Introduction 00000 0000000	Stab. by eigenvalue method 0000000 0	Stab. by Lyapunov functional method 000000 00	Conclusion and Outlook	References

On the stability of differential-algebraic PDEs by time-delayed feedback control

Volker Mehrmann Phi Ha

Technische Universität Berlin

HSFS Workshop - Wittenberg - Dec 12-14, 2011

Introduction 00000 0000000	Stab. by eigenvalue method 0000000 0	Stab. by Lyapunov functional method 000000 00	Conclusion and Outlook	References

1 Introduction

- 2 Stabilization by eigenvalue method
- 3 Stabilization by Lyapunov functional method
- 4 Conclusion and Outlook

Introduction	Stab. by eigenvalue method	Stab. by Lyapunov functional method	Conclusion and Outlook	References
● 0000 0000000		000000 00		
Problem Settin	Ig			

Consider the coupled system

$$u_t = \Delta_x u + g(u, v), \ t > 0,$$

 $\varepsilon v_t = f(u, v),$

where $0 \leqslant \varepsilon \ll 1$ is a singular perturbation parameter.

In the formal limit $\varepsilon \rightarrow 0$, differential-algebraic PDE (DA-PDE)

$$u_t = \Delta_x u + g(u, v),$$

$$0 = f(u, v).$$

Suppose that the system has an equilibrium (u_0, v_0) which solves

$$\begin{cases} g(u,v) = 0, \\ f(u,v) = 0. \end{cases}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Introduction	Stab. by eigenvalue method	Stab. by Lyapunov functional method	Conclusion and Outlook	References
00000 0000000		000000		
Problem Settir	ια			

Stabilization by time-delayed feedback control of Pyragas type

 Initiated by Pyragas (1992) [4] to stabilize unstable periodic orbits (UPOs) embedded in a chaotic attractor which is simulated by an ODE

$$\frac{dx}{dt} = Q(x,y), \ \frac{dy}{dt} = P(x,y) + F(t) \leftarrow F(t) = K(y(t-\tau) - y(t)).$$

where K is a feedback gain matrix.

- In parallel, stabilization of unstable steady states (USSs) became a field of increasing interest.
- The theory of USSs has been well studied [3], [7], etc., for the model simulated by ODEs.
- We wish to study models simulated by differential-algebraic equations (DAEs), possibly from discretized DA-PDEs.

Introduction	Stab. by eigenvalue method	Stab. by Lyapunov functional method	Conclusion and Outlook	References
00000 0000000		000000		
Problem Settin	Ig			

Discretizing the spatial variable x to obtain a system

$$\begin{bmatrix} I_n & 0\\ 0 & 0 \end{bmatrix} \begin{bmatrix} \dot{U}(t)\\ \dot{V}(t) \end{bmatrix} = \begin{bmatrix} W & 0\\ 0 & 0 \end{bmatrix} \begin{bmatrix} U(t)\\ V(t) \end{bmatrix} + \begin{bmatrix} g(U(t), V(t))\\ f(U(t), V(t)) \end{bmatrix} \\ - \mathcal{K}\left(\begin{bmatrix} U(t)\\ V(t) \end{bmatrix} - \begin{bmatrix} U(t-\tau)\\ V(t-\tau) \end{bmatrix} \right), \ t > 0,$$

where $U(t) \in \mathbb{C}^n$, $V(t) \in \mathbb{C}^m$.

Notice that the new system

$$\dot{U}(t) = WU(t) + g(U, V), \ t > 0,$$

 $0 = f(U, V),$

has the equilibrium $(U_0, V_0) := (u_0 \cdot e_n, v_0 \cdot e_m)$, where $e_n = \begin{bmatrix} 1 & 1 \dots 1 \end{bmatrix}^T \in \mathbb{R}^n$.

