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SIR (Susceptible-Infectious-Recovered) compartmental model
of Kermack and McKendrick (1927)

I Foot and Mouth Disease
I Severe Acute Respiratory Syndrome (SARS)
I West Nile virus
I ...
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SIR model

S −→ I −→ R

I Horizontal transmission of the disease
I Law of mass action
I Recovered individuals retain immunity
I Population size remains constant: S+ I +R = N = const

(characteristic time of epidemics much shorter than
demographic processes)

Ṡ = −βSI

İ = βSI− γI

Ṙ = γI

β - incidence rate (infection rate constant)
γ - recovery rate



SIR model with birth and mortality (recruitment and
departure)

Ṡ = b−βSI−µS

İ = βSI− γI− (µ +σ)I

Ṙ = γI−µR

β - incidence rate (infection rate constant)
γ - recovery rate

µ - natural mortality rate
σ - rate of mortality inflicted by the disease
b - birth or recruitment rate



Basic reproduction number

R0 =
bβ

µ(γ +µ +σ)

- the number of secondary cases produced by a single infected
individual introduced into an entirely susceptible population

R0 ≤ 1 - infection dies out
Infection free equilibrium I = 0, S = b/µ is globally
asymptotically stable.

R0 > 1 - infection persists in the population
Endemic equilibrium is globally asymptotically stable.



People respond to the advent of an epidemic and adapt their
behaviour to the danger

Change the ‘usual’ behaviour to a ‘safer’ behaviour:

I refraining from potentially dangerous contacts
I using vaccination in a case of influenza
I taking an extra portion of vitamin C in the case of a

common cold
I other precautionary measures (adjusting life style...)

Each individual can choose between one of two possible
modes of behaviour, Risky and Safe

S = SR ∪SS

Fractions of individuals who have adopted each behaviour:

PR(t)+PS(t) = 1



Effective incidence rate βSPS(t)+βRPR(t) replaces β :

Ṡ = b− (βSPS +βRPR)SI−µS

İ = (βSPS +βRPR)SI− (γ +µ +σ)I

Fraction of population PS is affected by aggregated temporary
stimuli such as

I awareness of the population about the current severity of
the epidemic

I availability of effective and inexpensive medicines
I media and/or administrative pressure, etc.

Information that can influence a shift in the behaviour comes
from a variety of sources, importantly, from

I Mass media, including any kind of messages spread by
reporters, health officials, or volunteers



Closing the model

I How does PS respond to aggregated stimuli (pressure) A
to change behaviour to the Safe mode?

I How A depends on I, S?

NB: A(t) can be the amount of money invested into promoting
Safe bahaviour

Assumption that PS is a function of A, A is a function of I,S
leads to the SIR model with a nonlinear infection rate

Ṡ = b− f (S, I)−µS

İ = f (S, I)− (γ +µ +σ)I

Under the natural concavity assumption ∂ 2f
∂ I2 ≤ 0, the basic

reproduction number R0 defines which equilibrium is globally
stable in the same way as for the classical SIR model.



Memory

The relationship between PS and A can have memory, that is
PS(τ) at a particular moment τ is determined by the history of
the aggregate stimulus A(t), t ≤ τ.

A(t) - input, PS(t) - output
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Figure 4: The action of a rate-independent operator on an input functionf(t) produces the output
functiong(t). Rate-independence means that the action of the operator onthe transformed input
f(γ(t)), whereγ(t) is monotonically increasing, produces a similarly scaled output,g(γ(t)).

All that remains, in order to close the system, is to find a useful and justifiable form for the rate-
independent operatorG. The theory of rate-independent memory operators has been developing
rapidly in recent years. Such operators are calledhysteresisoperators. The reader is referred again
to the fundamental texts [11, 44, 50, 60] and to the recent three-volume set [58] surveying the
current state of research in hysteresis.

In order to justify a particular form for the operatorG, the “slow-time” limit of the process is
examined. Given a functiony(t), 0 ≤ t ≤ τ , andPS(·) = Gy(·), consider a hypothetical “slow”
function

yγ(t) = y(γt), 0 ≤ t ≤ τ/γ, (3.11)

for small γ � 1. This function varies very “slowly” with respect to time, so|ẏγ| � 1. By
Assumption 8, there exists a well-defined counterpart

PSγ = Gyγ.

