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Problem Setting

Consider the coupled system

ut = ∆xu + g(u, v), t > 0,

εvt = f (u, v),

where 0 6 ε� 1 is a singular perturbation parameter.

In the formal limit ε→ 0, differential-algebraic PDE (DA-PDE)

ut = ∆xu + g(u, v),

0 = f (u, v).

Suppose that the system has an equilibrium (u0, v0) which solves{
g(u, v) = 0,

f (u, v) = 0.
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Problem Setting

Stabilization by time-delayed feedback control of Pyragas type

Initiated by Pyragas (1992) [4] to stabilize unstable periodic
orbits (UPOs) embedded in a chaotic attractor which is
simulated by an ODE

dx

dt
= Q(x , y),

dy

dt
= P(x , y)+F (t)L99 F (t) = K (y(t − τ)− y(t)).

where K is a feedback gain matrix.

In parallel, stabilization of unstable steady states (USSs)
became a field of increasing interest.

The theory of USSs has been well studied [3], [7], etc., for the
model simulated by ODEs.

We wish to study models simulated by differential-algebraic
equations (DAEs), possibly from discretized DA-PDEs.
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Problem Setting

Discretizing the spatial variable x to obtain a system[
In 0
0 0

] [
U̇(t)

V̇ (t)

]
=

[
W 0
0 0

] [
U(t)
V (t)

]
+

[
g(U(t),V (t))
f (U(t),V (t))

]
− K

([
U(t)
V (t)

]
−
[

U(t − τ)
V (t − τ)

])
, t > 0,

where U(t) ∈ Cn, V (t) ∈ Cm.

Notice that the new system

U̇(t) = WU(t) + g(U,V ), t > 0,

0 = f (U,V ),

has the equilibrium (U0,V0) := (u0 · en, v0 · em), where
en = [1 1 . . . 1]T ∈ Rn.

W. l. o. g., we assume that U0 = 0, V0 = 0.
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Problem Setting

Linearizing at that equilibrium (U0,V0) we obtain[
In 0
0 0

] [
U̇(t)

V̇ (t)

]
=

[
A B
C D

] [
U(t)
V (t)

]
− K

([
U(t)
V (t)

]
−
[

U(t − τ)
V (t − τ)

])
, (1)

where

A := W + JUg |(U0,V0), B := JV g |(U0,V0),

C := JU f |(U0,V0), D := JV f |(U0,V0).

Equation (1) is of the form

E ẋ(t) = Ax(t) + Bx(t − τ), t > 0,

which is delay differential-algebraic equation or delay DAE.
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Problem Setting

Problem statement: Design a feedback gain matrix K to stabilize the
equilibrium (0, 0) ∈ Cn,m of the delay DAE[

In 0
0 0

] [
U̇(t)

V̇ (t)

]
=

[
A B
C D

] [
U(t)
V (t)

]
−K

([
U(t)
V (t)

]
−
[

U(t − τ)
V (t − τ)

])
, t > 0.

Definition

The desire unstable orbit is called

i) totally periodic if u(t, x) and v(t, x) are time-periodic of period τ .
As a consequence, U(t) & V (t) are periodic of period τ .

ii) semi-periodic if only u(t, x) is time-periodic of period τ . Therefore,
only U(t) is periodic of period τ .

If the desire orbit is semi-periodic, then K should be chosen as

K =

[
K11 0
K21 0

]
.
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Stabilization of delay DAEs

Example

We consider the delay DAE[
1 0
0 0

] [
ẋ1(t)
ẋ2(t)

]
=

[
1 0
0 1

] [
x1(t)
x2(t)

]
+

[
k1 k2
k3 k4

] [
x1(t − τ)
x2(t − τ)

]
, t ≥ 0.

The initial function φ = x |[−τ,0] need to satisfies

−φ(0) = [k3 k4]φ(−τ).

Definition

The initial function φ of the delay DAE

E ẋ(t) = Ax(t) + Bx(t − τ) + f (t), t ≥ 0,

is called consistent if with that φ, there exists a solution x(t).
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Stabilization of delay DAEs

Consider the homogeneous delay DAE

E ẋ(t) = Ax(t) + Bx(t − τ), t ≥ 0,

where E , A, B ∈ Rp,p; with an initial condition
x |[−τ,0] = φ ∈ C ([−τ, 0],Cp).