W. I. o. g., we assume that $U_0 = 0$, $V_0 = 0$.

Introduction	Stab. by eigenvalue method	Stab. by Lyapunov functional method	Conclusion and Outlook	References
00000 0000000		000000 00		
Problem Settin	lg			

Linearizing at that equilibrium (U_0, V_0) we obtain

$$\begin{bmatrix} I_n & 0\\ 0 & 0 \end{bmatrix} \begin{bmatrix} \dot{U}(t)\\ \dot{V}(t) \end{bmatrix} = \begin{bmatrix} A & B\\ C & D \end{bmatrix} \begin{bmatrix} U(t)\\ V(t) \end{bmatrix} - \mathcal{K}\left(\begin{bmatrix} U(t)\\ V(t) \end{bmatrix} - \begin{bmatrix} U(t-\tau)\\ V(t-\tau) \end{bmatrix} \right), \quad (1)$$

where

 $\begin{aligned} A &:= W + \mathbf{J}_U g|_{(U_0, V_0)}, & B &:= \mathbf{J}_V g|_{(U_0, V_0)}, \\ C &:= \mathbf{J}_U f|_{(U_0, V_0)}, & D &:= \mathbf{J}_V f|_{(U_0, V_0)}. \end{aligned}$

Equation (1) is of the form

 $E\dot{x}(t) = Ax(t) + Bx(t-\tau), \ t > 0,$

which is delay differential-algebraic equation or delay DAE.

Introduction	Stab. by eigenvalue method	Stab. by Lyapunov functional method	Conclusion and Outlook	References
00000 0000000		000000 00		
Problem Settin	29			

Problem Setting

Problem statement: Design a feedback gain matrix K to stabilize the equilibrium $(0,0) \in \mathbb{C}^{n,m}$ of the delay DAE

$$\begin{bmatrix} I_n & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} \dot{U}(t) \\ \dot{V}(t) \end{bmatrix} = \begin{bmatrix} A & B \\ C & D \end{bmatrix} \begin{bmatrix} U(t) \\ V(t) \end{bmatrix} - K \left(\begin{bmatrix} U(t) \\ V(t) \end{bmatrix} - \begin{bmatrix} U(t-\tau) \\ V(t-\tau) \end{bmatrix} \right), \ t > 0.$$

Definition

The desire unstable orbit is called

- i) totally periodic if u(t,x) and v(t,x) are time-periodic of period τ . As a consequence, U(t) & V(t) are periodic of period τ .
- ii) semi-periodic if only u(t,x) is time-periodic of period τ . Therefore, only U(t) is periodic of period τ .

If the desire orbit is *semi-periodic*, then K should be chosen as

$$\mathcal{K} = \begin{bmatrix} \mathcal{K}_{11} & \mathbf{0} \\ \mathcal{K}_{21} & \mathbf{0} \end{bmatrix}.$$

7/33

Introduction	Stab. by eigenvalue method	Stab. by Lyapunov functional method	Conclusion and Outlook	References
●000000				
Stabilization o	f delay DAEs			

Example

We consider the delay DAE

$$\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} \dot{x}_1(t) \\ \dot{x}_2(t) \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix} + \begin{bmatrix} k_1 & k_2 \\ k_3 & k_4 \end{bmatrix} \begin{bmatrix} x_1(t-\tau) \\ x_2(t-\tau) \end{bmatrix}, \ t \ge 0.$$

The initial function $\phi = x|_{[-\tau,0]}$ need to satisfies

$$-\phi(\mathbf{0}) = \begin{bmatrix} k_3 & k_4 \end{bmatrix} \phi(-\tau).$$

Definition

The initial function ϕ of the delay DAE

$$E\dot{x}(t) = Ax(t) + Bx(t-\tau) + f(t), \ t \ge 0,$$

is called consistent if with that ϕ , there exists a solution x(t).

Introduction	Stab. by eigenvalue method	Stab. by Lyapunov functional method	Conclusion and Outlook	References
00000 000000		000000 00		
Stabilization o	f delay DAEs			

Consider the homogeneous delay DAE

 $E\dot{x}(t) = Ax(t) + Bx(t-\tau), t \ge 0,$

where *E*, *A*, $B \in \mathbb{R}^{p,p}$; with an initial condition $x|_{[-\tau,0]} = \phi \in C([-\tau,0], \mathbb{C}^p).$

 $C([-\tau, 0], \mathbb{C}^n)$ is equipped with the sup-norm $\|\cdot\|_C$.

Definition

Stability of delay DAEs

The trivial solution is called *stable (in Lyapunov sense)* if for any $\varepsilon > 0 \exists \delta > 0$ such that for any **consistent initial condition** ϕ with $\|\phi\|_C \leq \delta$ then the solution $|x(t,\phi)| \leq \varepsilon$, $t \geq 0$. In addition, if $\lim_{t\to\infty} x(t,\phi) = 0$, then the trivial solution is called *asymptotically stable*.

