(Quasivariational) Sweeping processes on functions of bounded variation

Thomas Roche

Technische Universität München
December, 14th 2011
joint work with Pavel Krejčí (MU AV ČR, Prague)

Agenda

The sweeping process

Continuity results for sweeping processes

Extension to quasivariational sweeping processes

The sweeping process

Definition (Moreau 1972/77)
Let $K(t) \subset X$ be a time dependent closed convex set and $\xi_{0} \in K(0)$. A function $\xi \in W^{1,1}(0, T ; X)$ is a solution to the sweeping process if $\xi(0)=\xi_{0}$ and

$$
-\dot{\xi}(t) \in N_{K(t)}(\xi(t)) \text { a.e. in }[0, T] .
$$

$K(t)$

Existence and uniquenss of a solution

Theorem (Moreau 1972/77)
If there exists a monotone increasing function $w \in W^{1,1}(0, T)$ such that

$$
\forall t, s \in[0, T], t \leq s: d_{H}(K(t), K(s)) \leq w(s)-w(t)
$$

then there exists a unique solution $\xi \in W^{1,1}(0, T ; X)$ to the sweeping process.

Approximation of solutionss by implicit time discretization

Implicit time discretisation
Let $\left(t_{n}\right)_{n=0}^{N}$ be defined by $t_{n}=\frac{n}{N} T$. Set $K_{n}=K\left(t_{n}\right)$. The time discretization of the sweeping process is given by

$$
-\frac{1}{h}\left(\xi_{n}-\xi_{n-1}\right) \in N_{K_{n}}\left(\xi_{n}\right), \quad h=\frac{T}{N}
$$

This is equivalent to

$$
\xi_{n} \in K_{n} \wedge\left\langle\xi_{n-1}-\xi_{n}, \xi_{n}-y\right\rangle \geq 0 \quad \forall y \in K_{n}
$$

or

$$
\xi_{n}=P_{K_{n}}\left(\xi_{n-1}\right)
$$

Extension to $B V$

Want to use BV inputs.
Requirements: Formulation has a meaning on $B V$ and coincides with the sweeping process on $W^{1,1}$.
Still a lot of possibilities...

- Moreau, 1972/77
- Krejčí and Laurençot, 2002
- Mielke and Theil, 2002/04
- Recupero, 2009/10

Extension to $B V$

Want to use BV inputs.
Requirements: Formulation has a meaning on $B V$ and coincides with the sweeping process on $W^{1,1}$.
Still a lot of possibilities...

- Moreau, 1972/77
- Krejčí and Laurençot, 2002
- Mielke and Theil, 2002/04
- Recupero, 2009/10

Definition (Sweeping process in the Kurzweil formulation)
Let $K(t) \subset X$ be closed and convex and $\xi_{0} \in K(0)$. A function $\xi \in B V(0, T ; X)$ satisfies the Kurzweil formulation if $\xi(0)=\xi_{0}$, $\xi(t) \in K(t)$ for all $t \in[0, T]$ and

$$
\int_{0}^{T}\langle\xi(t+)-y(t), d \xi(t)\rangle \geq 0
$$

for all $y \in G(0, T ; X)$ such that $y(t) \in K(t+)$.

Definition (Sweeping process in the Kurzweil formulation)
Let $K(t) \subset X$ be closed and convex and $\xi_{0} \in K(0)$. A function $\xi \in B V(0, T ; X)$ satisfies the Kurzweil formulation if $\xi(0)=\xi_{0}$, $\xi(t) \in K(t)$ for all $t \in[0, T]$ and

$$
\int_{0}^{T}\langle\xi(t+)-y(t), d \xi(t)\rangle \geq 0
$$

for all $y \in G(0, T ; X)$ such that $y(t) \in K(t+)$.
$\rightarrow \xi(t+)=P_{K(t+)}(\xi(t))$.

Definition (Sweeping process in the Kurzweil formulation)
Let $K(t) \subset X$ be closed and convex and $\xi_{0} \in K(0)$. A function $\xi \in B V(0, T ; X)$ satisfies the Kurzweil formulation if $\xi(0)=\xi_{0}$, $\xi(t) \in K(t)$ for all $t \in[0, T]$ and

$$
\int_{0}^{T}\langle\xi(t+)-y(t), d \xi(t)\rangle \geq 0
$$

for all $y \in G(0, T ; X)$ such that $y(t) \in K(t+)$.
Theorem (Krejčí and Liero, 2009)
There exists a unique solution to the sweeping process in BV