C ([−τ, 0],Cn) is equipped with the sup-norm ‖ · ‖C .

Definition

Stability of delay DAEs
The trivial solution is called stable (in Lyapunov sense) if for any ε > 0 ∃
δ > 0 such that for any consistent initial condition φ with ‖φ‖C 6 δ
then the solution |x(t, φ)| 6 ε, t ≥ 0.
In addition, if lim

t→∞
x(t, φ) = 0, then the trivial solution is called

asymptotically stable.
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Stabilization of delay DAEs

Stabilization - DAEs vs. ODEs

ODE case:

ẋ(t) = Ax(t)− K (x(t)− x(t − τ)), L99 control for the dynamic.

DAE case:

U̇(t) = AU(t) + BV (t), L99 the dynamic?

0 = CU(t) + DV (t), L99 the constraint?

The answer is NO! Why?
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Stabilization of delay DAEs

Hidden constraints may exist inside the dynamic.

Example

Consider the DAE1 0 0
0 1 0
0 0 0

ẋ1(t)
ẋ2(t)
ẋ3(t)

 =

1 0 0
0 0 1
0 1 0

x1(t)
x2(t)
x3(t)

 ,
→

1 0 0
0 1 0
0 0 0

ẋ1(t)
ẋ2(t)
ẋ3(t)

 =

1 0 0
0 0 1
0 1 0

x1(t)
x2(t)
x3(t)

 ,
remodel→

1 0 0
0 0 0
0 0 0

ẋ1(t)
ẋ2(t)
ẋ3(t)

 =

1 0 0
0 0 1
0 1 0

x1(t)
x2(t)
x3(t)

 .
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Stabilization of delay DAEs

Slow-fast system - DAEs vs. ODEs
ODE case:

ẋ(t) = f (x , y , ε),

εẏ(t) = g(x , y , ε),

with 0 < ε� 1

Rewrite with some perturbation

ẋ(t) = f (x , y , ε) + δf ,

ẏ(t) =
1

ε
[g(x , y , ε) + δg ] ,

so x is called slow variable and y is fast variable.

DAE case:

ẋ(t) = f (x , y , 0),

0 = g(x , y , 0).
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Stabilization of delay DAEs

Slow-fast system - DAEs vs. ODEs

Example

Consider the DAE1 0 0
0 1 0
0 0 0

ẋ1(t)
ẋ2(t)
ẏ(t)

 =

1 0 0
0 0 1
0 1 0

x1(t)
x2(t)
y(t)

+

f1(t)
f2(t)
f3(t)

 ,
→

1 0 0
0 1 0
0 0 0

ẋ1(t)
ẋ2(t)
ẏ(t)

 =

1 0 0
0 0 1
0 1 0

x1(t)
x2(t)
y(t)

+

f1(t)
f2(t)
f3(t)

 ,
remodel→

1 0 0
0 0 0
0 0 0

ẋ1(t)
ẋ2(t)
ẏ(t)

 =

1 0 0
0 0 1
0 1 0

x1(t)
x2(t)
y(t)

+

 f1(t)

−ḟ3(t) + f2(t)
f3(t)

 .

From perturbation point of view,

[
x2
y

]
is fast variable, x1 is slow

variable.
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Stabilization of delay DAEs

So hidden fast components in the variable may exist. Why?

The reason is that in general D = JV f |U0,V0 is not invertible (eigenvalues
with real part 0 appear).

If D is invertible, we have normally hyperbolic system, which is often
considered in DAE theory as index 1 case. For index 1 case, the
perturbation theory has been developed by Fenichel.

Determining exact fast, slow variables plays a key role in control theory of
DAEs.
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Stabilization of totally-periodic orbits

Even though our system is[
In 0
0 0

] [
U̇(t)

V̇ (t)

]
=

[
A B
C D

] [
U(t)
V (t)

]
−K

([
U(t)
V (t)

]
−
[

U(t − τ)
V (t − τ)

])
, t > 0,

we can consider a general time-delay feedback control system

E1ẋ(t) = A1x(t)− K1 (x(t)− x(t − τ)) , t ≥ 0. (2)

Our strategy: transforming (2) into

E2ẏ(t) = A2y(t)− K2 (y(t)− y(t − τ)) , (3)

where E2 = PE1Q, A2 = PA1Q, K2 = K1Q, x(t) = Qy(t), P and Q are
invertible.

