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1 Introduction
Consider the easiest model in population genetics: the Wright-Fisher model. That is, we
consider a population that develops over time. The population is supposed to be haploid,
i.e. each individual has exactly one ancestor. The generations are non-overlapping and of
constant size. Further suppose that there is an infinite number of generations both in the
future and in the past. Each individual in generation n chooses its ancestor uniformly among
the individuals of generation n− 1, independently of the choices of the other individuals.
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Figure 1: An example of the genealogical tree for a population of size seven for the generations
−2 to 2.

If we model the development of the distribution of genetic types forward in time, we obtain
a measure-valued process in the limit for large populations: the so called Fleming-Viot process
(Kurtz, 1981).

If we model the genealogical tree backward in time, we obtain a partition-valued process
in the limit for large populations: Kingman’s coalescent (Kingman, 1982b).

Those two processes are dual to each other. This was shown by Dawson and Hochberg
(1982). They proved the duality of the Fleming-Viot process to a function-valued process,
but their formulation can be easily adapted to prove the duality of Fleming-Viot process and
Kingman’s coalescent.

The Wright-Fisher model is a special case of a class of population models that was in-
troduced by Cannings (1974, 1975). Möhle and Sagitov (2001) studied the partition-valued
formulation of Cannings’ model and obtained a general class of coalescents in the limit for
large populations, so called exchangeable coalescents. Schweinsberg (2000a) classified those
exchangeable coalescents and proved that they are in one-to-one correspondance with finite
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measures Ξ on the infinite simplex

∆ :=

{
(x1, x2, . . . ) ∈ RN : x1 ≥ x2 ≥ · · · ≥ 0 and

∞∑
i=1

xi ≤ 1

}

This is why exchangeable coalescents are also called Ξ-coalescents. If we consider only mea-
sures on ∆ that are concentrated on sequences of the form (x1, 0, 0, . . . ) and can thus be
interpreted as measures on [0, 1], we also speak of Λ-coalescents.

Bertoin and Le Gall (2003) introduced a generalisation of the Fleming-Viot process, so
called Λ-Fleming-Viot processes, for which they gave an explicit Poisson construction. Also
they showed that Λ-Fleming-Viot processes and Λ-coalescents are dual to each other.

Ξ-Fleming-Viot processes (that are a generalisation of Λ-Fleming-Viot processes) were
introduced explicitly by Birkner et al. (2009) who gave a fundamentally different construction
of these processes than Bertoin and Le Gall (2003) gave for their Λ-coalescents.

In this work we want to generalize the result of Bertoin and Le Gall (2003). We will
construct Ξ-Fleming-Viot processes and we will show the duality of Ξ-Fleming-Viot processes
and Ξ-coalescents. Bertoin and Le Gall (2003) point out the possibility of such a generalisation
and they state that “details are left to the interested reader”. Having obtained the duality
between Ξ-coalescents and Ξ-Fleming-Viot processes, it is not surprising that we will be able to
show convergence of the measure-valued formulation of Cannings’ model towards Ξ-Fleming-
Viot processes.

Finally, we slightly generalize a realistic population model introduced by Schweinsberg
(2003). This population model is in the class of Cannings’ models and we can use the before
obtained convergence results to show the convergence towards coalescents or Fleming-Viot
processes, depending on the considered formulation.

In the entire text, we will always consider the Borel σ-algebra, unless it is noted otherwise.
We will denote the Borel σ-algebra of a topological space E by B(E).

2 Preliminaries
Unless it is noted otherwise, everything in this section is a translation of the corresponding
sections from Perkowski (2009)

2.1 Exchangeable Random Partitions

In this chapter we introduce the important correspondance between exchangeable random
partitions and mass partitions.

2.1.1 Partitions of [n]

Definition 2.1. 1. Let B ⊆ N, B 6= ∅, be a subset of N := {1, 2, . . . }. A partition π of
B is a family of disjoint blocks (πi : i ∈ N) such that

⋃
i∈N πi = B. We suppose that the

πi are always enumerated by increasing order of their least element.

2. For a partition π of B, #π ∈ N̄ := N ∪∞ is the number of non-empty blocks of π, i.e.
#π := sup{i : πi 6= ∅}.

3. For i ∈ B, π(i) is the number of the block of π that contains i.
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4. Pn is the space of partitions of [n] := {1, . . . , n}, equipped with the discrete topology. 0n
is the partition of [n] in singletons.

5. P∞ is the space of partitions of [∞] := N. 0∞ is the partition of N in singletons.

6. For n ∈ N̄, m ≤ n and π ∈ Pn let Rmπ be the restriction of π to [m]: Rmπ is the
unique partition in Pm such that for i, j ≤ m, i and j are in the same block of Rmπ if
and only if they are in the same block of π.

7. For n ∈ N̄ and π, π′ ∈ Pn, we write π ⊆ π′ if π′ is coarser than π, i.e. if π′ is obtained
by coagulating blocks of π. We write π ≺ π′ if π′ is obtained by coagulating exactly two
blocks of π.

We introduce the notation
i
π∼ j

to express that i and j are in the same block of π. We define a distance ρ on P∞:

ρ(π, π′) := 2− inf{n:Rnπ 6=Rnπ′}

We would like P∞ to be a Polish space. In fact it is even a compact metric space:

Proposition 2.2. P∞ equipped with the distance ρ is a compact metric space.

Proof. We will show that (P∞, ρ) is complete and that each sequence in P∞ admits a Cauchy
subsequence.

Let (πn) be a Cauchy sequence in P∞, and let m ∈ N. So there is Nm ∈ N such that for
each n, n′ ≥ Nm we have ρ(πn, πn′) < 2−m. So the sequence (Rmπn)n is constant for large
enough n. We define a partition π ∈ P∞ such that i π∼ j if and only if i πn∼ j for each n that
is large enough. The definition of ρ immediately implies the convergence of πn towards π.

Let (πn) be a sequence in P∞. We consider (R2πn). Since P2 is finite, there is an infinite
constant subsequence (R2πnk). Then we consider (R3πnk) and select another infinite constant
subsequence (R3πnkl ), etc. We obtain a Cauchy subsequence by choosing a diagonal sequence
of this collection of subsequences of (πn).

2.1.2 Mass Partitions

Definition 2.3. A mass partition is a real-valued sequence (x1, x2, . . . ) such that

x1 ≥ x2 ≥ · · · ≥ 0 and
∞∑
i=1

xi ≤ 1

We define

x0 := 1−
∞∑
i=1

xi

We denote by ∆ the infinite simplex of mass partitions.

∆ is a compact metric space:
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Proposition 2.4. ∆ equipped with the uniform distance

d(x, x′) := max{|xi − x′i| : i ∈ N}, x, x′ ∈ ∆

is a compact space.
Uniform convergence is equivalent to simple convergence.

Proof. The equivalence of uniform convergence and simple convergence is a direct consequence
of the fact that for each x = (xi) in ∆ we have xi ≤ 1/i for all i ∈ N.

Let (xn) be a sequence in ∆. We want to show that (xn) admits a convergent subsequence.
Since (xn1 )n is a bounded sequence in R, we can choose a convergent subsequence xnk1

k→∞−→x1.
Now we can choose a subsequence (x

nkl
2 ) of (xnk2 ) that converges to a x2 ∈ R. We repeat this

for each i ∈ N. Then we choose a diagonal subsequence of all those subsequences. Denote
that subsequence of (xn) by (xm). So for each i ∈ N, xmi converges to xi when m → ∞. Of
course the limit (xi) is still monotone, i.e. x1 ≥ x2 ≥ . . . . Fatou’s lemma yields

∞∑
i=1

xi ≤ 1

Thus x = (xi) is in ∆. Since uniform convergence is equivalent to simple convergence, (xm)
converges uniformly to x.

Example 2.5. Let (ξt, 0 ≤ t ≤ 1) be a pure jump subordinator with jumps a1 ≥ a2 ≥
. . . in decreasing order. (In the Appendix B there is an overview of subordinators.) So
(a1/ξ1, a2/ξ1, . . . ) is a random point in ∆, and the distribution of (ξt) corresponds to a distri-
bution on ∆.

Let α ∈ (0, 1) and let (ξt, t ∈ [0, 1]) be a subordinator with Laplace exponent

Φ(q) = cqα =
cα

Γ(1− α)

∫ ∞
0

(1− e−qx)x−α−1dx.

for some c > 0. Here, Γ is the gamma function, Γ(α) =
∫∞

0
xα−1e−xdx. Such a (ξt) is called

stable subordinator of index α. The Lévy measure of ξ is given by

Λα(dx) =
cα

Γ(1− α)
x−α−1dx

It satisfies
Λα(x,∞) =

c

Γ(1− α)
x−α

The corresponding distribution on ∆ is called Poisson-Dirichlet distribution of index
(α,0), PD(α,0). Note that the parameter c has no influence on the PD(α, 0)-distribution,
since kαc corresponds to (kξt, t ∈ [0, 1]) (this can be immediately seen by calculating the
Laplace exponent).

2.1.3 Exchangeable Random Partitions

To define exchangeable random partitions, we first need to define permutations: A permuta-
tion of [n] for n ∈ N is a bijective map from [n] to [n]. A permutation of N is a bijective map
σ from N to N such that there exists an N ∈ N with σ(n) = n for each n ≥ N .

For each permutation σ of [n], n ∈ N̄ and for each partition π ∈ Pn we define the partition
σ̂π as follows: for i, j ∈ [n], σ(i)

σ̂π∼ σ(j) if and only if i π∼ j.
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Definition 2.6. A random partition π of [n] with n ∈ N̄ is called exchangeable if the law
of π is invariant under permutations of [n], i.e. if for each permutation σ of [n], σ̂π has the
same distribution as π.

Definition 2.7.

A partition π of N is said to have asymptotic frequencies if for each block B of π:

lim
n→∞

1

n

n∑
i=1

1{i∈B} exists

With the paintbox construction of Kingman (1982b) we can associate an exchangeable
random partition to each mass partition:

Definition 2.8. 1. Let x ∈ ∆. Let (ξn)n∈N be a sequence of independent and identically
distributed (i.i.d.) random variables, such that

P(ξ1 = i) = xi, i ∈ N, P(ξ1 = 0) = 1−
∞∑
i=1

xi

Given the values of the ξn, we define a partition π ∈ P∞ such that i 6= j are in the same
block of π if and only if

ξi = ξj > 0

So all i with ξi = 0 are singletons of π. We denote the distribution of π by P x. P x is
called a paint box distribution. To motivate this name, imagine that each number i
corresponds to a color. 0 corresponds to a magic paint that has a different color each
time it is used. Each element j ∈ N is painted with the colour ξj. Then all the elements
with the same color are put in the same block of π.