Definition (Sweeping process in the Kurzweil formulation)
Let $K(t) \subset X$ be closed and convex and $\xi_{0} \in K(0)$. A function $\xi \in B V(0, T ; X)$ satisfies the Kurzweil formulation if $\xi(0)=\xi_{0}$, $\xi(t) \in K(t)$ for all $t \in[0, T]$ and

$$
\int_{0}^{T}\langle\xi(t+)-y(t), d \xi(t)\rangle \geq 0
$$

for all $y \in G(0, T ; X)$ such that $y(t) \in K(t+)$.
Approximation by step functions \rightarrow Projections

Agenda

The sweeping process

Continuity results for sweeping processes

Extension to quasivariational sweeping processes

Setting

- Let $K(t)=u(t)-Z(r(t))$

Setting

- Let $K(t)=u(t)-Z(r(t))$
- Let $Z(r)$ be a family of convex sets indexed by elements r of a reflexive Banach space \mathcal{R}.

Setting

- Let $K(t)=u(t)-Z(r(t))$
- Let $Z(r)$ be a family of convex sets indexed by elements r of a reflexive Banach space \mathcal{R}.
- Choose $u \in B V(0, T ; X), r \in B V(0, T ; \mathcal{R}), x_{0} \in Z(r(0))$ and $\xi_{0}:=u(0)-x_{0}$ as input data.

Setting

- Let $K(t)=u(t)-Z(r(t))$
- Let $Z(r)$ be a family of convex sets indexed by elements r of a reflexive Banach space \mathcal{R}.
- Choose $u \in B V(0, T ; X), r \in B V(0, T ; \mathcal{R}), x_{0} \in Z(r(0))$ and $\xi_{0}:=u(0)-x_{0}$ as input data.
- Let $\xi \in B V(0, T ; X)$ be the solution of the sweeping process.

Setting

- Let $K(t)=u(t)-Z(r(t))$
- Let $Z(r)$ be a family of convex sets indexed by elements r of a reflexive Banach space \mathcal{R}.
- Choose $u \in B V(0, T ; X), r \in B V(0, T ; \mathcal{R}), x_{0} \in Z(r(0))$ and $\xi_{0}:=u(0)-x_{0}$ as input data.
- Let $\xi \in B V(0, T ; X)$ be the solution of the sweeping process.
- Question: What are the continuity properties of the map

$$
\left(u, r, x_{0}\right) \mapsto \xi ?
$$

Answer: It depends on the shape of the convex set In the case of absolutely continuous functions local Lipschitz continuity known if

- Z polyhedron (Krejčí and Vladmimirov, 2003)
- Z smooth (Brokate, Krejčí and Schnabel, 2004)

Theorem (Krejčí and R., 2010)

If $Z(r)$ has smooth boundary and depends smoothly on r, that is

$$
d_{H}(Z(r), Z(s)) \leq c|r-s|
$$

for all r the outer normals are unique and
$\forall x \in \partial Z(r), y \in \partial Z(s):|n(r, x)-n(s, y)| \leq C(|r-s|+|x-y|)$
then the sweeping process is locally Lipschitz continuous on BV , in the sense that for two solution ξ, η of the sweeping process with input $\left(u, r, \xi_{0}\right)$ and $\left(v, s, \eta_{0}\right)$ respectively it houlds

$$
\begin{aligned}
& \operatorname{Var}(\xi-\eta) \leq \\
& \quad C(u, r, v, s)\left(\operatorname{Var}(u-v)+\operatorname{Var}(r-s)+\left|\xi_{0}-\eta_{0}\right|\right)
\end{aligned}
$$

Agenda

The sweeping process

Continuity results for sweeping processes

Extension to quasivariational sweeping processes

Quasivariational sweeping processes

Definition (Kunze and Monteiro Marques, 1998)
Let $K(t, \cdot) \subset X$ be a family of closed convex set and $\xi_{0} \in K\left(0, \xi_{0}\right)$. A function $\xi \in W^{1,1}(0, T ; X)$ is a solution to the quasivariational sweeping process if $\xi(0)=\xi_{0}$ and

$$
-\dot{\xi}(t) \in \partial I_{K(t, \xi(t))}(\xi(t)) \text { a.e. in }[0, T] .
$$

Quasivariational sweeping processes

Definition (Kunze and Monteiro Marques, 1998)
Let $K(t, \cdot) \subset X$ be a family of closed convex set and $\xi_{0} \in K\left(0, \xi_{0}\right)$. A function $\xi \in W^{1,1}(0, T ; X)$ is a solution to the quasivariational sweeping process if $\xi(0)=\xi_{0}$ and

$$
-\dot{\xi}(t) \in \partial I_{K(t, \xi(t))}(\xi(t)) \text { a.e. in }[0, T] .
$$

