quad \exists u_n \in BV(0, T):$

$$\|u_n-f_n\|_{\infty} < \varepsilon, \ |u_n(0)| + \operatorname{Var}_{[0,T]} u_n \leq L_{\varepsilon}.$$

Then there exists a subsequence $\{f_{n_k}\}$ of $\{f_n\}$ and a function $f \in G(0, T)$ such that $f_{n_k}(t) \to f(t)$ for $k \to \infty$ for all $t \in [0, T]$.

Question: A criterion to check the condition of bounded ε -variation?

It is necessary to approximate regulated functions uniformly by BV-functions, keeping the total variations of the approximations uniformly bounded and depending only on ε .

Pavel Krejčí (Matematický ústav AV ČR)

A standard way to approximate a function f of unbounded variation by a function $u \in BV(0, T)$ consists in solving the differential inclusion

 $\dot{u}(t) \in \partial I_{[-\varepsilon,\varepsilon]}(f(t)-u(t)), \quad u(0)=f(0),$

where $I_{[-\varepsilon,\varepsilon]}$ is the indicator function of $[-\varepsilon,\varepsilon]$, and ∂ is the symbol for the subdifferential.

A standard way to approximate a function f of unbounded variation by a function $u \in BV(0, T)$ consists in solving the differential inclusion

$$\dot{u}(t) \in \partial I_{[-\varepsilon,\varepsilon]}(f(t)-u(t)), \quad u(0)=f(0),$$

where $I_{[-\varepsilon,\varepsilon]}$ is the indicator function of $[-\varepsilon,\varepsilon]$, and ∂ is the symbol for the subdifferential. The mapping that with f associates u is called the play operator.

A standard way to approximate a function f of unbounded variation by a function $u \in BV(0, T)$ consists in solving the differential inclusion

$$\dot{u}(t) \in \partial I_{[-\varepsilon,\varepsilon]}(f(t)-u(t)), \quad u(0)=f(0),$$

where $I_{[-\varepsilon,\varepsilon]}$ is the indicator function of $[-\varepsilon,\varepsilon]$, and ∂ is the symbol for the subdifferential. The mapping that with f associates u is called the play operator.

This inclusion is formally equivalent to the variational inequality

 $\|f-u\|_{\infty} \leq \varepsilon, \qquad \dot{u}(t)(f(t)-u(t)-z) \geq 0 \qquad \forall z \in [-\varepsilon,\varepsilon],$

A standard way to approximate a function f of unbounded variation by a function $u \in BV(0, T)$ consists in solving the differential inclusion

$$\dot{u}(t) \in \partial I_{[-\varepsilon,\varepsilon]}(f(t)-u(t)), \quad u(0)=f(0),$$

where $I_{[-\varepsilon,\varepsilon]}$ is the indicator function of $[-\varepsilon,\varepsilon]$, and ∂ is the symbol for the subdifferential. The mapping that with f associates u is called the play operator.

This inclusion is formally equivalent to the variational inequality

 $\|f-u\|_{\infty} \leq \varepsilon, \qquad \dot{u}(t)(f(t)-u(t)-z) \geq 0 \qquad \forall z \in [-\varepsilon,\varepsilon],$

which we have to reformulate in terms of the Kurzweil integral

$$egin{aligned} \|f-u\|_\infty &\leq arepsilon\,, \quad \int_0^t (f(au+)-u(au+)-z(au))\,\mathrm{d} u(au) \geq 0\ &orall z \in G(0,T;[-arepsilon,arepsilon]) \ \ orall t \in [0,T]\,. \end{aligned}$$

Kurzweil variational inequality

Pavel Krejčí (Matematický ústav AV CR)

Kurzweil variational inequality

Given a function $f \in G(0, T)$, we look for $u \in BV(0, T)$ such that u(0) = f(0), and

$$\begin{split} \|f-u\|_{\infty} &\leq \varepsilon \,, \quad \int_{0}^{t} (f(\tau+)-u(\tau+)-z(\tau)) \,\mathrm{d} u(\tau) \geq 0 \\ &\quad \forall z \in G(0,\,T; [-\varepsilon,\varepsilon]) \ \, \forall t \in [0,\,T] \,. \end{split}$$

In this generality, the problem is uniquely solvable if and only if we admit functions u with bounded essential variation.

Kurzweil variational inequality

Given a function $f \in G(0, T)$, we look for $u \in BV(0, T)$ such that u(0) = f(0), and

$$\|f - u\|_{\infty} \leq \varepsilon, \quad \int_{0}^{t} (f(\tau +) - u(\tau +) - z(\tau)) \, \mathrm{d}u(\tau) \geq 0$$
$$\forall z \in G(0, T; [-\varepsilon, \varepsilon]) \ \forall t \in [0, T].$$

In this generality, the problem is uniquely solvable if and only if we admit functions u with bounded essential variation.

