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What is Hysteresis?

Hysteresis occurs in plasticity, ferromagnetism, ferroelectricity, superconductivity,

undercooling, shape memory, porous media filtration, and so on.

M.A. Krasnosel’skiı̆ and his school began the analysis of hysteresis in the 1970’s.
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Hysteresis = Rate-Independent Memory

Memory: w(t) depends on the previous evolution of u, and on the initial state:

w(t) =
[
F(u,w0)

]
(t) ∀t ∈ [0, T ].

Rate-Independence: For any increasing diffeomorphism ϕ : [0, T ] → [0, T ],

F(·, w0) : u �→ w ⇒ F(·, w0) : u ◦ ϕ �→ w ◦ ϕ.
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Continuous hysteresis operators are typically constructed via

(i) definition for piecewise monotone inputs,

(ii) derivation of a property of uniform continuity,

(iii) extention by continuity to a Banach space (e.g., C0([0, T ])).
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Examples (from elasto-plasticity)

Stop Play
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Stop Play

w′ + sign−1(w) 	 u′ sign(w′) + w 	 u

The large class of Prandtl-Ishlinskiı̆ models is obtained by composing stops and plays.



Another Example: Duhem’s Model

Let g1, g2 ∈ C1(R2). ∀u ∈ W 1,1(0, T ), ∀w0 ∈ R,




dw

dt
= g1(u,w)

(du
dt

)+
− g2(u,w)

(du
dt

)−
a.e. in ]0, T [

w(0) = w0.

This Cauchy problem defines a continuous operator

F : W 1,1(0, T ) → W 1,1(0, T ) : u �→ w.



Another Example: Duhem’s Model

Let g1, g2 ∈ C1(R2). ∀u ∈ W 1,1(0, T ), ∀w0 ∈ R,




dw

dt
= g1(u,w)

(du
dt

)+
− g2(u,w)

(du
dt

)−
a.e. in ]0, T [

w(0) = w0.

This Cauchy problem defines a continuous operator

F : W 1,1(0, T ) → W 1,1(0, T ) : u �→ w.

By the irreversibility of hysteresis, dt ≥ 0; the O.D.E. is then equivalent to

dw

du
= g1(u,w) if u ↗

dw

du
= g2(u,w) if u ↘

⇒ F is rate-independent.

This formulation can be modified, to confine (u,w) to a subset of R2.
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Discontinuous Hysteresis

Relays. For any pair ρ := (ρ1, ρ2) ∈ R2 (ρ1 < ρ2), we define the relay operator hρ:

The operator hρ : C0([0, T ]) × {−1, 1} → BV (0, T ) is not closed.
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In connection with P.D.E.s, it is of interest to deal with the closure of hρ.

Its graph invades the whole rectangle [ρ1, ρ2] × [−1, 1].

At variance with stops and plays,

relays cannot be represented by variational inequalities.
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Preisach’s Model (1935)
Linear combination of delayed relays with different thresholds and the same input:

Hµ(u, {ξρ}) :=
∫
ρ1<ρ2

hρ(u, ξρ) dµ(ρ) in [0, T ].

Under natural hypotheses on the Preisach measure µ,

Hµ operates and is continuous in C0([0, T ]).



P.D.E.s with Hysteresis

F : (possibly discontinuous) hysteresis operator, A: elliptic operator.

∂

∂t
[u + F(u)] + Au = f quasilinear parabolic (1)

∂u

∂t
+ Au + F(u) = f semilinear parabolic (2)

∂F(u)
∂t

+ �v · ∇u = f 1st-order quasilinear hyperbolic (3)

∂2

∂t2
[u + F(u)] + Au = f 2nd-order quasilinear hyperbolic. (4)

(Discontinuous F ⇒ moving fronts, i.e., free boundaries.)

Initial- and boundary-value problems associated with (1), (2), (3) are well-posed.

(4) is considered below.



Hysteresis and Monotonicity

The standard L2-monotonicity,

∫ T

0
[F(u1) −F(u2)](u1 − u2)dt ≥ 0 ∀u1, u2 ∈ C0([0, T ])

is too strong for hysteresis operators.



Piecewise monotonicity looks appropriate:




∀u ∈ C0([0, T ]),∀[t1, t2] ⊂ [0, T ],

if u is nondecreasing (nonincreasing, resp.) in [t1, t2], then

if F(u) is also nondecreasing (nonincreasing, resp.) in [t1, t2].



Piecewise monotonicity looks appropriate:




∀u ∈ C0([0, T ]),∀[t1, t2] ⊂ [0, T ],

if u is nondecreasing (nonincreasing, resp.) in [t1, t2], then

if F(u) is also nondecreasing (nonincreasing, resp.) in [t1, t2].

Hence

u,F(u) ∈ W 1,1(0, T ) ⇒ dF(u)
dt

du

dt
≥ 0 a.e. in ]0, T [.

This means that hysteresis branches are nondecreasing.

For several P.D.E.s with hysteresis, this property is at the basis of a priori estimates.

However, to pass to the limit in the hysteresis operator, this property is of no use.