2. For a distribution ν on ∆ we define a mixture of paint boxes:

P ν(dπ) :=

∫
∆

P x(dπ)ν(dx)

It is easily verified that those paint boxes correspond to exchangeable partitions that almost
surely (a.s.) possess asymptotic frequencies. The second statement is obtained with the law
of large numbers. Indeed, every exchangeable random partition is given by a mixture of paint
boxes. To prove this, we will need de Finetti’s theorem. The following version is Theorem
(3.1) of Aldous (1985):

Theorem 2.9 (de Finetti). Let (Zi)i∈N be an exchangeable sequence of real-valued random
variables. That is, for each permutation σ of N, (Zσ(i))i∈N has the same distribution as (Zi)i∈N.
Then there exists a random probability measure µ on R (cf. Definition A.1), such that

(Zi) is i.i.d. conditionally on the σ-algebra created by µ
P(Zi ∈ A|µ)(ω) = µ(ω,A)

Now we are ready to state the main result of this section. This theorem was established
by Kingman (1978). The following proof is taken from Aldous (1985), Proposition (11.9), and
we use details from the more elaborate version of Bertoin (2006), Theorem 2.1.
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Theorem 2.10 (Kingman). Let π be an exchangeable random partition of N. Then π a.s.
possesses asymptotic frequencies. Let X1 ≥ X2 ≥ . . . be the ordered sequence of the asymptotic
frequencies of the different blocks of π where Xn := 0 if π has less than n non-empty blocks.
Then X = (X1, X2, . . . ) is a.s. in ∆, and conditionally on X, π has the distribution PX . In
particular

P(π ∈ A) =

∫
∆

P x(A)G(dx)

where G is the distribution of X.

Proof. 1. b : N → N is called selection map for the partition η if for all i, j in the same
block of η we have b(i) = b(j) = k where k is an element of the same block of η. So let
b be a selection map for π.

Let (ξi)i∈N be an i.i.d. sequence that is uniformly distributed on [0, 1] (notation: ξi '
U([0, 1])), independent of π and of b. We define Zi := ξb(i). Since b and π are independent
of (ξi), the distribution of (Zi)i∈N does not depend on the selection map b.

2. The sequence (Zi) is exchangeable: Let σ be a permutation of N. We have

Zσ(i) = ξb(σ(i)) = ξ′b′(i)

where

ξ′i := ξσ(i) and b′(i) := (σ−1 ◦ b ◦ σ)(i)

b′ is a selection map for σ̂−1π: Let i and j be in the same block of σ̂−1π: Then σ(i) and
σ(j) are in the same block of π, and thus

b(σ(i)) = b(σ(j)) = σ(k)

for a certain k such that σ(k) and σ(i) are in the same block of π. But that means that
k and i are in the same block of σ̂−1π. Further we have

b′(i) = b′(j) = σ−1 ◦ σ(k) = k

and therefore b′ is a selection map for σ̂−1π. (ξ′i) is an i.i.d. sequence that is uniformly
distributed on [0, 1] and that is independent of σ̂−1π and of b′. Since π is exchangeable,
σ̂−1π has the same distribution as π, and thus Zσ(i) has the same distribution as (Zi).

3. We use de Finetti’s theorem (Theorem 2.9). Let µ be a random probability measure
for (Zi) as in the theorem. We can choose it such that for each ω, the mass of µ(ω)
is concentrated on [0, 1]. Let f(µ)(ω) be the ordered sequence µ1(ω) ≥ µ(ω)2 ≥ . . . of
atoms of µ(ω). That is, µ1(ω) is the size of the largest atom of µ(ω), etc. We define
µn(ω) := 0 if µ(ω) has less than n atoms. Conditionally on µ, the distribution of π is
given by P f(µ):

Let
q(x) := inf{y : µ([0, y]) ≥ x}
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be the (random) quantile function of µ. We define

θ := {x ∈ (0, 1) : ∃ ε > 0 such that q(x) = q(y) if |y − x| < ε}

The intervall lengths of θ correspond to the atom sizes of µ. Let (Vi)i∈N be an i.i.d.
sequence, Vi ' U([0, 1]), independent of π, of (Zi), and of µ. Then

P(q(V1) ≤ x|µ) = P(µ([0, x]) ≥ V1|µ) = µ([0, x])

so conditionally on µ, (q(Vi)) has the same distribution as (Zi). We define a partition π′
such that i and j are in the same block of π′ if and only if q(Vi) = q(Vj). Conditionally
on µ, π′ has the same distribution as π. But i and j are in the same block of π′ if and
only if Vi and Vj are in the same intervall of θ. So conditionally on µ, π′ (and therefore
also π) has the paint box distribution P f(µ). (We could define Wi := k if Vi is in the
k-th largest intervall of θ and Wi := 0 if Vi is in no intervall of θ to see that we are really
in the paint box setting.)

4. Conclusion: We have

P(π ∈ A|µ) = P f(µ)(A)

and conditionally on µ, π has asymptotic frequencies f(µ). In particular, π a.s. possesses
asymptotic frequencies. By taking expectations on both sides we get

P(π ∈ A) =

∫
∆

P x(A)G(dx)

where G is the distribution of f(µ), i.e. the distribution of the asymptotic frequencies
of π.

2.2 Exchangeable Coalescents

2.2.1 Definition and Classification

We introduce coalescents with simultaneous multiple collisions and we show a correspondance
between such coalescents and finite measures on the infinite simplex ∆.

Definition 2.11. A coalescent is a stochastic process (Π(t))t≥0 with values in Pn for n ∈ N̄
that is a.s. right-continuous and possesses left limits (càdlàg) and such that for all s > t ≥ 0:
Π(t) is a refinement of Π(s), i.e. Π(t) ⊆ Π(s).

Definition 2.12. Let B ⊆ N be a subset of N. Let π be a partition of B. Let m ≥ #π and
let π′ ∈ Pm. We define the partition Coag(π, π′) as follows:

Coag(π, π′)j :=
⋃
i∈π′j

πi, j ≤ #π′

where Coag(π, π′)j is the jth block of Coag(π, π′).

The coagulation operator has two elementary properties that will be very useful:
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1. For π, π′ ∈ P∞, n ∈ N, we have

Rn Coag(π, π′) = Coag(Rnπ,Rnπ
′)

2. If all the terms in the following equation are well-defined we have

Coag(π,Coag(π′, π′′)) = Coag(Coag(π, π′), π′′)

Definition 2.13. Let b, r ∈ N, k1, . . . , kr ≥ 2, s ∈ N0 := {0, 1, . . . }, and b = k1 + · · ·+ kr + s.
π ∈ Pb is called a (b; k1, . . . , kr; s)-partition if π has (non-ordered) blocks B′1, . . . , B′r of
respective sizes k1, . . . , kr, and s singletons.

Definition 2.14. Let π ∈ Pn, n ∈ N̄ and ∞ > b = #π. π′ is a (b; k1, . . . , kr; s)-collision
of π if π′ = Coag(π, π′′) where π′′ is any (b; k1, . . . , kr; s)-partition.

Here we will only consider coalescents that are Markov processes and for which the rate
of each (b; k1, . . . , kr; s)-collision is the same.

Definition 2.15. Let m ∈ N̄. A coalescent (Π(t))t≥0 with values in Pm is called coalescent
with simultaneous multiple collisions (c.s.m.c.) or exchangeable coalescent if for
all n,m ∈ N, n ≤ m:

(RnΠ(t))t≥0 is a Markov chain with values in Pn

and

when RnΠ(t) has b blocks, each (b; k1, . . . , kr; s)-collision
happens with rate λb;k1,...,kr;s

If Π(0) = 0m, then Π is called standard.

An important example of such coalescents is given by Kingman’s coalescent. For this
coalescent, the collision rates are λb;2;b−2 = 1 for each b, and every other rate is 0. This means
that the jump rate from π to π′ is 1 if π′ is formed from π by coagulating exactly 2 of its
blocks, and otherwise the rate is 0. This process was introduced by Kingman (1982b) to study
the genealogy of large populations. The new idea that proved to be very successful was to
consider a process with values in Pn. Kingman proved that this coalescent arises in the limit
for large populations in a number of models: The Wright-Fisher model, the Moran model
(which we will not study here), but also the general Cannings’ model if we assume the family
sizes to be sufficiently bounded (this will be expressed more precisely later in this text). The
mathematical properties of Kingman’s coalescent are described in Kingman (1982a).

In 1998, Bolthausen and Sznitman (1998) introduced another exchangeable coalescent.
This paved the way for the general classification of those processes:

In 1999, Pitman (1999) and Sagitov (1999) introduced independently of each other coa-
lescents with multiple collisions. Those are exchangeable coalescents with λb;k1,...,kr;s = 0 for
r > 1, i.e. each λ that is not of the form λb;k;b−k is 0. This evidently means that for such
coalescents we can have a collision of several blocks (not just of two blocks as for Kingman’s
coalescent), but a.s. no two such collisions happen at the same time.

Coalescents with simultaneous multiple collisions were obtained the first time by Möhle
and Sagitov (2001) as limits of Cannings’ population models. A classification of c.s.m.c.’s
was given by Schweinsberg (2000a). In this article Schweinsberg proved that c.s.m.c.’s are in
one-to-one correspondance with finite measures on the space of mass partitions ∆:
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Theorem 2.16. Let {λb;k1,...,kr;s : r, b ∈ N, k1, . . . , kr ≥ 2, s ∈ N0, b =
∑r

j=1 kj + s} be a family
of positive (i.e. ≥ 0) numbers. Then there exists a standard coalescent with simultaneous
multiple collisions with values in P∞ with collision rates λb;k1,...,kr;s, if and only if there is a
finite measure Ξ on ∆,

Ξ = Ξ0 + cδ0

where Ξ0 has no atom in 0 := (0, 0, . . . ), δ0 is the Dirac mass in 0 and c ≥ 0, such that

λb;k1,...,kr;s =

∫
∆

Qk1,...,kr;s(x)∑∞
j=1 x

2
j

Ξ0(dx) + c1{r=1,k=2} with (1)

Qk1,...,kr;s(x) :=
s∑
l=0

∑
i1 6=···6=ir+l

(
s

l

)
xk1i1 . . . x

kr
ir
xir+1 . . . xir+l

(
1−

∞∑
j=1

xj

)s−l

(2)

For each c.s.m.c., the associated measure Ξ is uniquely determined.

Remark. 1. Note that the integral in (1) is well-defined, as Ξ0 has no atom in 0.

2. The formula (1) is the formula that was originally established by Schweinsberg (2000a).
There is another formula given by Bertoin (2006). Bertoin considers the measure

ν(dx) :=

(
1

/
∞∑
j=1

x2
j

)
Ξ0(dx) + cδ0

that is not necessarily finite on ∆.

Definition 2.17. A c.s.m.c. (Π(t))t≥0 with rates λb;k1,...,kr;s given by (1) is called Ξ-coalescent.

Poissonian Construction To show that condition (1) is sufficient, we construct a Ξ-
coalescent with a Poisson point process construction (cf. Appendix A for an overview of
Poisson point processes). This construction was originally given by Schweinsberg (2000a),
but we present the slightly adapted version of Bertoin (2006), Chapter 4.2.3. Nonetheless
some details in the proof are taken from Schweinsberg (2000a).