Introduction 00000 0000000	Stab. by eigenvalue method 0000000 0	Stab. by Lyapunov functional method 000000 00	Conclusion and Outlook	References
Stabilization o	f delay DAEs			

Stabilization - DAEs vs. ODEs

ODE case:

$$\dot{x}(t) = Ax(t) - K(x(t) - x(t - \tau)), \leftarrow - \text{ control for the dynamic.}$$

DAE case:

$$\dot{U}(t) = AU(t) + BV(t), \leftarrow$$
 the dynamic?
 $0 = CU(t) + DV(t), \leftarrow$ the constraint?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

10/33

Introduction 00000 0000000	Stab. by eigenvalue method 0000000 0	Stab. by Lyapunov functional method 000000 00	Conclusion and Outlook	References
Stabilization o	f delay DAEs			

Stabilization - DAEs vs. ODEs

ODE case:

$$\dot{x}(t) = Ax(t) - K(x(t) - x(t - \tau)), \leftarrow - \text{ control for the dynamic.}$$

DAE case:

$$\dot{U}(t) = AU(t) + BV(t), \leftarrow$$
 the dynamic?
 $0 = CU(t) + DV(t), \leftarrow$ the constraint?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

10/33

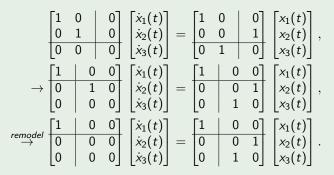
The answer is NO! Why?

Introduction 00000 0000000	Stab. by eigenvalue method 0000000 0	Stab. by Lyapunov functional method 000000 00	Conclusion and Outlook	References
Stabilization o	f delay DAEs			

Hidden constraints may exist inside the dynamic.

Example

Consider the DAE



	Stab. by eigenvalue method	Stab. by Lyapunov functional method	Conclusion and Outlook	References	
00000 0000000	0000000 0	000000 00			
Stabilization of delay DAEs					

Slow-fast system - DAEs vs. ODEs

ODE case:

 $\dot{x}(t) = f(x, y, \epsilon),$ $\varepsilon \dot{y}(t) = g(x, y, \epsilon),$

with $0 < \varepsilon \ll 1$

Rewrite with some perturbation

$$\dot{x}(t) = f(x, y, \epsilon) + \delta f,$$

$$\dot{y}(t) = \frac{1}{\varepsilon} [g(x, y, \epsilon) + \delta g],$$

so x is called slow variable and y is fast variable. DAE case:

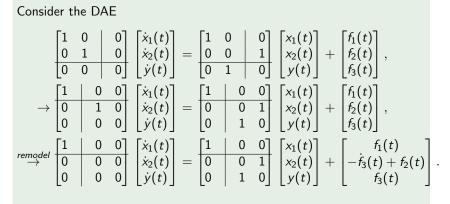
$$\dot{x}(t) = f(x, y, 0),$$

 $0 = g(x, y, 0).$

Introduction	Stab. by eigenvalue method	Stab. by Lyapunov functional method	Conclusion and Outlook	References
00000 0000000		000000		
Stabilization o	f delay DAEs			

Slow-fast system - DAEs vs. ODEs

Example



From perturbation point of view, $\begin{bmatrix} x_2 \\ y \end{bmatrix}$ is fast variable, x_1 is slow

variable.

Introduction Stab. by eigenvalue method 00000 0000000 0000000 0	Stab. by Lyapunov functional method 000000 00	Conclusion and Outlook	References
Stabilization of delay DAEs			

So hidden fast components in the variable may exist. Why?

The reason is that in general $D = J_V f|_{U_0, V_0}$ is not invertible (eigenvalues with real part 0 appear).

If D is invertible, we have normally hyperbolic system, which is often considered in DAE theory as index 1 case. For index 1 case, the perturbation theory has been developed by Fenichel.

Determining exact fast, slow variables plays a key role in control theory of DAEs.