Moreover, by Assumption 7, this function satisfies

PSγ(t) = PS(γt).

In particular, there exists an input functionAγ(t) such that

ẋγ(t) = k
(
Aγ(t)− yγ(t)

)
, (3.12)

xγ(·) = Gyγ(·) . (3.13)

Since everything is “slow”, the derivativėxγ is very small, and thus for sufficiently smallγ we
have

Aγ(t) ≈ yγ(t).
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I On an individual level, we assume that the value of A at
which an individual person switches to Safe mode is
greater than the value at which the person switches back.



I A binary switch with two thresholds (relay) is adopted as a
model for the behaviour of an individual.
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Figure 1: (a) Non-ideal relay. (b) Input and output of the non-ideal relay.

Proposition 1. In the adiabatic limit, the operatorRι coincides with the non-ideal relayRαR,αS
.

3.2.4. Preisach nonlinearity as adiabatic limit of collective memory

Assumption 3. We treat the total population as an infinite ensembleJ , and we assume that ele-
ments ofJ behave independently.

The reason for swapping a large finite set with an infinite set is purely technical: it is easier
to integrate a continuous function, rather than to sum a finite series. As was explained above, to
each individual elementι ∈ J there correspond two numbers,αR(ι) andαS(ι), satisfying the
inequalities0 ≤ αR(ι) < αS(ι) ≤ 1. It is assumed that for all valuesA(t) ≥ αS(ι) the only
equilibrium mode of behaviour of the personι is exhibiting theSafebehaviour, and for values
A(t) ≤ αR(ι) the only equilibrium behaviour is exhibiting theRiskymode. ForαR(ι) < A(t) <
αS(ι), the agentι has two possible modes of equilibrium behaviours:Safeor Risky, depending on
its prehistory. Finally, a personι is “lazy”: he
she does not change behaviour as long as the inputA(t) varies within the boundariesαR(ι), αS(ι).

Assumption 4. The pairs,(αR(ι), αS(ι)) , ι ∈ J , of thresholds are distributed with some inte-
grable densityµ(αR, αS).

Proposition 2. The adiabatic limit of operatorW is described as

(P[η0]A)(t) =

∫ 1

0

∫ 1

αR

η(t, αR, αS)µ(αR, αS)dαRdαS,

η(t, αR, αS) =
(
RαR,αS

A
)
(t).

(3.6)

12

State x = 1, the Safe mode; state x = 0, the Risky mode.
I We treat the total population as an infinite ensemble.

We assume that individuals behave independently.
I The pairs of thresholds (αR,αS) are distributed with some

integrable density ρ(αR,αS) (which is independent of time).
I The state x(t ,αR,αS) of the system describes the

distribution of population between the Risky and Safe
modes of behaviour at any moment t ≥ t0.



x(t ,αR,αS) is 0 whenever the individuals with the pair of
thresholds (αR,αS) chooses the Risky behaviour, and 1
whenever they choose the Safe behaviour.

A(t) −→ evolution of x(t ,αR,αS) −→ dynamics of PS(t)

Aggregation:

PS(t) =
∫ ∫

αR<αS

x(t ,αR,αS)ρ(αR,αS)dαRdαS

This is the Preisach operator P[x0] : A(t)→ PS(t):

PS(t) = (P[x0]A)(t)

Here x0 = x0(α,β ) is the initial state.



Preisach half-plane
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The state x(t ,αR,αS) is the characteristic function of the grey
domain, which changes in response to the variation of the input.



Closed SIR model with memory

Ṡ = b− (βSPS +βR(1−PS)SI−µS

İ = (βSPS +βR(1−PS))SI− (γ +µ +σ)I

PS(t) = (P[x0]A)(t)

A = κI +A0

Two susceptible groups with different incidence rates, βS < βR,
where the sizes of both groups are given as fractions of the
total susceptible population, PS(t) and PR(t) = 1−PS(t)
respectively, and the fraction PS(t) is determined by the current
value and history of dynamics of stimuli A(t) = κI(t)+A0.