- Existence results due to Kunze and Monteiro Marques (1998)
- First uniqueness result due to Brokate, Krejčí and Schnabel (2004) for smooth and bounded convex sets
- Generalization to smooth and unbounded convex sets due to Mielke and Rossi (2007)

Quasivariational sweeping processes on $B V$ via the Kurzweil formulation

Theorem (Brokate, Krejčí and Schnabel, 2004)
Let $K(t, r)$ be a family of smooth and uniformly bounded convex sets, such that

$$
\begin{aligned}
& \exists \mu<1: d_{H}(K(t, r), K(t, s)) \leq \mu|r-s|, \\
& |n(r, x)-n(s, y)| \leq C(|r-s|+|x-y|)
\end{aligned}
$$

and then there exists a unique solution to the quasivariational sweeping process on $W^{1,1}$.

Quasivariational sweeping processes on $B V$ via the Kurzweil formulation

Theorem (R., 2010)
Let $K(t, r)$ be a family of smooth convex sets which smoothly depend on $r \in X$, such that

$$
\begin{aligned}
& \exists \mu<1: d_{H}(K(t, r), K(t, s)) \leq \mu|r-s|, \\
& |n(r, x)-n(s, y)| \leq C(|r-s|+|x-y|)
\end{aligned}
$$

and if the size of the discontinuities remains small enough, i.e.

$$
\forall t \in[0, T]: \quad d_{H}(K(t, r), K(t+, r))+|u(t+)-u(t)| \leq c
$$

then there exists a unique solution to the quasivariational sweeping process on $B V$.

A lemma on the projection

Lemma (Krejčí and R., 2010)

Assume $Z: \mathcal{R} \rightarrow 2^{X}$ satisfies the following conditions. $Z(r) \subset X$ is nonempty, closed and convex for all $r \in \mathcal{R}$ and there exist functions $j: \mathcal{R} \times \mathcal{R} \rightarrow \mathbb{R}$ and $\psi:[0, \infty) \rightarrow[0, \infty)$ such that

$$
\left|n_{r}-n_{s}\right| \leq j(r, s)+\psi(|x-y|)
$$

for all $x \in \partial Z(r), y \in \partial Z(s)$ and $n_{r} \in \partial I_{Z(r)}(x), n_{s} \in \partial I_{Z(s)}(y)$.
Then for all $u \in X$ it holds

$$
\begin{aligned}
& \left|P_{r}(u)-P_{s}(u)\right| \leq \\
& \quad d_{H}(r, s)+\min \{d(u, Z(r)), d(u, Z(s))\}\left(j(r, s)+\psi\left(d_{H}(r, s)\right)\right) .
\end{aligned}
$$

Strategy of the proof

Global strategy:

- Decompose BV function in intervalls with very small jumps $|u(t)-u(t+)| \leq \varepsilon$ and a (finite) number of larger jumps $\varepsilon \leq|u(t)-u(t+)| \leq c$.
- For both parts use Banach's contraction principle.

On the intervalls:

- Approximate function of bounded variation with step functions
- Step functions \rightarrow sequence of projections

围 J．－J．Moreau，
Evolution problem associated with a moving convex set in a Hilbert space，
J．Differential Eq．， 26 （1977），347－374．
圊 P．Krejčí
Evolution variational inequalities and multidimensional hysteresis operators
in Nonlinear differential equations（Chvalatice，1998），
Chapman \＆Hall／CRC Res．Notes Math．404， 1999.
P．Krejčí and P．Laurençot，
Generalized variational inequalities， J．Convex Anal．， 9 （2002），159－183．

目 M．Kunze and M．D．P．Monteiro Marquez
On parabolic quasi－variational inequalities and state－dependent sweeping processes
Topol．Methods Nonlinear Anal． 12 （1998），179－191．
© M. Brokate, P. Krejčí, and H. Schnabel, On uniqueness in evolution quasivariational inequalities, J. Convex Anal., 11 (2004), 111-130.

圊 A. Mielke and R. Rossi,
Existence and uniqueness results for a class of rate-independent hysteresis problems
Math. Models Methods Appl. Sci., 17 (2007), 81-123.
P. Krejčí and T. Roche

Lipschitz continuous data dependence of sweeping processes in BV spaces
to appear in DCDS-B, 2010.
© T. Roche,
Uniqueness of a quasivariational sweeping process on functions of bounded variation
submitted, 2010.