Even though our system is

$$\begin{bmatrix} I_n & 0\\ 0 & 0 \end{bmatrix} \begin{bmatrix} \dot{U}(t)\\ \dot{V}(t) \end{bmatrix} = \begin{bmatrix} A & B\\ C & D \end{bmatrix} \begin{bmatrix} U(t)\\ V(t) \end{bmatrix} - K \left(\begin{bmatrix} U(t)\\ V(t) \end{bmatrix} - \begin{bmatrix} U(t-\tau)\\ V(t-\tau) \end{bmatrix} \right), \ t > 0,$$

we can consider a general time-delay feedback control system

$$E_1 \dot{x}(t) = A_1 x(t) - K_1 \left(x(t) - x(t-\tau) \right), \ t \ge 0.$$
(2)

Our strategy: transforming (2) into

$$E_2 \dot{y}(t) = A_2 y(t) - K_2 \left(y(t) - y(t - \tau) \right), \tag{3}$$

where $E_2 = PE_1Q$, $A_2 = PA_1Q$, $K_2 = K_1Q$, x(t) = Qy(t), P and Q are invertible.

We study the stabilization of system (3) and then get back to (2).

Introduction 00000 0000000	Stab. by eigenvalue method 000000 0	Stab. by Lyapunov functional method 000000 00	Conclusion and Outlook	References	
Stabilization of totally-periodic orbits					

Definition

- σ(E, A) := {s ∈ C : det(sE − A) = 0} is called the spectrum of matrix pair (E, A).
- The pair (E, A) is called regular, iff $det(\lambda E A) \neq 0$ for some $\lambda \in \mathbb{C}$.

Theorem

[5] Kronecker-Weierstraß canonical form Suppose that the pair (E, A) is regular. Then, there exist invertible matrices P. Q such that

$$(E,A) = \left(P \begin{bmatrix} \mathrm{I}_\mathrm{d} & 0 \\ 0 & N \end{bmatrix} Q, P \begin{bmatrix} J & 0 \\ 0 & \mathrm{I}_\mathrm{a} \end{bmatrix} Q \right),$$

N is nilpotent, J and N are in Jordan form.

The number $\nu = \min\{i : N^i = 0, N^{i-1} \neq 0\}$ is called index of the system.

Stabilization of totally-periodic orbits

Suppose that the pair (E, A) is regular, using Kronecker-Weierstraß canonical form to transform the system

$$\begin{split} & E\dot{x}(t) = Ax(t), \\ \rightarrow & P^{-1}EQ\dot{y}(t) = P^{-1}AQy(t), \\ \rightarrow & \begin{bmatrix} I_{d} & 0\\ 0 & N \end{bmatrix} \begin{bmatrix} \dot{y}_{1}(t)\\ \dot{y}_{2}(t) \end{bmatrix} = \begin{bmatrix} J & 0\\ 0 & I_{a} \end{bmatrix} \begin{bmatrix} y_{1}(t)\\ y_{2}(t) \end{bmatrix}, \end{split}$$

where N is nilpotent of index ν , J and N are in Jordan form. We rewrite system in details

 $I_d \dot{y}_1 = J y_1,$ $N \dot{y}_2 = I_a y_2.$

Lemma

An equation of the form $N\dot{y}_2(t) = I_a y_2(t) + g(t)$ has a unique solution $y_2(t) = -\sum_{i=0}^{\nu-1} N^i g^{(i)}(t).$

Control strategy

 $I_d \dot{y}_1 = J y_1, \leftarrow$ We apply time-delayed feedback control here $N \dot{y}_2 = I_a y_2, \rightarrow$ Has a unique solution $y_2 = 0$

Time-delayed feedback control system

$$\mathrm{I}_d \dot{y}_1(t) = J y_1(t) - ilde{K} \left(y_1(t) - y_1(t- au)
ight), \; t \geq 0,$$

has been deeply investigated, [6], [3], etc.

After obtaining \tilde{K} , we have a desire feedback of an original system

$$\mathcal{K} = Q egin{bmatrix} ilde{\mathcal{K}} & 0 \ 0 & 0 \end{bmatrix}$$

Disadvantage: Computing Kronecker-Weierstraß canonical form is very complicated, expensive and numerically unstable.

Introduction 00000 0000000	Stab. by eigenvalue method 0000●00 0	Stab. by Lyapunov functional method 000000 00	Conclusion and Outlook	References	
Stabilization of totally-periodic orbits					

Theorem

[2] (qz-decomposition)

If E and A are in $\mathbb{C}^{n,n}$, then there exist unitary Q and Z such that

 $Q^{H}EZ = S,$ $Q^{H}AZ = T,$

are upper triangular.