We study the stabilization of system (3) and then get back to (2).
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Stabilization of totally-periodic orbits

Definition

σ(E ,A) := {s ∈ C : det(sE − A) = 0} is called the spectrum of
matrix pair (E ,A).

The pair (E ,A) is called regular, iff det(λE − A) 6= 0 for some
λ ∈ C.

Theorem

[5] Kronecker-Weierstraß canonical form
Suppose that the pair (E ,A) is regular. Then, there exist invertible
matrices P, Q such that

(E ,A) =

(
P

[
Id 0
0 N

]
Q,P

[
J 0
0 Ia

]
Q

)
,

N is nilpotent, J and N are in Jordan form.

The number ν = min{i : N i = 0, N i−1 6= 0} is called index of the
system.
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Stabilization of totally-periodic orbits

Suppose that the pair (E ,A) is regular, using Kronecker-Weierstraß
canonical form to transform the system

E ẋ(t) = Ax(t),

→ P−1EQẏ(t) = P−1AQy(t),

→
[
Id 0
0 N

] [
ẏ1(t)
ẏ2(t)

]
=

[
J 0
0 Ia

] [
y1(t)
y2(t)

]
,

where N is nilpotent of index ν, J and N are in Jordan form.
We rewrite system in details

Id ẏ1 = Jy1,

Nẏ2 = Iay2.

Lemma

An equation of the form Nẏ2(t) = Iay2(t) + g(t) has a unique solution

y2(t) = −
ν−1∑
i=0

N ig (i)(t).
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Stabilization of totally-periodic orbits

Control strategy

Id ẏ1 = Jy1, L99 We apply time-delayed feedback control here

Nẏ2 = Iay2. 99K Has a unique solution y2 = 0

Time-delayed feedback control system

Id ẏ1(t) = Jy1(t)− K̃ (y1(t)− y1(t − τ)) , t ≥ 0,

has been deeply investigated, [6], [3], etc.

After obtaining K̃ , we have a desire feedback of an original system

K = Q

[
K̃ 0
0 0

]
.

Disadvantage: Computing Kronecker-Weierstraß canonical form is very
complicated, expensive and numerically unstable.
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Stabilization of totally-periodic orbits

Theorem

[2] (qz-decomposition)
If E and A are in Cn,n, then there exist unitary Q and Z such that

QHEZ = S ,

QHAZ = T ,

are upper triangular.
If for some k, tkk and skk are both zero, then σ(E ,A) = C. Otherwise

σ(E ,A) = { tii
sii

: sii 6= 0}.

If sii = 0, and tii 6= 0 then we call tii
sii

an infinite eigenvalue of (E ,A).
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Stabilization of totally-periodic orbits

Algorithm

Input: Matrix pair (E ,A) be regular.
Output: Gain matrix K.
Step 1: Using the qz-decomposition to decouple the system[[

Ẽ1 Ẽ2

0 Ẽ4

]
,

[
Ã1 Ã2

0 Ã4

]
,Q,Z

]
= qz(E ,A),

where E1, E4, A1, A4 are upper triangular,

spectrum of (Ẽ1, Ã1) contains finite eigenvalues of (E ,A),

spectrum of (Ẽ4, Ã4) contains infinite eigenvalues of (E ,A).

Step 2: Computing the time-delay feedback control of the subsystem

Ẽ1ẏ1(t) = Ã1y1(t)− K̃ (y1(t)− y1(t − τ)) ,

Step 3: The desire gain matrix K is K = Z ′
[

K̃ 0
0 0

]
.
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Stabilization of totally-periodic orbits

In step 2 we need to calculate the feedback gain K for the subsystem

Ẽ1ẏ1(t) = Ã1y1(t)− K̃ (y1(t)− y1(t − τ)) .

We notice that

both Ẽ1 and Ã1 are upper triangular,

the main diagonal of Ẽ1 does not contain 0 element.