Rate independence

Definition

An operator $\mathcal{A}: \mathcal{D}(\mathcal{A}) \subset \operatorname{Map}(0, T ; X) \rightarrow \operatorname{Map}(0, T ; X)$ is called rate independent if

$$
\mathcal{A}(u \circ \phi)=\mathcal{A}(u) \circ \phi
$$

for all $\phi:[0, T] \rightarrow[0, T]$ monotone increasing, surjective sucht that $u \circ \phi \in \mathcal{D}(\mathcal{A})$.

Precise assumption for the result by Brokate, Krejčí and Schnabel (2004)

Let there exist $C>0$ such that $0 \in Z(r) \subset B_{C}(0)$ for all $r \in \mathcal{R}$.
Moreover assume that the partial Fréchet derivatives $\partial_{r} M(r, x) \in \mathcal{R}^{\prime}$ and $\partial_{x} M(r, x) \in X$ exist for every $r \in \mathcal{R}$ and every $x \in X \backslash\{0\}$. We denote $B(r, x)=\frac{1}{2} M^{2}(r, x)$. The maps

$$
\begin{aligned}
J(r, x) & =\partial_{x} B(r, x)=M(r, x) \partial_{x} M(r, x): X \times \mathcal{R} \rightarrow X, \\
K(r, x) & =\partial_{r} B(r, x)=M(r, x) \partial_{r} M(r, x): X \times \mathcal{R} \rightarrow \mathcal{R}^{\prime}
\end{aligned}
$$

allow continuous extensions to $x=0$. Furthermore, there exist constants K_{0}, C_{J}, C_{K} such that for all $x, y \in B_{C}(0), r, s \in \mathcal{R}$ it holds

$$
\begin{aligned}
\|K(r, x)\|_{\mathcal{R}^{\prime}} & \leq K_{0} \\
|J(r, x)-J(s, y)| & \leq C_{J}\left(|x-y|+\|r-s\|_{\mathcal{R}}\right) \\
\|K(r, x)-K(s, y)\|_{\mathcal{R}^{\prime}} & \leq C_{K}\left(|x-y|+\|r-s\|_{\mathcal{R}}\right) .
\end{aligned}
$$

Precise formulation of the continuity result on BV (Krejčí

 and R., 2010)Let the smoothness hypothesis hold. Then there exist constants $\alpha, \beta, \gamma>0$ depending only on C, C_{J}, C_{K}, K_{0} such that for all $u, v \in B V_{L}(0, T ; X), r, s \in B V_{L}(0, T ; \mathcal{R}), x_{0} \in Z(r(0)), y_{0} \in Z(s(0))$, the solutions ξ, η corresponding to $\left(u, r, x_{0}\right),\left(v, s, y_{0}\right)$, respectively, satisfy the inequality

$$
\begin{aligned}
& \operatorname{Var}(\xi-\eta)+C|B(r(T), x(T))-B(s(T), y(T))| \\
& \quad \leq \quad \alpha \exp (\beta V)(\operatorname{Var}(r-s)+\operatorname{Var}(u-v)) \\
& \quad+\gamma \exp (\beta V)(1+V)\left(\left|x_{0}-y_{0}\right|+\|u-v\|_{\infty}+(1+W)\|r-s\|_{\infty}\right),
\end{aligned}
$$

where $\|\cdot\|_{\infty}$ denotes the sup-norm, and

$$
\begin{aligned}
V=V(r, s, u, v) & :=\operatorname{Var}(r)+\operatorname{Var}(s)+\operatorname{Var}(u)+\operatorname{Var}(v), \\
W=W(r, s, u, v) & :=\|r\|_{\infty}+\|s\|_{\infty}+\|u\|_{\infty}+\|v\|_{\infty} .
\end{aligned}
$$

Precise formulation of the existence result on $B V$ (R.,

 2010)Let $u \in B V_{L}^{c_{u}}(0, T ; X), g \in B V_{L}^{c_{g}}\left(0, T ; C_{\omega, \gamma}^{1}(X \times X ; \mathcal{R})\right)$ and $x_{0} \in Z\left(g\left(0, u(0), u(0)-x_{0}\right)\right)$. Assume that the smoothness hypothesis holds,

$$
\begin{aligned}
\delta:=C K_{0} \gamma & <1 \quad \text { and } \\
C K_{0}\left|c_{g}\right|+\left(1+C K_{0} \omega\right)\left|c_{u}\right| & \leq \frac{(1-\delta)^{2}}{C_{J} C(1+\delta)}
\end{aligned}
$$

hold. Then there exists a unique solution to the quasivariational sweeping process.