If for some k, t_{kk} and s_{kk} are both zero, then $\sigma(E, A) = \mathbb{C}$. Otherwise

$$\sigma(E,A) = \{\frac{t_{ii}}{s_{ii}} : s_{ii} \neq 0\}.$$

If $s_{ii} = 0$, and $t_{ii} \neq 0$ then we call $\frac{t_{ii}}{s_{ii}}$ an infinite eigenvalue of (E, A).

Introduction 00000 0000000	Stab. by eigenvalue method ○○○○○●○ ○	Stab. by Lyapunov functional method 000000 00	Conclusion and Outlook	References	
Stabilization of totally-periodic orbits					

Algorithm

Input: Matrix pair (E, A) be regular. Output: Gain matrix K. Step 1: Using the qz-decomposition to decouple the system

$$\begin{bmatrix} \begin{bmatrix} \tilde{E}_1 & \tilde{E}_2 \\ 0 & \tilde{E}_4 \end{bmatrix}, \begin{bmatrix} \tilde{A}_1 & \tilde{A}_2 \\ 0 & \tilde{A}_4 \end{bmatrix}, Q, Z \end{bmatrix} = qz(E, A),$$

where E_1 , E_4 , A_1 , A_4 are upper triangular,

- spectrum of $(\tilde{E}_1, \tilde{A}_1)$ contains finite eigenvalues of (E, A),
- spectrum of $(\tilde{E}_4, \tilde{A}_4)$ contains infinite eigenvalues of (E, A).

Step 2: Computing the time-delay feedback control of the subsystem

$$ilde{E}_1\dot{y}_1(t)= ilde{A}_1y_1(t)- ilde{K}\left(y_1(t)-y_1(t- au)
ight),$$

<u>Step 3</u>: The desire gain matrix K is $K = Z' \begin{bmatrix} \tilde{K} & 0 \\ 0 & 0 \end{bmatrix}$.

୬ ୯.୯ 20 / 33

In step 2 we need to calculate the feedback gain K for the subsystem

$$ilde{\mathcal{E}}_1 \dot{y}_1(t) = ilde{\mathcal{A}}_1 y_1(t) - ilde{\mathcal{K}} \left(y_1(t) - y_1(t- au)
ight).$$

We notice that

- both \tilde{E}_1 and \tilde{A}_1 are upper triangular,
- the main diagonal of \tilde{E}_1 does not contain 0 element.

Therefore, \tilde{K} can be chosen in the form

 $\tilde{K} = p\tilde{E}_1,$

where p is a scalar, adjustable parameter.

Moreover, structure of $(\tilde{E}_1, \tilde{A}_1)$ suggests an extension on the theory of time-delayed feedback control of ODEs, for example, Floquet exponent, [6].

	Stab. by eigenvalue method	Stab. by Lyapunov functional method	Conclusion and Outlook	References
00000 0000000	0000000	000000		

Stabilization of semi-periodic orbits

We could not use Kronecker-Weierstraß canonical form any more.

Extra assumption: $D = J_V f(U, V)|_{[U_0, V_0]}$ is invertible. \leftarrow -- normally hyperbolic system

We transform the system as follows

$$\begin{bmatrix} I & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} \dot{U}(t) \\ \dot{V}(t) \end{bmatrix} = \begin{bmatrix} A & B \\ C & D \end{bmatrix} \begin{bmatrix} U(t) \\ V(t) \end{bmatrix},$$

$$\rightarrow \begin{bmatrix} I & -BD^{-1} \\ 0 & D^{-1} \end{bmatrix} \begin{bmatrix} I & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} \dot{U}(t) \\ \dot{V}(t) \end{bmatrix} = \begin{bmatrix} I & -BD^{-1} \\ 0 & D^{-1} \end{bmatrix} \begin{bmatrix} A & B \\ C & D \end{bmatrix} \begin{bmatrix} U(t) \\ V(t) \end{bmatrix},$$

$$\rightarrow \begin{bmatrix} I & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} \dot{U}(t) \\ \dot{V}(t) \end{bmatrix} = \begin{bmatrix} A - BD^{-1}C & 0 \\ -D^{-1}C & I \end{bmatrix} \begin{bmatrix} U(t) \\ V(t) \end{bmatrix}.$$