Version with inductive delay

Ṡ = b− (βSPS +βR(1−PS))SI−µS

İ = (βSPS +βR(1−PS))SI− (γ +µ +σ)I

PS(t) = (P[x0]y)(t)

ṖS = k(A(t)−y)

A = κI +A0
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(4.1) it can depend on the history. For model (4.1), the effective basic reproduction number can be
expressed as

R̃0 =
b(βR(1− PS(Q0)) + βSPS(Q0))

µ(γ + µ+ σ)
,

wherePS(Q0) is the value ofPS at an infection free equilibrium state. It is not necessary equal to
zero, as emergence of a pathogen can be anticipated, and pro-active intervention measures can be
taken prior to its actual appearance in a community.

4.2. Numerical simulations: set up

For numerical experiments we takeb = µ = 0.1, β = 120, γ = 365/4 = 91.25 (e.g. infectious
period of 4 days),I(0) = 0.001 andS(0) = 0.5. For these parametersR0 ≈ 1.31, and hence the
infection persists (see Fig. 5 (a)) in the population.
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Figure 5: Dynamics of the infected sub-populations for the following models: (a) (dotted line)
model (2.6); (b) (dashed line) non-hysteretic model (4.1) with PS(t) = f(y(t)); (c)–(e) (solid
lines) hysteretic model (4.1). Here the parameters are:b = µ = 0.1, β = 120, γ = 365/4 = 91.25,
y(0) = 0.01, κ = 1000, k = 1. Initial conditions are:I(0) = 10−5 andS(0) = 0.999 for (a)–(c),
I(0) = 0.001, S(0) = 0.9 for (d); S(0) = 0.85 for (e).

Suppose now thatPS(t) = f(y(t)); that is we replace the Preisach operatorP in (4.1) with a
functional operatorGy = f(y(t)). Formula (4.2) implies thatPS(Q0) = f(A0) at an infection-free
equilibrium state, and hence the effective basic reproduction number is

R̃0 =
b(βR(1− f(A0)) + βSf(A0))

µ(γ + µ+ σ)
.
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R0 = 1.31, A0 = 0

(a) Standard SIR, PS = 0 - dotted (I(0) = 10−5 ,S(0) = 0.999)

(b) Safe and Risky modes, no memory, PS = y2 - dashed (I(0) = 10−5,S(0) = 0.999)

(c)-(e) SIR with memory - solid
(c) I(0) = 10−5 ,S(0) = 0.999; (d) I(0) = 10−3,S(0) = 0.9; (e) I(0) = 10−3 ,S(0) = 0.85

b = µ = 0.1,βR = 120,βS = 1,γ = 365/4,σ = 0,κ = 1000,k = 1,y(0) = 0.01



I Model with memory has multiple endemic equilibria
I The higher the initial peak of infection, the smaller the

infected population at the endemic equilibrium

Now assume A0 > 0

Effective basic reproduction number

R̃0 =
b(βR(1−PS)+βSPS)

µ(γ +µ +σ)

where PS is evaluated at an infection free equilibrium state.

PS is not necessary equal to zero, as emergence of a pathogen
can be anticipated, and pro-active intervention measures can
be taken prior to its actual appearance in a community.

PS > 0 reflects the impact of an intervention policy or history.
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Figure 6: The level of infectionI(t) for non-hysteretic and hysteretic models. Here, curves (a)and
(b) (dashed) are forPS(t) = y2(t); curves (c),(d),(e) (solid) forPS(t) = P y(t) with A0 = 0.4.
The parameters arey(0) = 0.01, S(0) = 0.999 andI(0) = 0.00001 for (a) and (c), andy(0) =
0.4, S(0) = 0.9535 andI(0) = 5.09× 10−5 for (b) and (d).