Therefore, K̃ can be chosen in the form

K̃ = pẼ1,

where p is a scalar, adjustable parameter.

Moreover, structure of (Ẽ1, Ã1) suggests an extension on the theory of
time-delayed feedback control of ODEs, for example, Floquet exponent,
[6].
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Stabilization of semi-periodic orbits

We could not use Kronecker-Weierstraß canonical form any more.

Extra assumption: D = JV f (U,V )|[U0,V0] is invertible. L99 normally
hyperbolic system

We transform the system as follows[
I 0
0 0

] [
U̇(t)

V̇ (t)

]
=

[
A B
C D

] [
U(t)
V (t)

]
,

→
[
I −BD−1

0 D−1

] [
I 0
0 0

] [
U̇(t)

V̇ (t)

]
=

[
I −BD−1

0 D−1

] [
A B
C D

] [
U(t)
V (t)

]
,

→
[
I 0
0 0

] [
U̇(t)

V̇ (t)

]
=

[
A− BD−1C 0
−D−1C I

] [
U(t)
V (t)

]
.

System in details

U̇(t) =
(
A− BD−1C

)
U(t), L99 We apply time-delayed feedback control here

V (t) = −D−1CU(t).
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Stabilization of totally-periodic orbits

Partitioning K and set

(E0,A0,B0) =

([
In 0
0 0

]
,

[
A− K11 B − K12

C − K21 D − K22

]
,

[
K11 K12

K21 K22

])
We must choose K such that the matrix pair (E0,A0 − K ) is regular and
of index at most one.

The necessary and sufficient condition is that D − K22 is invertible.

The system reads in detail

U̇(t) = (A− K11)U(t) + (B − K12)V (t) + K11U(t − τ) + K12V (t − τ),

0 = (C − K21)U(t) + (D − K22)V (t) + K21U(t − τ) + K22V (t − τ).

Since D − K22 is invertible, then

D(V (t)) = −(D − K22)−1
(

(C − K21)U(t) + K21U(t − τ)
)
,

where D(V (t)) := V (t) + (D − K22)−1K22V (t − τ).
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Stabilization of totally-periodic orbits

The necessary condition for the stability is
[A1.] The difference operator

D(V (t)) = V (t) + (D − K22)−1K22V (t − τ),

is stable, i.e., the equation D(V (t)) = 0 is asymptotically stable.

Sufficient condition for [A1.] is given by
[A2.] There exist some matrix operator norm ‖ · ‖ such that

‖(D − K22)−1K22‖ < 1.

[A3.] The matrix (D − K22)−1K22 is Schur-Cohn stable, i.e., its
spectrum is inside the unit circle in the complex plane.

Hypothesis

We assume that a block K22 in the feedback matrix K can be chosen
such that one of the conditions [A1]-[A3] is satisfied.
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Stabilization of totally-periodic orbits

Lemma

(E. Fridman [1])
Suppose that our time-delayed feedback system satisfies the Hypothesis.
Moreover, assume that there exist positive numbers α, β, γ and a
continuous functional V : C ([τ, 0],Cn)→ R such that

β|φ1(0)|2 6 V (φ) 6 γ‖φ‖2,
V̇ (φ) 6 −α|φ(0)|2,

and the function V̄ (t) = V (xt) is absolutely continuous for x(t)
satisfying the delay DAE, then the delay DAE is asymptotically stable.

V is called Lyapunov-Krasovskii functional along the orbit of the delay
DAE.
The usually chosen functional is

V (xt) = xT (t)EPx(t) +

∫ t

t−τ
xT (s)Qx(s)ds,

where P and Q are symmetric positive definite.
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Stabilization of totally-periodic orbits

Theorem

Assume that the Hypothesis holds. Then, the system is asymptotically
stable if there exists two matrices P,Q ∈ Rn,n such that the following
LMIs hold 

P > 0, Q > 0,[
In 0

0 0

]
P = P

[
In 0

0 0

]
≥ 0,[

−Q KTP

PTK AT
0 P + PTA0 + Q

]
< 0,

where A0 =

[
A B
C D

]
− K .

The last equation can be written in the Riccati form

AT
0 P + PTA0 + Q + PTKQ−1KTP < 0.