Isolated singularities (i.e. points where f(t) differs from both f(t+) and f(t-)) have no influence on future evolution and can be removed. Hence, we can restrict ourselves e.g. to variational inequalities with left continuous inputs $f \in G_L(0, T)$

$$\int_0^T (f(\tau+) - u(\tau+) - z(\tau)) \, \mathrm{d} u(\tau) \ge 0 \quad \forall z \in G(0, T; [-\varepsilon, \varepsilon])$$

which admits a unique left continuous solution $u \in BV_L(0, T)$.

Pavel Krejčí (Matematický ústav AVČR)

Pavel Krejčí (Matematický ústav AV CR

Theorem 1. Let a set $F \subset G_L(0, T)$ and $\varepsilon > 0$ be given. Let there exist a convex increasing function φ and a constant $C_F > 0$ such that

 $\forall f \in F : \varphi$ -Var $f \leq C_F$.

The the set U_F of all solutions u of the Kurzweil variational inequality with inputs $f \in F$ has uniformly bounded variation.

Theorem 1. Let a set $F \subset G_L(0, T)$ and $\varepsilon > 0$ be given. Let there exist a convex increasing function φ and a constant $C_F > 0$ such that

 $\forall f \in F : \varphi$ -Var $f \leq C_F$.

The the set U_F of all solutions u of the Kurzweil variational inequality with inputs $f \in F$ has uniformly bounded variation.

Hence, functions of bounded φ -variation satisfy the ε -condition in the Fraňková Theorem.

Theorem 1. Let a set $F \subset G_L(0, T)$ and $\varepsilon > 0$ be given. Let there exist a convex increasing function φ and a constant $C_F > 0$ such that

 $\forall f \in F : \varphi$ -Var $f \leq C_F$.

The the set U_F of all solutions u of the Kurzweil variational inequality with inputs $f \in F$ has uniformly bounded variation.

Hence, functions of bounded φ -variation satisfy the ε -condition in the Fraňková Theorem.

Corollary. For every function φ , the Helly selection principle holds in $BV_{\varphi}(0, T)$.

Theorem 1. Let a set $F \subset G_L(0, T)$ and $\varepsilon > 0$ be given. Let there exist a convex increasing function φ and a constant $C_F > 0$ such that

 $\forall f \in F : \varphi$ -Var $f \leq C_F$.

The the set U_F of all solutions u of the Kurzweil variational inequality with inputs $f \in F$ has uniformly bounded variation.

Hence, functions of bounded φ -variation satisfy the ε -condition in the Fraňková Theorem.

Corollary. For every function φ , the Helly selection principle holds in $BV_{\varphi}(0, T)$.

Theorem 2. A set $F \subset G(0, T)$ has uniformly bounded φ -variation for some function φ if and only if it has uniformly bounded oscillation: For each $\varepsilon > 0$ there exists $N_{F,\varepsilon} > 0$ such that if n disjoint intervals $]a_k, b_k[$ satisfy the inequality $|f(b_k) - f(a_k)| > \varepsilon$ for some function $f \in F$, then $n \leq N_{F,\varepsilon}$.

Pavel Krejčí (Matematický ústav AV ČR)

Definition. We say that a sequence f_n of functions from G(0, T)BO-converges to $f \in G(0, T)$, if the set $\{f_n : n \in \mathbb{N}\}$ has uniformly bounded oscillation, and $f_n(t) \to f(t)$ for all $t \in [0, T]$.

Definition. We say that a sequence f_n of functions from G(0, T)BO-converges to $f \in G(0, T)$, if the set $\{f_n : n \in \mathbb{N}\}$ has uniformly bounded oscillation, and $f_n(t) \to f(t)$ for all $t \in [0, T]$.

The following convergence theorem for the Kurzweil integral shows that the *BO*-convergence is a kind of weak convergence in G(0, T).

Definition. We say that a sequence f_n of functions from G(0, T)BO-converges to $f \in G(0, T)$, if the set $\{f_n : n \in \mathbb{N}\}$ has uniformly bounded oscillation, and $f_n(t) \to f(t)$ for all $t \in [0, T]$.

The following convergence theorem for the Kurzweil integral shows that the *BO*-convergence is a kind of weak convergence in G(0, T).

Theorem 3. Let $f_n, f \in G(0, T)$, $f_n(t) \to f(t)$ for all $t \in [0, T]$. Then the following two conditions are equivalent:

Definition. We say that a sequence f_n of functions from G(0, T)BO-converges to $f \in G(0, T)$, if the set $\{f_n : n \in \mathbb{N}\}$ has uniformly bounded oscillation, and $f_n(t) \to f(t)$ for all $t \in [0, T]$.