Let ν be a σ-finite measure on ∆ such that

ν({0}) = 0 and
∫

∆

∞∑
j=1

x2
jν(dx) <∞ (3)

Let c ≥ 0. We associate a σ-finite measure µ on P∞ to ν and c: For i, j ∈ N let κ(i, j) be
the unique partition of N that consists of one block of size two, {i, j}, and otherwise only of
singletons. We define

µ(dπ) :=

∫
∆

P x(dπ)ν(dx) + c

∞∑
i=1

∞∑
j=i+1

1κ(i,j)(dπ) (4)

Since ν is σ-finite, µ is σ-finite as well.
Let (e(t))t≥0 be a Poisson point process of intensity µ. We will use (e(t)) to construct

processes (Πn(t))t≥0 with values in Pn. Then we will see that all the Πn are compatible: a.s.
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RmΠn(t) = Πm(t) for each t. Therefore we can define a process (Π(t))t≥0 with values in P∞
such that RnΠ(t) = Πn(t) for t ≥ 0, n ∈ N.

For n ∈ N we define

An := {π ∈ P∞ : Rnπ 6= 0n}

and for k, l ∈ N:

Ak,l := {π ∈ P∞ : k and l are in the same block of π} (5)

We have

µ(An) ≤
n∑
k=1

n∑
l=k+1

µ(Ak,l) =
n∑
k=1

n∑
l=k+1

(∫
∆

P x(Ak,l)ν(dx) + 1

)

=

(
n

2

)(∫
∆

∞∑
j=1

x2
jν(dx) + 1

)
<∞

The last inequality comes from (3).
We define T0,n := 0 and for k ≥ 1: Tk,n := inf{t > Tk−1,n : e(t) ∈ An}. Since µ(An) <∞,

the Tk,n correspond to jump times of a Poisson process. Thus they are without cluster point
and we have e(Tk,n) ∈ An for k ≥ 1. Given a partition π ∈ P∞, we define Ππ

n(0) := Rnπ and

Ππ
n(Tk,n) := Coag(Ππ

n(Tk−1,n), e(Tk,n))

Now let m < n ∈ N. Since Am ⊆ An, Ππ
m and Ππ

n are constant on the intervall [Tk,n, Tk+1,n) for
each k ≥ 0. Thus it suffices to verify the equality Ππ

m(t) = RmΠπ
n(t) a.s. for t ∈ {Tk,n : k ≥ 0 }.

For k = 0 this is trivial. Let k ≥ 1. Recall that for a partition η, η(i) is the number of the
block containing i. Let i, j ∈ [m]. Then i and j are in the same block of Ππ

m(Tk,n) if and
only if Ππ

m(Tk−1,n)(i) and Ππ
m(Tk−1,n)(j) are in the same block of e(Tk,n). On the other side i

and j are in the same block of Ππ
n(Tk,n) (and thus of RmΠπ

n(Tk,n)) if and only if Ππ
n(Tk−1,n)(i)

and Ππ
n(Tk−1,n)(j) are in the same block of e(Tk,n). But since the blocks of partitions are

enumerated by increasing order of their least element, and since by induction hypothesis
Ππ
m(Tk−1,n) = RmΠπ

n(Tk−1,n), we have Ππ
n(Tk−1,n)(i) = Ππ

m(Tk−1,n)(i) for each i ∈ [m]. We
obtain Ππ

m(Tk,n) = RmΠπ
n(Tk,n).

The construction of Ππ is now evident: Let i, j ∈ N, then i and j are in the same block
of Ππ(t) if they are in the same block of Ππ

max{i,j}(t). Using the definition of the topology on
P∞ it is evident that Ππ is càdlàg and that for each t < s, Ππ(t) is a refinement of Ππ(s).
Therefore we constructed a coalescent.

Given a finite measure Ξ = Ξ0 + cδ0 on ∆, we define ν(dx) := Ξ0(dx)∑∞
j=1 x

2
j
and we construct

Ππ exactly like we just did. It remains to show that Ππ is a Ξ-coalescent.

Proposition 2.18 (Sufficient Condition of Theorem 2.16). The process (Ππ(t))t≥0 constructed
as above is a Ξ-coalescent.

Proof. 1. RnΠπ is a Markov chain:
RnΠπ = Ππ

n where Ππ
n is the process of the construction. By using the construction and

the “independent increments” (55) of Poisson point processes, it is easily verified that
Ππ
n is a Markov chain.

13



2. Each (b; k1, . . . , kr; s)-collision has the rate λb;k1,...,kr;s:
Let n ∈ N. Let π ∈ P∞ such that Rnπ has b blocks. Let π′ be a (b; k1, . . . , kr; s)-
partition. We denote its (non-ordered) blocks of size ≥ 2 by B′1, . . . , B′r. The jump rate
of RnΠπ(0) = Ππ

n(0) to Coag(Rnπ, π
′) is given by µ(A∞,π′) with A∞,π′ := {η ∈ P∞ :

Rbη = π′}. We calculate P x(A∞,π′): Recall that P x was constructed by i.i.d. variables
(ξi). If Rbη = π′, there exist necessarily

0 ≤ l ≤ s, i1 6= · · · 6= ir+l all 6= 0 and 1 ≤ m1 < · · · < ml ≤ b such that
ξm = ij for m ∈ B′j, 1 ≤ j ≤ r

ξmj = ir+j, 1 ≤ j ≤ l

ξm = 0 for m ≤ b,m /∈
(
∪j=1,...,rB

′
j

)
∪ {m1, . . . ,ml}

By summing up all the possible combinations we obtain

P x(A∞,π′) =
s∑
l=0

(
s

l

) ∑
i1 6=···6=ir+l

xk1i1 . . . x
kr
ir
xir+1 . . . xir+l

(
1−

∞∑
j=1

xj

)s−l

= Qk1,...,kr;s(x) (6)

This implies

λb;k1,...,kr;s = µ(A∞,π′) =

∫
∆

Qk1,...,kr;s(x)ν(dx) + c1{r=1,k=2}

=

∫
∆

(
Qk1,...,kr;s(x)/

∞∑
j=1

x2
j

)
Ξ0(dx) + c1{r=1,k=2}

and this is the desired formula (1).

Necessary Condition of Theorem 2.16 Given the λb;k1,...,kr;s, we will construct a σ-finite
measure µ on P∞. Then we will associate a σ-finite measure ν on ∆ and a c ≥ 0 to µ. We
will see that ν satisfies (3), and we will be able to define a finite measure on ∆ by setting
Ξ(dx) :=

∑∞
j=1 x

2
jν(dx) + cδ0. Then we will see that the rates λb;k1,...,kr;s are given by (1).

We choose this complicated way to obtain the results of Schweinsberg (2000a) (that we
want to use) with the methods of Bertoin (2006) (that reveal more about the structure of
coalescents with simultaneous multiple collisions).

Definition 2.19. Given π ∈ Pn, n ∈ N, we define for m ∈ N̄, m > n:

Am,π := {π′ ∈ Pm : Rnπ
′ = π}

Proposition 2.20. There is an unique measure µ on P∞ such that µ(A∞,π) = λb;k1,...,kr;s for
each (b; k1, . . . , kr; s)-partition π. This measure satisfies

1. µ is invariant under permutations of N (then µ is called exchangeable),

2. µ({0∞}) = 0,

3. µ({π ∈ P∞ : Rnπ 6= 0n}) <∞ for each n ∈ N

14



Proof. For each (b; k1, . . . , kr; s)-partition π with r > 0 let

qπ := λb;k1,...,kr;s

We define
An := σ({A∞,π : π ∈ Pn\{0n}}) and A :=

⋃
n∈N

An

It is easily verified that A is an algebra. We define a measure µ0 on A by

µ0(A∞,π) := qπ

To verify that µ0 is σ-additive, we consider π ∈ Pn and m > n. Since RnRmΠ0∞ = RnΠ0∞ ,
we have

qπ =
∑

π′∈Am,π

qπ′ (7)

which is the same as

µ0(A∞,π) = µ0

(
∪̇π′∈Am,πA∞,π′

)
=

∑
π′∈Am,π

µ0(A∞,π′)

µ0 is evidently additive on An, thus we have a σ-additive measure on an algebra A. We can use
Caratheodory’s extension theorem to extend µ0 to an unique measure µ on B(P∞\{0∞}) =
σ(A) if we consider each An as sub-set of P∞\{0∞} rather than P∞. To obtain a measure on
σ(P∞), we define µ({0∞}) := 0. µ satisfies condition 2 by definition. Condition 3 is satisfied
since

µ({π ∈ P∞ : Rnπ 6= 0n}) =
∑

π∈Pn\{0n}

qπ

Condition 1 is satisfied since qπ = qσ̂π for each permutation σ of [n].

Proposition 2.21. Let µ be the measure of Proposition 2.20. There are a unique measure ν
on ∆ and a unique c ≥ 0 such that

µ(dπ) =

∫
∆

P x(dπ)ν(dx) + c
∞∑
i=1

∞∑
j=i+1

δκ(i,j)(dπ).

ν satisfies

ν(0) = 0 and
∫

∆

∞∑
j=1

x2
jν(dx) <∞.

We even have a stronger result:

1. µ-almost every (a.e.) π has asymptotic frequencies

2. ν is given by

ν(dx) = 1{x 6=0}µ(|π|↓ ∈ dx)

where |π|↓ denotes the asymptotic frequency of π, and

1{|π|↓ 6=0}µ(dπ) =

∫
∆

P x(dπ)ν(dx)

15



3. 1{|π|↓=0}µ(dπ) = c
∑∞

i=1

∑∞
j=i+1 δκ(i,j)(dπ)

Proof. 1. For n ∈ N we introduce

µn(dπ) := 1{Rnπ 6=0n}µ(dπ).

Since µ({π : Rnπ 6= 0n}) <∞ (cf. Proposition 2.20), µn is a finite measure on P∞. Let
→
µn be the image measure of µn under

π 7→ →
π where i

→
π∼ j ⇐⇒ n+ i

π∼ n+ j

Since µ is exchangeable, →µn is a finite exchangeable measure on P∞. From Kingman’s
theorem (applied to →µn(.)/

→
µn(P∞)) we obtain that →µn-a.e. π possesses asymptotic

frequencies and that →µn is given by

→
µn(dπ) =

∫
∆

P x(dπ)
→
µn(|π|↓ ∈ dx) (8)

Let A := {π : π possesses asymptotic frequencies}. We have µ({0∞}) = 0 and the
asymptotic frequencies of a partition π do not depend on Rnπ for n <∞. Thus

µ(A) = lim
n→∞

µn(A) = lim
n→∞

µn({π :
→
π possesses asymptotic frequencies})

= lim
n→∞

→
µn(A) = 1

which yields the first statement of the theorem.