System in details

 $\dot{U}(t) = (A - BD^{-1}C) U(t), \leftarrow$ We apply time-delayed feedback control here $V(t) = -D^{-1}CU(t).$

Introduction 00000 0000000	Stab. by eigenvalue method 0000000 0	Stab. by Lyapunov functional method •00000 •0	Conclusion and Outlook	References
Contraction of the	e de la companya de l			

tabilization of totally-periodic orbits

Partitioning K and set

$$(E_0, A_0, B_0) = \left(\begin{bmatrix} I_n & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} A - K_{11} & B - K_{12} \\ C - K_{21} & D - K_{22} \end{bmatrix}, \begin{bmatrix} K_{11} & K_{12} \\ K_{21} & K_{22} \end{bmatrix} \right)$$

We must choose K such that the matrix pair $(E_0, A_0 - K)$ is regular and of index at most one.

The necessary and sufficient condition is that $D - K_{22}$ is invertible.

The system reads in detail

$$\dot{U}(t) = (A - K_{11})U(t) + (B - K_{12})V(t) + K_{11}U(t - \tau) + K_{12}V(t - \tau), 0 = (C - K_{21})U(t) + (D - K_{22})V(t) + K_{21}U(t - \tau) + K_{22}V(t - \tau).$$

Since $D - K_{22}$ is invertible, then

$$\mathcal{D}(V(t)) = -(D - K_{22})^{-1} \Big((C - K_{21})U(t) + K_{21}U(t - \tau) \Big),$$

where $\mathcal{D}(V(t)) := V(t) + (D - K_{22})^{-1} K_{22} V(t - \tau)$.

23 / 33

	Stab. by eigenvalue method	Stab. by Lyapunov functional method	Conclusion and Outlook	References	
00000 0000000	0000000 0	00000 00			
Stabilization of totally periodic orbits					

The necessary condition for the stability is **[A1.]** The difference operator

 $\mathcal{D}(V(t)) = V(t) + (D - K_{22})^{-1} K_{22} V(t - \tau),$

is stable, i.e., the equation $\mathcal{D}(V(t)) = 0$ is asymptotically stable.

Sufficient condition for [A1.] is given by [A2.] There exist some matrix operator norm $\|\cdot\|$ such that

 $\|(D-K_{22})^{-1}K_{22}\|<1.$

[A3.] The matrix $(D - K_{22})^{-1}K_{22}$ is Schur-Cohn stable, i.e., its spectrum is inside the unit circle in the complex plane.

Hypothesis

We assume that a block K_{22} in the feedback matrix K can be chosen such that one of the conditions **[A1]-[A3]** is satisfied.

	Stab. by eigenvalue method	Stab. by Lyapunov functional method	Conclusion and Outlook	References
00000 0000000		00000		

Stabilization of totally-periodic orbits

Lemma

(E. Fridman [1]) Suppose that our time-delayed feedback system satisfies the Hypothesis. Moreover, assume that there exist positive numbers α , β , γ and a continuous functional $V : C([\tau, 0], \mathbb{C}^n) \to \mathbb{R}$ such that

 $egin{aligned} &eta|\phi_1(\mathbf{0})|^2\leqslant V(\phi)\leqslant \gamma\|\phi\|^2, \ &\dot{V}(\phi)\leqslant -lpha|\phi(\mathbf{0})|^2, \end{aligned}$

and the function $\overline{V}(t) = V(x_t)$ is absolutely continuous for x(t) satisfying the delay DAE, then the delay DAE is asymptotically stable.

V is called Lyapunov-Krasovskii functional along the orbit of the delay DAE.

The usually chosen functional is

$$V(x_t) = x^{T}(t)EPx(t) + \int_{t-\tau}^{t} x^{T}(s)Qx(s)ds,$$

Introduction 00000 0000000	Stab. by eigenvalue method	Stab. by Lyapunov functional method	Conclusion and Outlook	References
		00		

Theorem

Assume that the Hypothesis holds. Then, the system is asymptotically stable if there exists two matrices $P, Q \in \mathbb{R}^{n,n}$ such that the following LMIs hold

$$\begin{cases} P > 0, \quad Q > 0, \\ \begin{bmatrix} I_n & 0 \\ 0 & 0 \end{bmatrix} P = P \begin{bmatrix} I_n & 0 \\ 0 & 0 \end{bmatrix} \ge 0, \\ \begin{bmatrix} -Q & K^T P \\ P^T K & A_0^T P + P^T A_0 + Q \end{bmatrix} < 0, \\ \end{cases}$$
 where $A_0 = \begin{bmatrix} A & B \\ C & D \end{bmatrix} - K.$

The last equation can be written in the Riccati form

 $A_0^T P + P^T A_0 + Q + P^T K Q^{-1} K^T P < 0.$

By adjusting K, we aim to solve the system of LMIs and obtain a desire K if with that K the LMI system has at least one solution.