The following convergence theorem for the Kurzweil integral shows that the *BO*-convergence is a kind of weak convergence in G(0, T).

Theorem 3. Let $f_n, f \in G(0, T)$, $f_n(t) \to f(t)$ for all $t \in [0, T]$. Then the following two conditions are equivalent:

• *f_n* have uniformly bounded oscillation;

Definition. We say that a sequence f_n of functions from G(0, T)BO-converges to $f \in G(0, T)$, if the set $\{f_n : n \in \mathbb{N}\}$ has uniformly bounded oscillation, and $f_n(t) \to f(t)$ for all $t \in [0, T]$.

The following convergence theorem for the Kurzweil integral shows that the *BO*-convergence is a kind of weak convergence in G(0, T).

Theorem 3. Let $f_n, f \in G(0, T)$, $f_n(t) \to f(t)$ for all $t \in [0, T]$. Then the following two conditions are equivalent:

- *f_n* have uniformly bounded oscillation;
- for each sequence $g_n \in BV(0, T)$ such that $\operatorname{Var}_{[0,T]} g_n \leq C$ a $g_n \to g$ uniformly, we have

$$\int_0^T f_n(t) \, \mathrm{d}g_n(t) \to \int_0^T f(t) \, \mathrm{d}g(t) \, .$$

Bounded linear functionals on $G_L(0, T)$ a $G_R(0, T)$

Pavel Krejčí (Matematický ústav AV CR)

Bounded linear functionals on $G_L(0, T)$ a $G_R(0, T)$

Theorem 4 (Hönig; Tvrdý; Brokate and Krejčí). With each bounded linear functionals P_L on $G_L(0, T)$ and P_R on $G_R(0, T)$ we can associate uniquely determined functions $g_L, g_R \in BV(0, T)$ such that

$$P_L(f) = g_L(T)f(T) - \int_0^T g_L(t) df(t) \quad \forall f \in G_L(0, T),$$

$$P_R(f) = g_R(0)f(0) + \int_0^T g_R(t) df(t) \quad \forall f \in G_R(0, T),$$

with the properties

$$||P_L|| = |g_L(0)| + \mathop{\mathrm{Var}}_{[0,T]} g_L, \quad ||P_R|| = |g_R(T)| + \mathop{\mathrm{Var}}_{[0,T]} g_R.$$

Pavel Krejčí (Matematický ústav AV ČR)

Bounded linear functionals on $G_L(0, T)$ a $G_R(0, T)$

Theorem 4 (Hönig; Tvrdý; Brokate and Krejčí). With each bounded linear functionals P_L on $G_L(0, T)$ and P_R on $G_R(0, T)$ we can associate uniquely determined functions $g_L, g_R \in BV(0, T)$ such that

$$\begin{aligned} P_L(f) &= g_L(T)f(T) - \int_0^T g_L(t) \, \mathrm{d}f(t) \quad \forall f \in G_L(0,T) \,, \\ P_R(f) &= g_R(0)f(0) + \int_0^T g_R(t) \, \mathrm{d}f(t) \quad \forall f \in G_R(0,T) \,, \end{aligned}$$

with the properties

 $||P_L|| = |g_L(0)| + \operatorname{Var}_{[0,T]} g_L, \quad ||P_R|| = |g_R(T)| + \operatorname{Var}_{[0,T]} g_R.$

Corollary. The dual spaces to $G_L(0, T)$, $G_R(0, T)$ are both isometrically isomorphic to BV(0, T).

• If $f_n \rightarrow f$ uniformly, then they converge both weakly and BO.

- If $f_n \rightarrow f$ uniformly, then they converge both weakly and BO.
- The sequence

$$f_n(t) = \chi_{]0,1/n]}(t)$$

in $G_L(0, T)$ BO-converges, but does not converge weakly;

- If $f_n \rightarrow f$ uniformly, then they converge both weakly and BO.
- The sequence

$$f_n(t) = \chi_{]0,1/n]}(t)$$

in $G_L(0, T)$ BO-converges, but does not converge weakly;

• Let $b_1 > a_1 > b_2 > a_2 > \cdots > 0$ be an infinite sequence of positive numbers. The sequence

$$f_n(t) = \sum_{k=n}^{2n} \chi_{]a_k, b_k]}(t)$$

converges weakly in $G_L(0, T)$, but does not have bounded oscillation.

Back to a singularly perturbed problem

$$\alpha \dot{x}(t) + g(x(t)) = u(t), \quad x(0) = x_0$$

Pavel Krejčí (Matematický ústav AV CR)

12 Dec 2011 17 / 21

Uniformly bounded oscillation in singularly perturbed systems

Uniformly bounded oscillation in singularly perturbed systems

Theorem 5. Let $U \subset G_L[0, T]$ be a bounded set with uniformly bounded oscillation, and let c > 0 be a constant. Then the set $X \subset W^{1,\infty}[0, T]$ of all solutions x to

$$\alpha \dot{x}(t) + g(x(t)) = u(t), \quad x(0) = x_0$$

with $u \in U$, $x_0 \in [-c, c]$, and $\alpha > 0$ is bounded and has uniformly bounded oscillation.