2. By using the same measure extension argument as in the proof of Proposition 2.20, we
see that it suffices to show

µ(Rkπ = πk, |π|↓ 6= 0) =

∫
∆

P x(Rkπ = πk)1{x 6=0}µ(|π|↓ ∈ dx) (9)

for k ∈ N and πk ∈ Pk. So let k and πk be given. By monotone convergence we obtain

µ(Rkπ = πk, |π|↓ 6= 0)

= lim
n→∞

µ(Rkπ = πk, |π|↓ 6= 0, π|{k+1,...,k+n} 6= 0{k+1,...,k+n})

where 0{k+1,...,k+n} is the partition of {k + 1, . . . , k + n} into singletons. Since µ is
exchangeable, this expression equals

= lim
n→∞

→
µn(Rkπ = πk, |π|↓ 6= 0)

(8)
= lim

n→∞

∫
∆

P x(Rkπ = πk)1{x 6=0}
→
µn(|π|↓ ∈ dx)

With the same argument that we used in the proof of 1., we see that |π|↓ does not change
under π 7→ →

π ; hence we obtain

= lim
n→∞

∫
∆

P x(Rkπ = πk)1{x 6=0}µn(|π|↓ ∈ dx)

= lim
n→∞

∫
∆

P x(Rkπ = πk)1{x 6=0}µ(|π|↓ ∈ dx,Rnπ 6= 0n)
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By monotone convergence and using µ({0∞}) = 0, we obtain the desired equation:

µ(Rkπ = πk, |π|↓ 6= 0) =

∫
∆

P x(Rkπ = πk)1{x 6=0}µ(|π|↓ ∈ dx)

Hence it suffices to define ν(dx) := 1{x 6=0}µ(|π|↓ ∈ dx). It remains to show that∫
∆

∞∑
j=1

x2
jν(dx) <∞

But this is easy now:∫
∆

∞∑
j=1

x2
jν(dx) =

∫
∆

P x(1
π∼ 2)ν(dx)

(9)
= µ(R2π = {1, 2}, |π|↓ 6= 0) ≤ µ(R2π 6= 02) <∞

The last inequality is condition 3 of Proposition 2.20.

3. Let µ̄(dπ) := 1{1π∼2,|π|↓=0}µ(dπ) and let →µ be the image measure of µ̄ under

π 7→ →
π where i

→
π∼ j ⇐⇒ 2 + i

π∼ 2 + j

→
µ is a finite exchangeable measure on P∞ and under →µ, a.e. π has the asymptotic
frequency 0. Hence →µ is a Dirac mass in 0∞. Since µ is exchangeable and µ̄(P∞) <∞,

µ̄(∃ j ≥ 3 : 1
π∼ j) =

∞∑
j=1

µ̄(1
π∼ j) = 0.

Therefore µ̄ = cδκ(1,2) for some c ≥ 0. Since µ is exchangeable, we deduce

1{|π|↓=0}µ(dπ) = c
∞∑
i=1

∞∑
j=i+1

δκ(i,j)

To obtain the rates λb;k1,...,kr;s, we first calculate λb;k1,...,kr;s as a function of ν: Let π be a
(b; k1, . . . , kr; s)-partition. Then

λb;k1,...,kr;s = µ(A∞,π) =

∫
∆

P x(A∞,π)ν(dx) + c
∞∑
i=1

∞∑
j=i+1

δκ(i,j)(A∞,π)

(6)
=

∫
∆

Qk1,...,kr;s(x)ν(dx) + c1{r=1,k1=2}

By defining Ξ(dx) :=
∑∞

j=1 x
2
jν(dx), we obtain a finite measure on ∆ such that the

λb;k1,...,kr;s are given by (1).
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2.2.2 Examples

Without doubt the most prominent example of an exchangeable coalescent is Kingman’s
coalescent. It corresponds to Ξ = δ0. This coalescent has some interesting properties:

Proposition 2.22. Let (Π(t), t ≥ 0) be a standard Kingman coalescent with values in P∞.

1. Π comes down from infinity. This means that for each t > 0, a.s. #Π(t) < ∞.
Further, a.e. block of Π(t) is of infinite size.

2. (Dt := #Π(t), t > 0) is a pure death process with death rate (
(
k
2

)
, k ∈ N). More

precisely,(Dt) is a Markov process with values in N and with jump rates

lim
h↓∞

1

h
P(Dt+h = l|Dt = k) =

{ (
k
2

)
, l = k − 1

0, otherwise

for all k.

3. Each trajectory of (Π(t)) passes by a sequence

. . .Rk ≺ Rk−1 ≺ · · · ≺ R2 ≺ R1

where Rk is the state of Π when #Π = k. The sequence (Rk) is independent of (Dt), it
is Markovian, and for each k, conditionally on Rk+1 = π, Rk is distributed uniformly
on the

(
k+1

2

)
partitions that are obtained by coagulating exactly two blocks of π.

4. As a consequence of 2. and 3. we obtain: For all S ∈ B(P∞)

P(Rt ∈ S) =
∞∑
k=1

P(Dt = k)P(Rk ∈ S)

The proof of this proposition can be found in Kingman (1982a), Theorem 4.
An entire class of Ξ-coalescents that are particularly easy to describe are coalescents with

multiple (asynchronous) collisions that were introduced independently by Pitman (1999) and
Sagitov (1999).

Definition 2.23. A coalescent with multiple asynchronous collisions or simple co-
alescent is an exchangeable coalescent that corresponds to a finite measure Λ on ∆ which
satisfies

Λ({x = (x1, x2, . . . ) : x2 > 0}) = 0

In this case we could rather consider the image measure of Λ under the projection (x1, x2, . . . ) 7→
x1. Thus we can view Λ as a finite measure on [0, 1]. In this setting the rates λb;k1,...,kr;s are
given by

λb;k := λb;k;b−k =

∫
[0,1]

xk−2(1− x)b−kΛ(dx)

and all other rates are 0. In words, a simple coalescent is an exchangeable coalescent without
simultaneous collisions. At each collision time, several blocks are selected and united to form
a single new block.

Pitman showed in Proposition 23 of Pitman (1999) that each simple coalescent comes down
from infinity or stays infinite, which means that the coalescent a.s. has an infinite number
of blocks at each time t.
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Example 2.24. For r, s > 0, we can consider Λ = Beta(r, s). Beta(r, s) is the distribution on
[0, 1] with density

xr−1(1− x)s−1

B(r, s)

where B is the beta-function,

B(r, s) =
Γ(r)Γ(s)

Γ(r + s)
=

∫ 1

0

xr−1(1− x)s−1dx

In this case the jump rates are given by

λb;k =
B(k + r − 2, b+ s− k)

B(r, s)
.

Schweinsberg showed in Schweinsberg (2000b), Example 15, that a standard Beta(r, s)-coalescent
comes down from infinity if and only if r < 1.

In the case r = s = 1, Beta(1, 1) is the uniform distribution on [0, 1]. We denote it by U .
The U -coalescent has jump rates

λb;k =
(k − 2)!(b− k)!

(b− 1)!

and was introduced by Bolthausen and Sznitman (1998). The standard U -coalescent does not
come down from infinity.

2.2.3 Some Properties of Coalescents

Elementary Properties

Remark. 1. With the Poisson-construction one can easily see that a Ξ-coalescent (Ππ(t))t≥0

with Ππ(0) = π is obtained by defining

Ππ(t) := Coag(π,Π(t)), t ≥ 0

where (Π(t))t≥0 is a standard Ξ-coalescent. We even have a stronger result: Condition-
ally on Ππ(t), (Ππ(t+ s))s≥0 has the same distribution as Coag(Ππ(t),Π(s))s≥0.

2. If (Π(t))t≥0 is a standard exchangeable coalescent, then for each t ≥ 0, Π(t) is a random
exchangeable partition. This is equally verified with the Poissonian construction since
the measure µ that we had constructed on P∞ was exchangeable and the coagulation
of two independent exchangeable partitions is still exchangeable (cf. Bertoin (2006),
Lemma 4.3).

3. Let Ξ be a finite measure on ∆ with Ξ(∆) 6= 0. The case Ξ(∆) = 0 is trivial, since in
that case all jump rates are 0. We define G := Ξ/Ξ(∆). Then G is a probability on ∆,
and with the definition of the jump rates (1), we see that the rates of the G-coalescent
are given by dividing the rates of the Ξ-coalescent by Ξ(∆). Modulo a change of the
time scale we can therefore suppose Ξ(∆) = 1.
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Lemma 2.25. The jump rates

{λb;k1,...,kr;s : r, b ∈ N, k1, . . . , kr ≥ 2, s ∈ N0, b = k1 + · · ·+ kr + s}
of an exchangeable coalescent satisfy the following consistency relation:

λb;k1,...,kr;s =
r∑

m=1

λb+1;k1,...,km−1,km+1,km+1,...,kr;s + sλb+1;k1,...,kr,2;s−1

+ λb+1;k1,...,kr;s+1 (10)

where we define λb;k1,...,kr;−1 := 0. This equation can be rewritten as

λb;k1,...,kr;s+1 =λb;k1,...,kr;s −
r∑

m=1

λb+1;k1,...,km−1,km+1,km+1,...,kr;s

− sλb+1;k1,...,kr,2;s−1 (11)

This is a recurrence equation that allows us the calculate all the rates when we are only given
the

λb;k1,...,kr;0, b, r ∈ N, k1, . . . , kr ≥ 2, b = k1 + · · ·+ kr

We do not give the proof here. This is Lemma 18 in Schweinsberg (2000a). The proof is
elementary and it is based on the fact that RnRn+1Π = RnΠ for an exchangeable coalescent
Π. Noting this, one distinguishes the different possibilities for the behaviour of n+1 in Rn+1Π,
and one gets the desired equation.

Behaviour at Collision Times
Lemma 2.26. Let Ξ be a probability on ∆ and let (Π(t))t≥0 be a standard Ξ-coalescent. Let

for i 6= j τi,j := inf{t ≥ 0 : i
Π(t)∼ j}. Let B1, B2, . . . be the blocks of Π(τi,j−) (that are possibly

empty for large enough k). Let π ∈ P#Π(τi,j−) be the unique partition with k π∼ l if and only if
Bk and Bl are in the same block of Π(τi,j). Then π is the restriction of a partition π′ ∈ P∞
to {1, . . . ,#Π(τi,j−)}. π′ is invariant under permutations of N that do not change Π(τi,j−)(i)
and Π(τi,j−)(j), and π′ a.s. possesses asymptotic frequencies that have distribution Ξ.
Sketch of the proof. 1. Without loss of generality we suppose that Π is given by the Poisso-

nian construction. Since Π(t) is exchangeable for each t, it suffices to show the statement
for i, j = 1, 2.

2. We have
τ1,2 = inf{t ≥ 0 : e(t) ∈ A1,2}

where A1,2 is defined as in (5). It suffices to show |e(τ1,2)|↓ ' Ξ. Let S ∈ B(∆). We
define

AS1,2 := {ε ∈ A1,2 : |ε|↓ ∈ S}.
The formula (57) of the Appendix A yields:

P(|e(τ1,2)|↓ ∈ S) = P(e(τ1,2) ∈ AS1,2)
(57)
=

µ(AS1,2)

µ(A1,2)

=
1

µ(A1,2)

[∫
∆

∞∑
j=1

x2
j1{x∈S}

/
∞∑
j=1

x2
jΞ0(dx) + c

∞∑
i=1

∞∑
j=i+1

δ{κ(i,j)∈AS1,2}

]

=
1

µ(A1,2)

[
Ξ0(S) + c1{0∈S}

]
=

1

µ(A1,2)
Ξ(S)
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Since µ(A1,2) = 1, the proof is complete.

Coming from Infinity and Proper Frequencies Let (Πt : t ≥ 0) be a simple standard
coalescent with rates λb;k. We denote by γb the rate with which the number of blocks of RbΠ
decreases, i.e.