By adjusting K , we aim to solve the system of LMIs and obtain a desire
K if with that K the LMI system has at least one solution.
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Stabilization of totally-periodic orbits

Example 1 [1]
Consider the system[

1 0
0 0

] [
U̇(t)

V̇ (t)

]
=

[
0 1
−2 −1

] [
U(t)
V (t)

]
, t > 0.

The equilibrium

[
0
0

]
is unstable since the system has a unique eigenvalue

λ = 2.
We choose the feedback gain of the type

K =

[
K11 K12

K21 K22

]
=

[
α 1
−2 β

]
then we get[

1 0
0 0

] [
U̇(t)

V̇ (t)

]
=

[
−α 0
0 −1− β

] [
U(t)
V (t)

]
+

[
α 1
−2 β

] [
U(t − τ)
V (t − τ)

]
, t > 0.

The Hypothesis becomes

|(−1− β)−1β| < 1⇔ 0 < β or
−1

2
< β < 0.
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Stabilization of totally-periodic orbits

Using the LMI toolbox in Matlab to solve LMI system we obtain

P =

[
0.4142 0

0 0.4142

]
, Q =

[
13.0326 −12.4530
−12.4530 12.2895

]
,

with the gain matrix K =

[
0.9800 1.0000
−2.0000 0.9800

]
.
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Stabilization of semi-periodic orbits

The delayed feedback system in the semi-periodic case is[
In 0
0 0

] [
U̇(t)

V̇ (t)

]
=

[
A− K11 B
C − K21 D

] [
U(t)
V (t)

]
+

[
K11 0
K21 0

] [
U(t − τ)
V (t − τ)

]
, t > 0,

If D is invertible, then

U̇(t) = (A− K11 − BD−1C + BD−1K21)U(t) + (K11 − BD−1K21)U(t − τ),

V (t) = −D−1 ((C − K21)U(t) + K21U(t − τ))

Asymptotic stability of the 1st equation dominates asymptotic stability
of system and hence, no hypothesis is needed.
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Stabilization of semi-periodic orbits

Theorem

The system is asymptotically stable if there exists two matrices
P,Q ∈ Rn,n such that the following LMIs hold

P > 0,Q > 0,[
−Q BT

1 P
PTB1 A1P + PTA1 + Q

]
< 0,

where A1 := A− BD−1C −
(
K11 − BD−1K21

)
, B1 := K11 − BD−1K21.

Remark

The desire feedback K is obtained by choosing K21 = 0, and K11 stabilize
the system

U̇1(t) =
(
A− BD−1C

)
U(t)− K11(U(t)− U(t − τ)), t ≥ 0.

This result coincides with the result obtained by using eigenvalue method.
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Observations on the singular pair case

Suppose that

([
I 0
0 0

]
,

[
A B
C D

])
is not regular, may not even square.

Consequently, we do not have

Kronecker-Weierstraß form,

qz-decomposition.

We consider a new concept for DAEs: strangeness-index (denoted by
µ) introduced by Kunkel & Mehrmann [5].

Idea: Using differentiation (µ times) and equivalent transformations
(left-right multiplications by P, Q) to transform the system intoId 0 0

0 0 0
0 0 0

ẋ1(t)
ẋ2(t)
ẋ3(t)

 =

A11 0 A13

0 Ia 0
0 0 0

x1(t)
x2(t)
x3(t)

 ,
x1(t)

x2(t)
x3(t)

 =

[
U(t)
V (t)

]
.

And then, we fix 2st equation (constraint) apply the time-delayed
feedback control on 1st equation (dynamic); or we can use x3 like a
control. 31 / 33
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Conclusion

Stabilization by time-delayed feedback control of Pyragas type has
been studied by both eigenvalue method and Lyapunov functional
method.

Experiments show that eigenvalue method converges much faster
than Lyapunov functional method.

Using eigenvalue method is computationally cheap, which is suitable
for discretized DA-PDEs.

Outlook

The semi-periodic orbits case is essentially open.

Stabilization of periodic orbits of DA-PDEs with hysteresis ... it is
beyond my dream?
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Thank you for your attention!

Suggestions and comments are welcome!
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