Uniformly bounded oscillation in singularly perturbed systems

Theorem 5. Let $U \subset G_L[0, T]$ be a bounded set with uniformly bounded oscillation, and let c > 0 be a constant. Then the set $X \subset W^{1,\infty}[0, T]$ of all solutions x to

$$\alpha \dot{x}(t) + g(x(t)) = u(t), \quad x(0) = x_0$$

with $u \in U$, $x_0 \in [-c, c]$, and $\alpha > 0$ is bounded and has uniformly bounded oscillation.

In the proof, the play operator is used in a substantial way.

Convergence in singularly perturbed systems

Pavel Krejčí (Matematický ústav AV ČR)
Convergence in singularly perturbed systems

Theorem 6. Let $u \in G_L(0, T)$ and $x_0 \in \mathbb{R}$ be given. Assume that one of the following two conditions holds:

- (i) $x_0 \notin]x_-, x_+[.$
- (ii) $x_0 \in]x_-, x_+[, u(0+) \neq g(x_0).$

Then there exists a function $x \in G_L(0, T)$ such that $x(t) \notin]x_-, x_+[$ and g(x(t)) = u(t) for every $t \in]0, T]$, and x_α BO-converge to x.

Convergence in singularly perturbed systems

Theorem 6. Let $u \in G_L(0, T)$ and $x_0 \in \mathbb{R}$ be given. Assume that one of the following two conditions holds:

- (i) $x_0 \notin]x_-, x_+[.$
- (ii) $x_0 \in]x_-, x_+[, u(0+) \neq g(x_0).$

Then there exists a function $x \in G_L(0, T)$ such that $x(t) \notin]x_-, x_+[$ and g(x(t)) = u(t) for every $t \in]0, T]$, and x_α BO-converge to x.

The choice of x(t) in the multivalued relation g(x(t)) = u(t) corresponds to the maximal hysteresis rule.

Convergence in singularly perturbed systems

Theorem 6. Let $u \in G_L(0, T)$ and $x_0 \in \mathbb{R}$ be given. Assume that one of the following two conditions holds:

- (i) $x_0 \notin]x_-, x_+[.$
- (ii) $x_0 \in]x_-, x_+[, u(0+) \neq g(x_0).$

Then there exists a function $x \in G_L(0, T)$ such that $x(t) \notin]x_-, x_+[$ and g(x(t)) = u(t) for every $t \in]0, T]$, and x_α BO-converge to x.

The choice of x(t) in the multivalued relation g(x(t)) = u(t) corresponds to the maximal hysteresis rule.

If $x_0 \in]x_-, x_+[$, $u(0+) = g(x_0)$, then the subset Y of

 $U = \{ \hat{u} \in G_L(0, T) : \hat{u}(0+) = u(0+), \ \hat{u}(t) \in [G_-, G_+] \ \forall t \in [0, T] \}$

containing all right hand sides for which $x_{\alpha}(t)$ do not converge for any subsequence $\alpha_j \rightarrow 0$, is of the second Baire category.

More general nonlinearities

Pavel Krejčí (Matematický ústav AV CR

More general nonlinearities

Similar statements hold for a large class of nonlinearities.

• The space of regulated function has a very rich topological structure: uniform convergence, weak convergence, *BO*-convergence.

- The space of regulated function has a very rich topological structure: uniform convergence, weak convergence, *BO*-convergence.
- The play operator defined as the solution operator of a Kurzweil integral variational inequality transforms regulated functions into *BV*-functions, and sets with uniformly bounded oscillation into sets with uniformly bounded variation.

- The space of regulated function has a very rich topological structure: uniform convergence, weak convergence, *BO*-convergence.
- The play operator defined as the solution operator of a Kurzweil integral variational inequality transforms regulated functions into *BV*-functions, and sets with uniformly bounded oscillation into sets with uniformly bounded variation.
- In bounded sets with uniformly bounded oscillation, the Fraňková extension of the Helly selection principle holds.

- The space of regulated function has a very rich topological structure: uniform convergence, weak convergence, *BO*-convergence.
- The play operator defined as the solution operator of a Kurzweil integral variational inequality transforms regulated functions into *BV*-functions, and sets with uniformly bounded oscillation into sets with uniformly bounded variation.
- In bounded sets with uniformly bounded oscillation, the Fraňková extension of the Helly selection principle holds.
- Solutions of differential equations with a singular parameter in front of the derivative *BO*-converge to a rate independent hysteresis relation on a non-monotone graph.