γb :=
∑b
k=2(k − 1)

(
b

k

)
λb;k

Schweinsberg (2000b) showed that Π comes down from infinity if and only if
∞∑
b=2

γ−1
b <∞

For general exchangeable coalescents we do not know an equally simple condition that is
equivalent to the coming down from infinity. But there is a nice result on the asymptotic
frequencies:

Definition 2.27. Let π ∈ P∞ be a partition that possesses asymptotic frequencies and let
(x1, x2, . . . ) ∈ ∆ be the ordered sequence of its frequencies. We say that π has proper fre-
quencies if

∞∑
j=1

xj = 1

Otherwise we say that π has dust.

Proposition 2.28. Let Ξ = Ξ0 + cδ0 be a finite measure on ∆ with Ξ(0) = 0 and c ≥ 0. Let
(Πt : t ≥ 0) be a standard Ξ-coalescent and let t > 0. Then Πt a.s. has proper frequencies if
and only if c > 0 or if ∫

∆

∞∑
j=1

xj

/
∞∑
j=1

x2
jΞ0(dx) =∞

Proof. Let ν be the distribution of the asymptotic frequencies of Πt. Then the distribution of
Πt is given by ∫

∆

P x(dπ)ν(dx)

With the definition of the paint box P x we see that Πt a.s. has proper frequencies if and only
if {1} a.s. is not a block of Πt.

Without loss of generality we suppose that Π is given by the Poisson construction with
Poisson point process (e(t))t≥0 of intensity µ. We define

A := {π ∈ P∞ : {1} is no block of π}
and TA := inf{t ≥ 0 : e(t) ∈ A}. Then {1} is a block of Πt if and only if TA > t. We have
P(TA > t) = 0 if and only if µ(A) =∞. But

µ(A) =

∫
∆

P x(A)Ξ0(dx)

/
∞∑
j=1

x2
j + c

∞∑
i=1

∞∑
j=i+1

1{κ(i,j)}(A)

=

∫
∆

∞∑
j=1

xj

/
∞∑
j=1

x2
jΞ0(dx) + c

∞∑
j=2

1

and this is infinite if and only if c > 0 or
∫

∆

∑∞
j=1 xj

/∑∞
j=1 x

2
jΞ0(dx) =∞.
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Feller Property We recall the definition of a Feller process (cf. Revuz and Yor (1999),
Definition (2.1) and Definition (2.5) of Chapter III.). Since P∞ is compact, C0(P∞) = C(P∞).

Definition 2.29. A Feller semi-group on C(P∞) is a family of linear positive (i.e. f ≥
0⇒ Ptf ≥ 0) operators (Tt)t≥0 on C(P∞) such that

1. T0 = Id and ||Tt|| ≤ 1 for t ≥ 0,

2. Tt+s = Tt ◦ Ts for t, s ≥ 0 and

3. limt→0 Ttf = f in C(P∞) for each f ∈ C(P∞).

A Feller process is a Markov process with a Feller semi-group.

Proposition 2.30 (Feller Property). Let Ξ be a finite measure on ∆. Each Ξ-coalescent is a
Feller process in its canonic filtration. Its semi-group is given by

Ptf(π) = E(f(Coag(π,Πt)))

where Π is a standard Ξ-coalescent.

Proof. Let (Πt : t ≥ 0) be a Ξ-coalescent. Without loss of generality we can suppose that Π is
given by the Poissonian construction with Poisson point process e. We already remarked that
conditionally on Πt, (Πt+s : s ≥ 0) has the same distribution as (Coag(Π(t), Π̄(s)) : s ≥ 0)
where Π̄ is a standard Ξ-coalescent that is independent of Π. Indeed this remains true if we
condition on (Πr : 0 ≤ r ≤ t) since (e(t + s))s≥0 is independent of (e(r))0≤r<t. So Πt is a
Markov process. It remains to show that its semi-group (Pt : t ≥ 0) is Feller. It suffices to
show that PtC(P∞) ⊆ C(P∞) and that for each f ∈ C(P∞) and for each π ∈ P∞, we have
limt→0 Ptf(π) = f(π) (cf. Proposition (2.4) of Chapter III of Revuz and Yor (1999)).

Let π ∈ P∞, let (Ππ
t : t ≥ 0) be a Ξ-coalescent with Ππ(0) = π and let (Πt : t ≥ 0) be a

standard Ξ-coalescent that is independent of Ππ. Let f ∈ C(P∞). We have

Ptf(π) = E(f(Ππ
t )) = E(f(Coag(π,Πt)))

But it is easily verified that the Coag operator is continuous from P∞×P∞ to P∞. With dom-
inated convergence we obtain the continuity of Ptf . It remains to show that limt→0 Ptf(π) =
f(π). But this follows immediately since Π is right-continuous, Π0 = 0∞ and Coag(π,0∞) = π.
Then we use once again dominated convergence and we obtain the desired result.

We remark that as a consequence each Ξ-coalescent admits the strong Markov property
(cf. Theorem (3.1) in Chapter III. of Revuz and Yor (1999)).

2.2.4 Exchangeable Coalescents and Martingale Problems

We want to show that the Ξ-coalescent is the unique solution to an easily described martin-
gale problem. Let λb;k1,...,kr;s be the rates of a Ξ-coalescent. We write λπ := λb;k1,...,kr;s for
every (b; k1, . . . , kr; s)-partition π. Let D := {F ∈ C(P∞) : ∃n ∈ N, F̃ ∈ C(Pn), F (π) =
F̃ (Rnπ)∀π}. We define an operator

Q : D → C(P∞), F (·) 7→
∑
η∈Pn

λη(F̃ (Coag(Rn·, η))− F̃ (Rn·))
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Because of the consistency relation (10) this operator is well-defined, and of course it is just
the restriction of the infinitesimal generator of the Ξ-coalescent to D. So we know that the
Ξ-coalescent with starting distribution ν is a solution to the (Q, ν)-martingale problem (cf.
Appendix C for an overview of martingale problems).

Proposition 2.31. For Q and ν as above, every solution to the (Q, ν)-martingale problem
has the same finite-dimensional distributions as the Ξ-coalescents starting with distribution ν.
Any solution with càdlàg paths is a Ξ-coalescent.

Proof. Let Π be a solution. Then for any n ∈ N, RnΠ is a solution to the (Qn, νn)-martingale
problem with

Qn : B(Pn)→ B(Pn), QnF (·) =
∑
η∈Pn

λη(F (Coag(·, η))− F (·))

where B(Pn) is the space of bounded measurable functions on Pn and νn := ν ◦R−1
n . But for a

finite state space there is uniqueness for any martingale problem (cf. example in Appendix C).
That means that for every solution Π of the (Q, ν)-martingale problem the finite-dimensional
distributions of RnΠ are uniquely determined. The functions depending only on Rnπ form an
algebra in C(P∞) that separates points and contains constants. So it is dense in the uniform
topology by the Stone-Weierstrass theorem. Thus we obtain the uniqueness of the finite-
dimensional distributions for solutions to the martingale problem. Since the Ξ-coalescents is
a solution, this means that any solution has the same finite-dimensional distributions as the
Ξ-coalescent.

We immediately obtain from Proposition C.3 in Appendix C that a solution with càdlàg
paths is a Ξ-coalescent.

2.2.5 Exchangeable Coalescents in Discrete Time

In this section we introduce a discrete time version of the Ξ-coalescent. Under certain as-
sumptions we will obtain such processes as limits of Cannings’ population models. For a
Ξ-coalescent to exist it is necessary that Ξ satisfies an additional condition.

Proposition 2.32. Let {pb;k1,...,kr;s : b, r ∈ N, k1, . . . , kr ≥ 2, s ∈ N0, b =
∑r

j=1 kj + s} be a
family of non-negative numbers. Then there exists a discrete time process (Y (m) : m ∈ N0)
with values in P∞ with Y (0) = 0∞ and such that for n ∈ N, (RnY (m)) is a Markov chain that
satisfies for all π with #π = b, for each (b; k1, . . . , kr; s)-collision ε of π and for all m ∈ N0:

P(RnY (m+ 1) = ε|RnY (m) = π) = pb;k1,...,kr;s

if and only if

pb;k1,...,kr;s =

∫
∆

Qk1,...,kr;s(x)∑∞
j=1 x

2
j

Ξ(dx) (12)

for a finite measure Ξ on ∆, without atom in 0, which satisfies∫
∆

1

/
∞∑
j=1

x2
j Ξ(dx) ≤ 1 (13)

In this case, the measure Ξ is uniquely determined.
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In the demonstration we simply reduce the discrete time case to the continuous time case.

Proof. 1. Necessary condition and uniqueness:
Let Y be such a discrete time process. Let (Nt, t ≥ 0) be a Poisson process with
parameter 1, independent of Y . Define Π(t) := Y (Nt), t ≥ 0. Then Π is a standard
exchangeable coalescent with jump rates {pb;k1,...,kr;s}. Hence there exists a unique finite
measure Ξ on ∆ such that the pb;k1,...,kr;s are given by (12).

Let λb be the total collision rate of a Ξ-coalescent with b blocks, i.e.

λb =

bb/2c∑
r=1

∑
{k1,...,kr}

N(b; k1, . . . , kr; s)λb;k1,...,kr;s

=

bb/2c∑
r=1

∑
{k1,...,kr}

N(b; k1, . . . , kr; s)pb;k1,...,kr;s ≤ 1

where N(b; k1, . . . , kr; s) is the number of (b; k1, . . . , kr; s)-partitions in Pb, and bxc is the
largest integer that is smaller than x. We necessarily have λb ≤ 1 for all b. Let µ and
c ≥ 0 be associated to Ξ like in the Poissonian construction. We have

λb = µ({η : Rbη 6= 0b})
b→∞−→

∫
∆

P x(P∞\{0∞})∑∞
j=1 x

2
j

Ξ0(dx) + c
∞∑
i=1

∞∑
j=i+1

δκ(i,j)(P∞\{0∞})

=

∫
∆

1∑∞
j=1 x

2
j

Ξ0(dx) + c
∞∑
i=1

∞∑
j=i+1

δκ(i,j)(P∞\{0∞})

For this expression to be ≤ 1, it is necessary that Ξ has no atom in 0 and satisfies (13).

2. Sufficient condition:
Let Ξ be a finite measure on ∆ that has no atom in 0 and that satisfies (13). Let (Π(t))
be a standard Ξ-coalescent, given by the Poissonian construction. Let (e(t)) and µ be
as in the Poissonian construction. We have

µ(P∞\{0∞}) =

∫
∆

P x(P∞\{0∞})∑∞
j=1 x

2
j

Ξ(dx) ≤ 1

If we define T0 := 0, Tk := inf{t > Tk−1 : e(t) ∈ P∞\{0∞}}, k ≥ 1, we obtain a sequence
0 = T0 < T1 < . . . . Let (Im : m ∈ N0) be an i.i.d. sequence of Bernoulli variables,
independent of e, such that P(Im = 1) = µ(P∞\{0∞}). Let Sm := I1 + · · · + Im. We
define a discrete time Markov process Y by setting Y (m) := Π(TSm).