Introduction 00000 0000000	Stab. by eigenvalue method 0000000 0	Stab. by Lyapunov functional method 000000 00	Conclusion and Outlook	References		
Stabilization of totally-periodic orbits						
Example 1 [1]						

Consider the system

$$\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} \dot{U}(t) \\ \dot{V}(t) \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -2 & -1 \end{bmatrix} \begin{bmatrix} U(t) \\ V(t) \end{bmatrix}, \ t > 0.$$

The equilibrium $\begin{bmatrix} 0\\ 0 \end{bmatrix}$ is unstable since the system has a unique eigenvalue $\lambda = 2$.

We choose the feedback gain of the type

$$\mathcal{K} = \begin{bmatrix} \mathcal{K}_{11} & \mathcal{K}_{12} \\ \mathcal{K}_{21} & \mathcal{K}_{22} \end{bmatrix} = \begin{bmatrix} \alpha & 1 \\ -2 & \beta \end{bmatrix}$$

then we get

$$\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} \dot{U}(t) \\ \dot{V}(t) \end{bmatrix} = \begin{bmatrix} -\alpha & 0 \\ 0 & -1-\beta \end{bmatrix} \begin{bmatrix} U(t) \\ V(t) \end{bmatrix} + \begin{bmatrix} \alpha & 1 \\ -2 & \beta \end{bmatrix} \begin{bmatrix} U(t-\tau) \\ V(t-\tau) \end{bmatrix}, \ t > 0.$$

The Hypothesis becomes

$$|(-1-\beta)^{-1}\beta| < 1 \Leftrightarrow 0 < \beta \text{ or } \frac{-1}{2} < \beta < 0.$$

Introduction 00000 0000000	Stab. by eigenvalue method 0000000 0	Stab. by Lyapunov functional method 00000● 00	Conclusion and Outlook	References	
Stabilization of totally-periodic orbits					

Using the LMI toolbox in Matlab to solve LMI system we obtain

$$P = \begin{bmatrix} 0.4142 & 0 \\ 0 & 0.4142 \end{bmatrix}, \quad Q = \begin{bmatrix} 13.0326 & -12.4530 \\ -12.4530 & 12.2895 \end{bmatrix},$$
 with the gain matrix $K = \begin{bmatrix} 0.9800 & 1.0000 \\ -2.0000 & 0.9800 \end{bmatrix}.$

◆□> ◆□> ◆臣> ◆臣> ─ 臣

28 / 33

The delayed feedback system in the semi-periodic case is

$$\begin{bmatrix} I_n & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} \dot{U}(t) \\ \dot{V}(t) \end{bmatrix} = \begin{bmatrix} A - K_{11} & B \\ C - K_{21} & D \end{bmatrix} \begin{bmatrix} U(t) \\ V(t) \end{bmatrix} + \begin{bmatrix} K_{11} & 0 \\ K_{21} & 0 \end{bmatrix} \begin{bmatrix} U(t-\tau) \\ V(t-\tau) \end{bmatrix}, \ t > 0,$$

If D is invertible, then

 $\dot{U}(t) = (A - K_{11} - BD^{-1}C + BD^{-1}K_{21})U(t) + (K_{11} - BD^{-1}K_{21})U(t - \tau),$ $V(t) = -D^{-1}((C - K_{21})U(t) + K_{21}U(t - \tau))$

Asymptotic stability of the 1^{st} equation dominates asymptotic stability of system and hence, no hypothesis is needed.