4.4. Equilibrium sets and global dynamics of the model

We have mentioned that the long term dynamics of the classical SIR model (2.6) without memory
is determined by the value of the parameterR0. The infection free equilibrium of this model always
exists and is globally stable forR0 < 1. ForR0 > 1, the endemic equilibrium is globally stable
(in the invariant domainI > 0, S ≥ 0), while the infection free equilibrium becomes unstable (a
saddle point). At the critical valueR0 = 1, the endemic and infected free equilibria collide in a
transcritical bifurcation and exchange stability. As we mentioned in subsection 4.2., the same is
true for theRisky-SafeSIR model without hysteresis, with the only difference thatparameter̃R0 is
the bifurcation parameter in this case. The numerical simulations for model (4.1), (4.2) show that
the trajectories of this system converge to an equilibrium state as well (see Figure 5). However,
in contrast to simple model (2.6), this more complicated system has multiple coexisting equilibria
which form a continual set with one or two connected components (represented by segments of
curves in the phase space). One connected component of the equilibrium set, or its connected
part, is a global attractor in the invariant domainI > 0, S ≥ 0. Moreover, each trajectory, after
a transient dynamics, stabilises at an equilibrium point ofthe attractor; this particular equilibrium
point depends on the initial conditions.

Effectively, the introduction of memory in system (2.6), which transforms it to system (4.1),
(4.2), results in transforming the isolated infection freeequilibrium into a connected continuum
of infection free equilibria, and the isolated endemic equilibrium into a connected continuum of
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A0 = 0.4

(a)-(b) Safe and Risky modes, no memory, PS = y2 - dashed
(a) I(0) = 10−5 ,S(0) = 0.999; (b) I(0) = 5×10−5 ,S(0) = 0.953

(c)-(e) SIR with memory - solid
(c) I(0) = 10−5,S(0) = 0.999; (d) I(0) = 5×10−5 ,S(0) = 0.953



Equilibrium states

I Equilibrium state is described by a quadruplet (I,S,y ,PS),
where PS measures the fraction of population that adapted
the Safe behaviour. Moreover, the state x(α,β ) of the
Preisach operator can be different for the same PS.

I PS is an additional degree of freedom which transforms an
isolated equilibrium into a connected continuum of
equilibria with different proportion of people in Safe mode.

I It is more convenient to use the variable

r =
b(βR(1−PS)+βSPS)

µ(γ +µ +σ)

instead of PS. An equilibrium is described by the
quadruplet (I,S,y , r). At an infection free equilibrium,
r = R̃0.

I There is some numerical indication that stability of an
equilibrium is defined by the sign of r −1 as in the case
without memory.



E0 = curve of infection free equilibria (I = 0)

Eend = curve of endemic equilibria (I > 0)A. Pimenov et al. Memory effects in population dynamics
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Figure 7: Projection of the curveEend of the endemic equilibrium states onI-axis depending on
parameterA0. The I-component of the endemic equilibria ranges between the curves I∗max =
I∗max(A0) andI∗min = I∗min(A0).

adaptation of the Lyapunov function method. Potentially, this can provide a tool for proving the
global stability of the equilibrium set for arbitrary initial conditions. However, such a rigourous
analysis of the stability is beyond the scope of this paper. The following observations are based on
numerical solution, performed for a limited number of initial conditions, and will be supported by
a discussion of their epidemiological interpretation.

Numerical simulations confirm that an infection free equilibrium (b/µ, 0, A0, r
∗) is stable if

r∗ < 1, and unstable ifr∗ > 1, while all the endemic equilibrium points withI∗ > 0 are stable.
This behaviour is similar to the the case of system (2.6) without memory. As each equilibrium
point of system (4.1), (4.2) is an element of a continuous segment of equilibrium states, a stable
equilibrium can be only neutrally stable. Note thatsign I∗ = sign (r∗−1) for the equilibrium points
of the setEend, and hencer∗ > 1 holds for the positive components of the setEend. Furthermore,
simulations show that the curveEend of endemic equilibria is a global attractor in the domain
I > 0, S ≥ 0 for all A0 < A∗

min. Figure 5 shows the convergence of trajectories from different
initial points to different points ofEend forA0 = 0. The infection free equilibria set hasr∗ < 1 and
is unstable forA0 < A∗

min. ForA∗
min < A0 < A∗

max, when the equilibrium setsE0 andEend cross
as in Figure 8c, the value ofr∗ at their intersection pointE0 ∩ Eend is r∗ = 1. This intersection
point divides setE0 of the infection free equilibria into an interval of the unstable equilibria (the
right horizontal bar of the cross) wherer∗ > 1, and an interval of the stable equilibria (the left bar
of the cross) wherer∗ < 1. In this particular case, the connected set of the stable equilibria, which
includes all positive points of setEend and all the infection free equilibrium points wherer∗ ≤ 1
(i.e., the stable set is the union of the upper and the left bars of the cross), is the global attractor of
system (4.1), (4.2) in the domainI > 0, S ≥ 0. Finally, for allA > A∗

max there are no positive
endemic equilibria, and the setE0 of infection free equilibria becomes the global attractor of the
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Projection of the curve Eend of endemic equilibrium states on
I-axis depending on parameter A0 in A = κI +A0.