Let n ∈ N, let π ∈ Pn with b blocks, and let ε be a (b; k1, . . . , kr; s)-collision of π,
ε = Coag(π, η) with η ∈ Pb. Using the strong Markov property of the Poisson point
process e and the property (57) from Appendix A, we obtain

P(RnY (m+ 1) = ε|RnY (m) = π) = P(Im+1 = 1)P(RnΠ(TSm+1) = ε|RnΠ(TSm) = π)

= µ(P∞\{0∞})P(Rbe(TSm+1) = η) = µ(P∞\{0∞})
pb;k1,...,kr;s

µ(P∞\{0∞})
= pb;k1,...,kr;s
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Since we saw that for every discrete time exchangeable coalescent with transition prob-
abilities pb;k1,...,kr;s there exists a continuous time exchangeable coalescent with jump rates
pb;k1,...,kr;s, we know that the pb;k1,...,kr;s must also satisfy the recursion (11).

2.3 Exchangeable Coalescents and Flows of Bridges

2.3.1 Bridges and Exchangeable Partitions

In this chapter we present an interesting correspondance between exchangeable coalescents
and flows of bridges that was established by Bertoin and Le Gall (2003).

Definition 2.33. A bridge is a stochastic process (B(r) : r ∈ [0, 1]) such that

1. B(0) = 0, B(1) = 1, B has increasing càdlàg paths.

2. For all n ∈ N: (B(1/n)−B(0), B(2/n)−B(1/n), . . . , B(1)−B(1− 1/n)) is an ex-
changeable vector.

The general classification of processes with exchangeable increments was given by Kallen-
berg (1973), Theorem 2.1. In our setting this result can be expressed as follows:

Proposition 2.34 (Kallenberg). (B(r) : r ∈ [0, 1]) is a bridge if and only if there is a random
variable X with values in ∆ and an i.i.d. sequence (Ui)i∈N of uniform variables on [0, 1],
independent of X, such that (B(r) : r ∈ [0, 1]) has the same distribution as((

1−
∞∑
j=1

Xj

)
r +

∞∑
j=1

Xj1{Uj≤r} : r ∈ [0, 1]

)

In the following we will always assume that B is of this form.
We can associate an exchangeable partition to each flow of bridges. We define the càdlàg

inverse of B:

B−1(s) := inf{r ∈ [0, 1] : B(r) > s}, s ∈ [0, 1) et B−1(1) := 1.

The lengths of the constant intervalls of B−1 correspond exactly to the jump sizes of B. Let
(Vi)i∈N be an i.i.d. sequence of uniform random variables on [0, 1]. We define a partition π(B)
such that

i
π(B)∼ j if and only if B−1(Vi) = B−1(Vj)

In what follows we suppose that the sequence (Vi) to define π(B) is always the same, for each
choice of B. By combining Theorem 36 of Pitman (1999) with Theorem 2.3 of Kallenberg
(1973) we obtain:

Proposition 2.35. Let (Bn) be a sequence of bridges with respective jump sizes (Xn
i )i∈N ∈ ∆,

and let B be a bridge with jump sizes X ∈ ∆. Then the following conditions are equivalent:

1. π(Bn)
n→∞−→π(B) in distribution on P∞

2. Xnn→∞−→X in distribution on ∆

3. Bnn→∞−→B in distribution on the space D([0, 1], [0, 1]) of càdlàg functions on [0, 1] with
values in [0, 1], equipped with the Skorohod topology.
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Remark. 1. If B and B′ are independent bridges, then B ◦B′ is a bridge as well:

The only property that is not obvious is the exchangeability of the increments. Let
n ∈ N and let f : Rn → R be a bounded measurable function. By conditioning on B′
and by using the independence of B and B′ we obtain

E(f(B ◦B′(1/n)−B ◦B′(0/n), . . . , B ◦B′(n/n)−B ◦B′((n− 1)/n)))

= E(φ(B′(0), B′(1/n), . . . , B′(n)))

with φ(t0, . . . , tn) = E(f(B(t1) − B(t0), . . . , B(tn) − B(t1))). But B has exchangeable
increments, so φ only depends on (t1 − t0, . . . , tn − tn−1). Let ψ be such that ψ(t1 −
t0, . . . , tn − tn−1) = φ(t0, . . . , tn). Then we have

E(f(B ◦B′(1/n)−B ◦B′(0/n), . . . , B ◦B′(n/n)−B ◦B′((n− 1)/n)))

= E(ψ(B′(1/n)−B′(0), . . . , B′(1)−B′(1− 1/n)))

Since B′ has exchangeable increments and since ψ is a bounded measurable function,
we obtain the exchangeability of the increments of B ◦B′.

2. (B ◦B′)−1 = B′−1 ◦B−1

The following result is Corollary 1 of Bertoin and Le Gall (2003). We do not give the proof
here, but it is not at all trivial.

Proposition 2.36. Let k ≥ 2, and let B1, . . . , Bk be independent bridges. We define

C l := B1 ◦ · · · ◦Bl, l = 1, . . . , k

Then conditionally on (π(C1), . . . , π(C l−1)), π(C l) has the same distribution as the coagulation
of π(C l−1) by an independent partition that is distributed like π(Bl).

2.3.2 Flows of Bridges

Definition 2.37. A family (Bs,t : −∞ < s ≤ t <∞) of bridges is a flow of bridges if

1. For each s ≤ t ≤ u: Bs,u = Bs,t ◦Bt,u.

2. The distribution of Bs,t does not depend on t− s.

3. For −∞ < t1 < · · · < tn <∞, the bridges Bt1,t2 , . . . , Btn−1,tn are independent.

4. Bs,s = Id for all s and B0,t
t→0−→ Id in probability in the Skorohod topology.

We can associate an exchangeable coalescent to each flow of bridges:

Proposition 2.38. Let B be a flow of bridges. We define for each t ≥ 0 Πt := π(B0,t). Then
(Πt : t ≥ 0) has a càdlàg modification that is a standard exchangeable coalescent.

Proof. Let 0 ≤ t0 < · · · < tn. By Proposition 2.36, conditionally on (Πt0 , . . . ,Πtn−1), Πtn

has the same distribution as the coagulation of Πtn−1 by an independent partition that is
distributed like π(B0,tn−tn−1) = Πtn−tn−1 . So Π is a Markov process with semi-group

Ptf(η) = E(f(Coag(η, π(B0,t))))
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This is a Feller semi-group. This is shown exactly as in the proof of Proposition 2.30: We use
the continuity of Coag from P∞×P∞ to P∞ and the fact that B0,t converges in probability to
the identity when t tends to 0. Then we obtain the convergence of Ptf(η) to f(η) when t→ 0
from Proposition 2.35. Since Π is a Feller process, it has a càdlàg modification (cf. Theorem
(2.7) in Chapter III of Revuz and Yor (1999)).

It remains to show that for each n ∈ NRnΠ is a Markov process such that each (b; k1, . . . , kr; s)-
collision has the same rate λb;k1,...,kr;s. The Markov property is easily obtained with the prop-
erty Rn Coag(η, ε) = Coag(Rnη,Rnε) of the coagulation operator. Like this we see that RnΠ
has the semi-group

P n
t f(η) = E(f(Coag(η,RnΠt)))

Since Πt is an exchangeable partition for each t, each (b; k1, . . . , kr; s)-collision has the same
rate. Therefore the càdlàg modification of Π is an exchangeable coalescent.

We would like to establish a correspondance between flows of bridges and exchangeable
coalescents. It remains to show the injectivity and the surjectivity of the map (Bs,t) 7→
(π(B0,t)). More precisely we would like to show:

1. Let B and B′ be two flows of bridges with the same finite-dimensional distributions.
Then (π(B0,t))t≥0 has the same finite-dimensional distributions as (π(B′0,t))t≥0.

2. Let Π be a standard exchangeable coalescent. Then there exists a flow of bridges B such
that Π and (π(B0,t))t≥0 have the same finite-dimensional distributions.

The first statement is more or less obvious: This is just Proposition 2.35 and an application
of the stationarity and independence properties of flows of bridges.

We will show the second statement with a Poissonian construction. Let (ui)i∈N ∈ [0, 1]N

and let (xi)i∈N ∈ ∆. We define

b(ui),(xi)(r) :=

(
1−

∞∑
i=1

xi

)
r +

∞∑
i=1

xi1{r≥ui}

Note that if (ui) is an i.i.d. sequence of uniform variables on [0, 1], then b(ui),(xi) is a bridge.
Let ν be a finite measure on ∆ with ν({0}) = 0. Let U⊗N := U ⊗ U ⊗ . . . on [0, 1]N

(where U is the uniform distribution on [0, 1]). Let (e(t) : t ∈ R) be a Poisson point process
of intensity U⊗N⊗ ν on [0, 1]N×∆. A Poisson point process with real-valued index t (instead
of positive t) is defined exactly as an usual Poisson point process, just that in this case we
consider a Poisson random measure on R×E rather than R+×E. Since ν and U⊗N are finite
measures, e a.s. only has a finite number of points on (s, t] for all finite s ≤ t. Let

(t1, (u
1
i ), (x

1
i )), . . . , (tk, (u

k
i ), (x

k
i ))

be those points with s < t1 < · · · < tk ≤ t. We define

Bs,t := b(u1i ),(x
1
i )
◦ · · · ◦ b(uki ),(xki ) (14)

If e has no points on (s, t], we define Bs,t := Id.

Proposition 2.39. (Bs,t : −∞ < s ≤ t <∞) is a flow of bridges
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Proof. All the properties of flows of bridges are trivially satisfied. The only thing we need to
show is that Bs,t actually is a bridge for all s ≤ t. We argue conditionally on the number K of
points of e on (s, t]. Conditionally on K = k, the variables (u1

i ), . . . , (uki ), (x1
i ), . . . , (xki ) are

independent, and (uji )i has the distribution U⊗N for all j ≤ k. Thus the processes b(uji )i,(x
j
i )i

are independent bridges, and conditionally on K = k,

Bs,t = b(u1i ),(x
1
i )
◦ · · · ◦ b(uki ),(xki )

is a bridge. Since a mixture of bridge laws preserves the bridge properties, Bs,t is a bridge.

We consider Πt = π(B0,t). Let t > 0 be a jump time of Π, corresponding to the point
(t, (ui), (xi)) of e. Then Πt is the coagulation of Πt− by π(b(ui),(xi)), and π(b(ui),(xi)) is an
exchangeable partition, independent of Πt−, with distribution∫

∆

P x(dπ)
ν(dx)

ν(∆)

If we compare this formula with the formula (4) of the Poisson construction of exchange-
able coalescents, we see that Π is a standard

∑∞
i=1 x

2
i ν(dx)-coalescent (since Π is càdlàg by

construction).
Let Ξ = Ξ0 + cδ0 be a finite measure on ∆ such that Ξ0({0}) = 0 and c ≥ 0. Then we

can find a sequence (Ξn) of finite measures on ∆\{0} such that (
∑∞

i=1 x
2
i )Ξn(dx) converges

weakly to Ξ. We can take for example a sequence xn = (xni )i∈N ∈ ∆ converging to 0 in ∆,
and then define for n ∈ N:

Ξn(dx) :=
c∑∞

i=1(xni )2
δ(xni )i + 1{

∑∞
i=1 x

2
i≥1/n}(x)

Ξ(dx)∑∞
i=1 x

2
i

Proposition 2.40. Let Ξ be a finite measure on ∆. Let Ξn be a sequence of finite measures
on ∆ such that

∑∞
i=1 x

2
iΞn(dx) converges weakly to Ξ. Let for n ∈ N Bn be the flow of

bridges associated to
∑∞

i=1 x
2
iΞn(dx). Then the finite-dimensional distributions of Bn converge

weakly to the finite-dimensional distributions of a flow of bridges (Bs,t : s ≤ t) such that the
associated exchangeable coalescent is a standard Ξ-coalescent. In particular, for each standard
exchangeable coalescent Π we can find a flow of bridges B such that (π(B0,t))t≥0 and (Πt)t≥0

have the same finite-dimensional distributions.