Ferromagnetic Hysteresis
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(i) Confinement condition:


|w| ≤ 1

(w − 1)(u− ρ2) ≥ 0

(w + 1)(u− ρ1) ≥ 0
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(i) Confinement condition:


|w| ≤ 1

(w − 1)(u− ρ2) ≥ 0

(w + 1)(u− ρ1) ≥ 0

(ii) Dissipation condition:


∫ t

0
u dw ≥

∫ t

0

[
ρ2(dw)+ − ρ1(dw)−

]
=
ρ2 − ρ1

2

∫ t

0
|dw| +

ρ2 + ρ1

2
w

∣∣y
0

=: Ψρ(w, t) ∀t



Scalar Quasilinear Hyperbolic Equation with Hysteresis

Data: u0, w0 ∈ L2(Ω), F ∈ L2
(
0, T ;H−1(Ω)

)
.

Problem 1. To find U ∈ H1(Q) and w ∈ L∞(Q) such that
∂w

∂t
∈ C0(Q̄)′

∂

∂t
(u + w) −∆U = F in H−1(Q)

(
u :=

∂U

∂t

)

|w| ≤ 1,

{
(w − 1)(u− ρ2) ≥ 0

(w + 1)(u− ρ1) ≥ 0
a.e. in Q

1
2

∫
Ω

[
u(x, t)2−u0(x)2+|∇U (x, t)|2

]
dx +

∫
Ω

Ψρ(w(x, ·), t) ≤
∫ t

0
〈F, u〉 dτ

γ0U = 0 on (Ω × {0}) ∪ (∂Ω×]0, T [)

(u + w)|t=0 = u0 + w0 in Ω.



Theorem. F ∈ L1
t (L2

x) + W 1,1
t (H−1

x ) ⇒ ∃ solution (U,w):

U ∈ W 1,∞(
0, T ;L2(Ω)

)
∩ L∞

(
0, T ;H1

0 (Ω)
)
.

This can be extended to the Preisach model. The argument is based upon:

(i) approximation via implicit time-discretization,

(ii) derivation of a priori estimates; in particular, by the dissipation condition,

∥∥∥∂wm
∂t

∥∥∥
C0(Q̄)′

=
∫
Ω

dx

∫ T

0
|dwm| ≤ Constant,

(iii) passage to the limit by compactness and lower semicontinuity.

A. V.: Quasi-linear hyperbolic equations with hysteresis.

Ann. Inst. H. Poincaré. Nonlinear Analysis, 19 (2002), 451-476



The argument also uses the following compensated compactness result.

Lemma 1. If

zm → z weakly in L2(Q) ∩H−1
(
0, T ;H1(Ω)

)
wm → w weakly star in L∞(Q)∥∥∥∂wm

∂t

∥∥∥
L1(Q)

≤ Constant

then ∫∫
Q

wmzm dxdt →
∫∫

Q

wz dxdt.



Vector Problem — Maxwell-Ohm’s Equations (in Gauss units)

c∇× �H = 4π �J +
∂ �D

∂t
c∇× �E = −∂ �B

∂t
(∇× := curl)

∇· �B = 0 ∇· �D = 4πρ̂ (∇· := div)

Ohm’s law: �J = σ �E + �Je Dielectric relation: �D = ε �E

⇒ ε
∂2 �B

∂t2
+ 4πσ

∂ �B

∂t
+ c2∇×∇× �H = 4πc∇× �Je (:datum)
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Ohm’s law: �J = σ �E + �Je Dielectric relation: �D = ε �E
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In ferrimagnetic insulators: σ = 0 → quasilinear hyperbolic

In ferromagnetic metals: ε
∂2 �B

∂t2
� 4πσ

∂ �B

∂t
→ quasilinear parabolic

For quasi-static processes: c∇× �H = 4π �J ∇· �B = 0.



Constitutive Law �H �→ �M

Vector Relay. Each “magnetic element” is characterized by

(i) a magnetization direction �θ ∈ S2,

(ii) a pair of thresholds ρ := (ρ1, ρ2) ∈ P .

The vector relay �h(ρ,�θ) is defined in terms of the scalar relay �hρ as follows:

�h(ρ,�θ)(
�H) := hρ( �H ·�θ)�θ ∀(ρ, �θ) ∈ P × S2.

A vector relay may represent the behaviour of a strongly anisotropic crystal having

crystallographic orientation �θ.



Each of the 3 P.D.E. systems above
(i.e., hyperbolic, parabolic, quasistationary evolution)

can be coupled with the constitutive law

~M(x , t) =
[
~h(ρ(x),~θ(x))

(
~H(x , ·)

)]
(t) pointwise in Q.

Each of these 3 problems has a weak solution.

A. V.: Maxwell’s equations with vector hysteresis.
Archive Rat. Mech. Anal. 175 (2005) 1–38
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The argument also uses the following compensated compactness result.

Lemma 2. If

�um → �u weakly in L2
(
R3×]0, T [

)3 ∩H−1
(
0, T ;L2

rot(R
3)3

)
�zm → �z weakly star in L∞

(
R3×]0, T [

)3

‖�zm‖L1(R3;BV (0,T )3) ≤ Constant

∇·(�um + �zm) = 0 in D′
(
R3×]0, T [

)
,∀m,

then

lim sup
m→∞

∫∫
B×]0,T [

�zm ·�um dxdt ≤
∫∫
B×]0,T [

�z ·�u dxdt ∀ ball B ⊂ R3.