Projection of the curves E0,Eend of equilibrium states on
(r , I)-plane for different values of the parameter A0A. Pimenov et al. Memory effects in population dynamics
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Figure 8: Projection of the equilibrium setsE0 andEend on the(r, I)-plane for different values
of parameterA0. Segments of the stable equilibria are shown by the bold lines, the unstable
equilibria is shown by the dashed lines. (a) Case0 ≤ A0 < A∗

min. There are two disjoint segments,
and the positive setEend is the global attractor, whileE0 is unstable. (b) CaseA0 > A∗

max. The
equilibrium set is the union of two discoint sets, whereEend is below the abscissa;E0 is the global
attractor. (c) CaseA0 = A∗

min. The setsEend andE0 connect forming a “corner" shape. (d) Case
A∗

min < A0 < A∗
max. The cross shape is formed. The positive part ofEend and the left bar ofE0

form the global attractor, whereas the right bar of the crossis composed of the unstable equilibria.
(e) CaseA0 = A∗

max. The equilibrium set is of “corner” shape, where the unstable setEend is
below the abscissaI = 0; the infection free equilibrium setE0 is the global attractor.

system;r∗ < 1 holds for all points ofE0.
The most complicated and interesting case is whenA∗

min < A0 < A∗
max and the global attractor

is a connected set of equilibrium points which includes boththe infection free and the endemic
equilibrium points, as in Figure 8c. Figure 6 shows the trajectories from different initial conditions
converging to endemic and infection free equilibria points. It appears that only those trajectories
that correspond to a sufficiently large outbreak of the infection converge to points belonging to the
infection free equilibrium set. More precisely, if they-component of a trajectory exceeds at any
moment in time the valueY defined by the relation

Y =
1

2A0

(
A2

0 +
βR

βR − βS
− µ(γ + µ+ β)

b(βR − βS)

)
, (4.7)
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(a) 0≤ A0 < A∗min; Eend is the global attractor, E0 is unstable

(d) A∗min < A0 < A∗max ; the solid corner is the global attractor

(b) A0 > A∗max ; E0 is the global attractor



Conjectures based on numerical simulations for a limited
number of initial conditions and a bit of analysis

I An infection free equilibrium is stable if r < 1 and unstable
if r > 1

I Positive endemic equilibria are stable and have r > 1
I The connected set of all locally stable infection free and

endemic equilibria is a global attractor for the domain
I > 0,S ≥ 0

I If A∗min < A0 < A∗max , then a trajectory converges to an
infection-free equilibrium if y(τ) at some point exceeds

Y =
1

2A0

(
A2

0 +
βR

βR−βS
− µ(γ +µ +σ)

b(βR−βS)

)

and to an endemic equilibrium otherwise (the effect of
permanent memory which is not erased even for I = 0).
κI +A0 should also exceed Y to ensure I→ 0.



Further work, problems, questions

I Hopf bifurcation in SIRS model with saturable incidence
rate

I Hopf bifurcation in a spatially inhomogeneous extension of
the above SIRS model with diffusion; periodic spatially
inhomogeneous solutions

I Predator-Prey model where prey has two modes of
behaviour, or two patches: a Risky patch with plentiful food
(higher carrying capacity and higher attack rate of the
predator) and a Safe patch (lower carrying capacity and
lower attack rate of the predator)

I Hysteresis (memory) in diffusion in spatially distributed
population dynamics: How should it be modelled?

I Diffusion of population between compartments with
different thresholds; Preisach operator the density
ρ(t ;αR,αS)

I Stability of systems with the Preisach operator
I