Introduction 00000 0000000	Stab. by eigenvalue method 0000000 0	Stab. by Lyapunov functional method ○○○○○○ ○●	Conclusion and Outlook	References	
Stabilization of semi-periodic orbits					

Theorem

The system is asymptotically stable if there exists two matrices $P, Q \in \mathbb{R}^{n,n}$ such that the following LMIs hold

$$\begin{split} P &> 0, Q > 0, \\ \begin{bmatrix} -Q & B_1^T P \\ P^T B_1 & A_1 P + P^T A_1 + Q \end{bmatrix} < 0, \end{split}$$

where
$$A_1 := A - BD^{-1}C - (K_{11} - BD^{-1}K_{21})$$
, $B_1 := K_{11} - BD^{-1}K_{21}$.

Remark

The desire feedback K is obtained by choosing $K_{21} = 0$, and K_{11} stabilize the system

$$\dot{U}_1(t) = (A - BD^{-1}C) U(t) - K_{11}(U(t) - U(t - \tau)), \ t \ge 0.$$

This result coincides with the result obtained by using eigenvalue method.

	Stab. by eigenvalue method	Stab. by Lyapunov functional method	Conclusion and Outlook	References
00000 0000000		000000 00		

Observations on the singular pair case

Suppose that $\begin{pmatrix} \begin{bmatrix} I & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} A & B \\ C & D \end{bmatrix}$ is not regular, may not even square.

Consequently, we do not have

- Kronecker-Weierstraß form,
- qz-decomposition.

We consider a new concept for DAEs: strangeness-index (denoted by μ) introduced by Kunkel & Mehrmann [5].

Idea: Using differentiation (μ times) and equivalent transformations (left-right multiplications by *P*, *Q*) to transform the system into

 $\begin{bmatrix} I_{\rm d} & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} \dot{x}_1(t) \\ \dot{x}_2(t) \\ \dot{x}_3(t) \end{bmatrix} = \begin{bmatrix} A_{11} & 0 & A_{13} \\ 0 & I_{\rm a} & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} x_1(t) \\ x_2(t) \\ x_3(t) \end{bmatrix}, \begin{bmatrix} x_1(t) \\ x_2(t) \\ x_3(t) \end{bmatrix} = \begin{bmatrix} U(t) \\ V(t) \end{bmatrix}.$

And then, we fix 2^{st} equation (constraint) apply the time-delayed feedback control on 1^{st} equation (dynamic); or we can use x_3 like a control.

Introduction 00000 0000000	Stab. by eigenvalue method 0000000 0	Stab. by Lyapunov functional method 000000 00	Conclusion and Outlook	References

Conclusion

- Stabilization by time-delayed feedback control of Pyragas type has been studied by both eigenvalue method and Lyapunov functional method.
- Experiments show that eigenvalue method converges much faster than Lyapunov functional method.
- Using eigenvalue method is computationally cheap, which is suitable for discretized DA-PDEs.

Outlook

- The semi-periodic orbits case is essentially open.
- Stabilization of periodic orbits of DA-PDEs with hysteresis ... it is beyond my dream?

- troduction Stab. by eigenvalue method Stab. by Lyapunov functional method Conclusion and Outlook **References** 00000 0000000 000000 000000 0 00
 - E. Fridman. Stability of linear descriptor systems with delay: a lyapunov-based approach. *Journal of Mathematical Analysis and Applications*, 273(1):24 – 44, 2002.
 - [2] G. H. Golub and C. F. Van Loan. Matrix computations / Gene H. Golub, Charles F. Van Loan. Johns Hopkins University Press, Baltimore, 1983.
 - [3] P. Hövel and E. Schöll. Control of unstable steady states by time-delayed feedback methods. *Phys. Rev. E*, 72:046203, Oct 2005.
 - [4] K. and Pyragas. Continuous control of chaos by self-controlling feedback. *Physics Letters A*, 170(6):421 – 428, 1992.
 - P. Kunkel and V. Mehrmann. Differential-Algebraic Equations Analysis and Numerical Solution. EMS Publishing House, Zürich, Switzerland, 2006.
 - [6] H. Nakajima. On analytical properties of delayed feedback control of chaos. *Physics Letters A*, 232(3-4):207 – 210, 1997.
 - S. Yanchuk, M. Wolfrum, P. Hövel, and E. Schöll. Control of unstable steady states by long delay feedback. *Phys. Rev. E*, 74:026201, Aug 2006.

Introduction 00000 0000000	Stab. by eigenvalue method 0000000 0	Stab. by Lyapunov functional method 000000 00	Conclusion and Outlook	References

Thank you for your attention!

Suggestions and comments are welcome!