Proof. For each finite measure Ξ on ∆ let QΞ be the distribution on D([0,∞),P∞) of a
standard Ξ-coalescent. We will show later that Ξ 7→ QΞ is a continuous map (cf. Proposition
3.5). So we obtain that the standard

∑∞
i=1 x

2
iΞn(dx)-coalescent converges in distribution to

the standard Ξ-coalescent. Without loss of generality we suppose that all the Bn are given
by the Poisson construction. Then (π(Bn

0,t)) is a standard
∑∞

i=1 x
2
iΞn(dx)-coalescent and thus

(π(Bn
0,t)) converges in distribution to a standard Ξ-coalescent (Πt)t≥0. So for each t, π(Bn

0,t)
converges in distribution. We obtain the convergence in distribution of Bn

0,t from Proposition
2.35. Denote the limit by Bt. Then for all t ≥ 0: π(Bt) has the same distribution as Πt. Let
t, s > 0 and let B′s be a copy of Bs, independent of Bt. Then

π(Bt ◦B′s) ' Coag(π(Bt), π(B′s))

where ' denotes equality in law. But π(B′s) ' Πs and therefore π(Bt ◦ B′s) has the same
distribution as Πt+s ' π(Bt+s). Another application of Proposition 2.35 yields Bt◦B′s ' Bt+s.

28



Note that D([0, 1], [0, 1]) equipped with the Skorohod topology is a Polish space. So we can
construct a family of bridges (Bs,t,−∞ < s ≤ t <∞) with the Daniell-Kolmogorov extension
theorem such that for all s ≤ t Bs,t ' Bt−s and such that for −∞ < t1 < · · · < tn < ∞,
Bt1,t2 , . . . , Btn−1,tn are independent. This family is a flow of bridges: B0,0 = Id is evident since
π(B0) = Π0 = 0∞. The convergence in probability of B0,t to the identity when t → ∞ is
obtained from the continuity in probability of Π. Π is continuous in probability since RnΠ is
a jump-hold process without fixed jump times and because of the definition of the topology
on P∞.

So we have the convergence of Bn
s,t to Bs,t for all fixed s, t and this implies the distribution of

finite-dimensional distributions: For s1, t1, . . . , sm, tm we cut the intervalls (si, ti] into disjoint
or equal intervalls. So we obtain the convergence in distribution of (Bn

s1,t1
, . . . , Bn

sm,tm) to
(Bs1,t1 , . . . , Bsm,tm) by using these intervall decompositions and the independence properties
of flows of bridges.

2.4 Fleming-Viot Process

This section was not included in Perkowski (2009). We present a measure-valued process that
was introduced by Fleming and Viot (1979). Let E be a compact metric space, and letM1(E)
be the space of probability measures on E, equipped with the topology of weak convergence.

For f : Ep → R bounded and measurable we define

< f, µ⊗p >:=

∫
Ep
f(x1, . . . , xp)µ

⊗p(dx1, . . . , dxp)

Let D := {Φf : M1(E) → R,Φf (µ) =< f, µ⊗p > for some p ∈ N, f ∈ C(Ep)} We define a
linear operator A:

A : C(M1(E)) ⊃ D → C(M1(E))

such that for Φf (µ) =< f, ν⊗p >:

AΦf (µ) =
∑

1≤i<j≤p

∫
[f(x1, . . . , xi, . . . , xi, . . . , xp)− f(x1, . . . , xi, . . . , xj, . . . , xp)]µ

⊗p(dx)

Definition 2.41. Let ν be a probability onM1(E). A Fleming-Viot process starting with
distribution ν is anM1(E)-valued process (ρt : t ≥ 0) that is a solution to the (A, ν)-martingale
problem.

Existence and uniqueness of the solution to that martingale problem were shown in Fleming
and Viot (1979). We do not give the proof here because we will show existence and uniqueness
of solutions to a more general class of martingale problems later. It it shown in Kurtz (1981),
Theorem 10.1, that the Fleming-Viot process arises as the limit for large populations in the
Wright-Fisher model if the time is suitably rescaled. Essentially the same proof can also be
found in Ethier and Kurtz (1986), Theorem 4.1 of Chapter 10.

3 Weak Convergence Results
Before we continue, we need to establish some convergence results on which we will rely heavily
in what follows.
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3.1 Convergence of Rescaled Markov Chains

Assume we are in the following setting:
Let (E, d) be a compact metric space, equipped with its Borel σ-algebra E . Let

A : C(E) ⊇ D(A)→ C(E)

be an operator on C(E). Let ν be a probability measure on (E, E). We want to approximate
a solution to the (A, ν)-martingale problem. That is, we want to find a sequence (XN)N∈N of
processes in D([0,∞), E), such that XN converges in distribution in the Skorohod-topology
to some X ∈ D([0,∞), E), and X is a solution to the (A, ν) martingale problem.

We want to show convergence of processes of the following type: Let for every n ∈ N
(YN(m) : m ∈ N0) be a discrete time homogenous Markov process with values in some
compact metric space EN . Let PN denote its transition probability, i.e. for all x ∈ EN and
for all Borel sets B of EN we have

P(YN(1) ∈ B|YN(0) = x) = PN(x,B)

Define the operator TN on B(EN), the space of bounded measurable functions on EN , equipped
with the topology of uniform convergence, as follows:

TNf(x) :=

∫
EN

f(y)PN(x, dy)

Let (cN) be a sequence of strictly positive numbers. Define

AN : B(EN)→ B(EN), ANF :=
1

cN
(TN − I)F

Let for all N πN : EN → E be a measurable map. We want to show convergence of (XN(t) :=
πNYN(bt/cNc) : t ≥ 0) to X.

We are now able to formulate our convergence theorem. This result is shown in Ethier and
Kurtz (1986) in a more general setting. But the proof there is scattered over many chapters,
and in our setting we can give a simpler and more direct proof. Nonetheless this proof is using
some of the techniques from Ethier and Kurtz (1986)

Theorem 3.1. Let (YN) be as above. We make the following assumptions:

• There is uniqueness for the (A, ν)-martingale problem,

• D(A) contains an algebra A that contains a constant function 6= 0 and that separates
points,

• cN → 0 when N →∞,

• The distribution of πNYN(0) converges weakly to ν when N →∞,

• For every f ∈ D(A) there exists a sequence (fN) with fN ∈ B(EN) such that

sup
y∈EN

|f(πNy)− fN(y)| → 0, N →∞ (15)

and
sup
y∈EN

|Af(πNy)− ANfN(y)| → 0, N →∞ (16)
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Then (XN(t) := πNYN(bt/cNc) : t ≥ 0) converges in distribution on D([0,∞), E) to the unique
solution X of the (A, ν)-martingale problem.

Proof. It suffices to show that the sequence (XN) is tight in D([0,∞), E), and that every
cluster point of the sequence is a solution to the (A, ν)-martingale problem.

1. First we show the tightness of (f(XN)) in D([0,∞),R) for all f ∈ A. Let f ∈ A and let
(fN) be a sequence for f satisfying (15) and (16). Further let (gN) be a sequence for f 2

satisfying (15) and (16). f 2 is in D(A) because A is an algebra. Let GNk := σ(YN(m) :
m ≤ k) be the canonic filtration for YN . We set FNt := GNbt/cN c. Since YN is a discrete
time Markov process, for every bounded measurable ϕ : EN → R we know that

ϕ(YN(m))−
m−1∑
i=0

(TN − I)ϕ(YN(i)), m ∈ N0

is a martingale with respect to the filtration (GN· ). We define the following sequences of
processes:

ϕN(t) := fN(YN(bt/cNc)) + cN (t/cN − bt/cNc)ANfN(YN(bt/cNc))

−
∫ t

0

ANfN(YN(bs/cNc))ds

= fN(YN(bt/cNc)) + cN (t/cN + bt/cNc)ANfN(YN(bt/cNc))

− cN
bt/cN c−1∑

i=0

ANfN(YN(i))− cN (t/cN − bt/cNc)ANfN(YN(bt/cNc))

= fN(YN(bt/cNc))−
bt/cN c−1∑

i=0

(TN − I)fN(YN(i))

and

ψN(t) := gN(YN(bt/cNc)) + cN (t/cN − bt/cNc)ANgN(YN(bt/cNc))

−
∫ t

0

ANgN(YN(bs/cNc))ds

= gN(YN(bt/cNc))−
bt/cN c−1∑

i=0

(TN − I)gN(YN(i))

ϕN and ψN are thus both martingales with respect to the filtration (FN· ). We have

E[(f(XN(t+ s))− f(XN(t)))2|FNt ] = E[f 2(XN(t+ s))− f 2(XN(t))|FNt ]

− 2f(XN(t))E[f(XN(t+ s))− f(XN(t))|FNt ]

= E[f 2(XN(t+ s))− ψN(t+ s)− (f 2(XN(t))− ψN(t))|FNt ]

− 2f(XN(t))E[f(XN(t+ s))− ϕN(t+ s)− (f(XN(t))− ϕN(t))|FNt ]

We examine the term f(XN(t))− ϕN(t):

f(XN(t))− ϕN(t) = [f(πNYN(bt/cNc))− fN(YN(bt/cNc))]

− cN (t/cN − bt/cNc)ANfN(YN(bt/cNc)) +

∫ t

0

ANfN(YN(bu/cNc))du (17)
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The first term on the right hand side will converge to 0 by (15). For large enough N , the
second term is bounded by cN(1+ε) supy∈E Af(y) by (16), which also tends to 0 since cN
converges to 0 and since Af is bounded. Only the last term might pose a problem. But
that one we can combine with the corresponding term from f(XN(t + s)) − ϕN(t + s).
Therefore we obtain

E[(f(XN(t+ s))− f(XN(t)))2|FNt ] ≤ 2 sup
y∈EN

∣∣f 2(πNy)− gN(y)
∣∣

+ 2cN

(
sup
y∈EN

∣∣Af 2(πNy)− ANgN(y)
∣∣+ ||Af 2||

)
+

∫ t+s

t

∣∣∣∣ sup
y∈EN

∣∣Af 2(πNy)− ANgN(y)
∣∣+ ||Af 2||

∣∣∣∣ du
+ 4||f || sup

y∈EN
|f(πNy)− fN(y)|

+ 4||f ||cN
(

sup
y∈EN

|Af(πNy)− ANfN(y)|+ ||Af ||
)

+ 2||f ||
∫ t+s

t

∣∣∣∣ sup
y∈EN

|Af(πNy)− ANfN(y)|+ ||Af ||
∣∣∣∣ du

|| · || denotes the supremum norm on C(E). For s ≤ δ we obtain an inequality where
the right hand side does not depend on s or t any more:

E[(f(XN(t+ s))− f(XN(t)))2|FNt ] ≤ 2 sup
y∈EN

∣∣f 2(πNy)− gN(y)
∣∣+ (2cN + δ)||Af 2||

+ (2cN + δ) sup
y∈EN

∣∣Af 2(πNy)− ANgN(y)
∣∣+ 4||f || sup

y∈EN
|f(πNy)− fN(y)|

+ 2||f ||(2cN + δ) sup
y∈EN

|Af(πNy)− ANfN(y)|+ 2||f ||(2cN + δ)||Af ||

Since f is bounded we can apply Lemma 3.2 and we obtain that for any FN -stopping
times T ≤ S ≤ T + δ

E((f(XN(S))− f(XN(T )))2) ≤ 6{2 sup
y∈EN

∣∣f 2(πNy)− gN(y)
∣∣+ (2cN + 2δ)||Af 2||

+ (2cN + 2δ) sup
y∈EN

∣∣Af 2(πNy)− ANgN(y)
∣∣+ 4||f || sup

y∈EN
|f(πNy)− fN(y)|

+ 2||f ||(2cN + 2δ) sup
y∈EN

|Af(πNy)− ANfN(y)|+ 2||f ||(2cN + 2δ)||Af ||}

Denote by SN the set of all FN -stopping times. We apply Markov’s inequality and
obtain for any λ > 0:

lim sup
N→∞

sup
S,T∈SN ,T≤S≤T+δ

P(|f(XN(S))− f(XN(T ))| > λ) ≤ 12δ||Af 2||+ 24δ||f || × ||Af ||
λ

and therefore

lim
δ→0

lim sup
N→∞

sup
S,T∈SN ,T≤S≤T+δ

P(|f(XN(S))− f(XN(T ))| > λ) = 0

Since f is bounded, supt≥0 f(XN(t)) is obviously tight in R. Therefore we can apply
Aldous’ criterion (cf. Theorem 4.5 in Chapter VI of Jacod and Shiryaev (2002)) to
obtain the tightness of (f(XN)) in D([0,∞),R).
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2. Since A is an algebra that separates points, it is dense in the uniform topology on C(E)
by the Stone-Weierstrass theorem. E is compact, so XN automatically satisfies the
compact containment condition:

inf
N∈N

P(XN(t) ∈ E, t ≥ 0) = 1

So (XN) is a sequence of processes that satisfies the compact containment condition and
such that (f(XN)) is tight in D([0,∞),R) for all f in a dense subset of C(E). We can
apply Theorem 9.1 in Chapter 3 of Ethier and Kurtz (1986) to obtain the tightness of
(XN) in D([0,∞), E).

3. It remains to show that every cluster point of the sequence (XN) is a solution to the
(A, ν)-martingale problem. Since the distribution of XN(0) converges weakly to ν, every
cluster pointX must satisfyX(0) ' ν. Therefore it suffices to show that for every cluster
point X of (XN) and for every f ∈ D(A)

f(X(t))−
∫ t

0

Af(Xs)ds, t ≥ 0

is a martingale. By a version of the monotone class theorem (cf. Corollary 4.4 of the
appendix of Ethier and Kurtz (1986)) it suffices to show that for every 0 ≤ t1 < · · · <
tn < tn+1 <∞ and for all bounded continuous functions h1, . . . , hn on E we have

E

[(
f(X(tn+1))− f(X(tn))−

∫ tn+1

tn

Af(X(s))ds

) n∏
k=1

hk(X(tk))

]
= 0

First we consider only times ti with P(Xti− = Xti) = 1. For such ti we have

E

[(
f(X(tn+1))− f(X(tn))−

∫ tn+1

tn

Af(Xs)ds

) n∏
k=1

hk(X(tk))

]

= lim
N→∞

E

[(
f(XN(tn+1))− f(XN(tn))−

∫ tn+1

tn

Af(XN(s))ds

) n∏
k=1

hk(XN(tk))

]
Since we know that for all N ϕN defined as above is a martingale with respect to the
filtration FN· , we can insert −ϕN(tn+1) + ϕN(tn) in the brackets:

lim
N→∞

E

[(
f(XN(tn+1))− f(XN(tn))−

∫ tn+1

tn

Af(XN(s))ds

) n∏
k=1

hk(XN(tk))

]
= lim

N→∞
E[{(f(XN(tn+1))− ϕN(tn+1))− (f(XN(tn))− ϕN(tn))

−
∫ tn+1

tn

Af(XN(s))ds}
n∏
k=1

hk(XN(tk))]

By (17) we know

lim
N→∞

f(XN(tn+1))− ϕN(tn+1) = lim
N→∞

∫ tn+1

0

ANfN(YN(bu/cNc))du
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and therefore we obtain by applying dominated convergence several times

E

[(
f(X(tn+1))− f(X(tn))−

∫ tn+1

tn

Af(Xs)ds

) n∏
k=1

hk(X(tk))

]

= lim
N→∞

E

[(∫ tn+1

tn

{ANfN(YN(bs/cNc)− Af(πNYN(bs/cNc))}ds
) n∏
k=1

hk(XN(tk))

]
(16)
= 0

For general ti we remark that

{t ≥ 0 : P(Xt 6= Xt−) < 1}

is at most countable by Lemma 7.7 of Chapter 3 of Ethier and Kurtz (1986). Thus we
can use the right-continuity of X and bounded convergence to obtain the equality for
all 0 ≤ t1 < · · · < tn+1.

Remark. We can replace the assumption that E is compact by assuming that E is a Polish
space and that the XN satisfy the compact containment condition: For every ε > 0 and every
T > 0 there is a compact set KT,ε ⊆ E such that

lim inf
N→∞

P (XN(t) ∈ KT,ε, 0 ≤ t ≤ T ) ≥ 1− ε

At one point we assumed that A is dense in C(E), which only follows from the Stone-
Weierstrass theorem if E is compact. But we only needed this to apply Theorem 9.1 of
Chapter 3 of Ethier and Kurtz (1986), and for this theorem we only need the density of A
with respect to the topology of uniform convergence on compact subsets. In the non-compact
case case we need to work on Cb(E) rather than on C(E).

We used nowhere in the proof that the EN are compact. It suffices to assume that they
are Polish and to work with Cb(EN) instead of C(EN).

In the proof of the following lemma we take some ideas from the proof of Theorem 8.6 in
Chapter 3 of Ethier and Kurtz (1986).

Lemma 3.2. Let (Xt : t ≥ 0) be a real-valued stochastic process with globally bounded càdlàg
paths, adapted to some filtration (Ft)t≥0. Assume X satisfies

E((Xs −Xt)
2|Ft) ≤ C(δ)

for some function C of δ and for all s and t with t ≤ s ≤ t+ δ. Then

E((XS −XT )2) ≤ 6C(2δ)

for all finite F·-stopping times S and T such that a.s. T ≤ S ≤ T + δ.

Proof. First we proof that under the assumption we have

E((XT+s −XT )2|FT ) ≤ C(δ)
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for any F·-stopping time T and any s ≤ δ. Let T be a stopping time that takes only finitely
many values, t1, . . . , tn. Then

E((XT+s −XT )2|FT ) =
n∑
k=1

E(1{T=tk}(Xtk+s −Xtk)
2|FT )

But E(1{T=tk}(Xtk+s −Xtk)
2|FT ) = 1{T=tk}E((Xtk+s −Xtk)

2|Ftk): Let A ∈ FT . Then

E(1A1{T=tk}(Xtk+s −Xtk)
2) = E[E(1{T=tk}∩AE((Xtk+s −Xtk)

2|Ftk)]
= E[E(1A1{T=tk}E((Xtk+s −Xtk)

2|Ftk)]

Therefore

E((XT+s −XT )2|FT ) =
n∑
k=1

1{T=tk}E((Xtk+s −Xtk)
2|Ftk) ≤

n∑
k=1

1{T=tk}C(δ) = C(δ)

Now let T be any finite stopping time. Then T can be approached by a sequence of stopping
times (TN) taking only finitely many values and such that TN ≥ T for all N . We use the
right-continuity of X, the fact that X is globally bounded, and that we have FTN ⊇ FT since
TN ≥ T . Like this we obtain

E((XT+s −XT )2|FT ) = lim
N→∞

E((XTN+s −XTN )2|FT )

= lim
N→∞

E[E((XTN+s −XTN )2|FTN )|FT ]

≤ lim
N→∞

E(C(δ)|FT ) = C(δ)

Therefore for any stopping time T and any s ≤ δ:

E((XT+s −XT )2) ≤ C(δ)

Now let S and T be suitable stopping times. We have

(XS −XT )2 ≤ 1

δ

∫ 2δ

δ

2((XT+x −XT )2 + (XT+x −XS)2)dx

≤ 2

δ

(∫ 2δ

δ

(XT+x −XT )2dx+

∫ 2δ

0

(XS+x −XS)2dx

)
and therefore

E((XS −XT )2) ≤ 2

δ

(∫ 2δ

δ

C(2δ)dx+

∫ 2δ

0

C(2δ)dx

)
= 6C(2δ)

3.2 Convergence of Markov Processes

We only need to change the proof of Theorem 3.1 a little bit to obtain a convergence result
for continuous time Markov processes:

Let (E, d), ν, A, EN and πN be as above. Let for every N AN be a linear operator with
domain D(AN) ⊆ B(EN). Let YN ∈ D([0,∞), EN) be a solution of the (AN , νN)-martingale
problem for some distribution νN on EN .

35



Proposition 3.3. We make the following assumptions:

• There is uniqueness for the (A, ν)-martingale problem,

• D(A) contains an algebra A that contains a constant function 6= 0 and that separates
points,

• The distribution of πNYN(0) converges weakly to ν when N →∞,

• For every f ∈ D(A) there is a sequence (fN) with fN ∈ D(AN) such that

sup
y∈EN

|f(πNy)− fN(y)| → 0, N →∞ (18)

and
sup
y∈EN

|Af(πNy)− ANfN(y)| → 0, N →∞ (19)

Then (XN(t) := πNYN(t) : t ≥ 0) converges in distribution on D([0,∞), E) to the unique
solution X of the (A, ν)-martingale problem.

Proof. The proof is exactly the same as the proof of Theorem 3.1, only that we need to take
different ϕN and ψN :

ϕN(t) := fN(YN(t))−
∫ t

0

ANfN(YN(s))ds

ψN(t) := gN(YN(t))−
∫ t

0

ANgN(YN(s))ds

Since YN is a solution to the (AN , νN)-martingale problem, ϕN and ψN are FN· -martingales.
The rest of the proof is identical.

3.3 An Application

As a first application of the obtained convergence results we can show that if QΞ,ν denotes
the law on D([0,∞),P∞) of a Ξ-coalescent starting with distribution ν, then the map

(Ξ, ν) 7→ QΞ,ν

is continuous. Here we equip the space of probabilities on P∞, M1(P∞), and the space of
probabilities on D([0,∞),P∞),M1(D([0,∞),P∞)), with the topology of weak convergence.
First we need to establish the following lemma which is taken from Schweinsberg (2000a).

Lemma 3.4. Let r ≥ 1 and k1, . . . , kr ≥ 2 let

gk1,...,kr : ∆→ R, x 7→


∑

i1 6=···6=ir

xk1i1 . . . x
kr
ir

/
∞∑
i=1

x2
i , x 6= 0

1r=1,k1=2, x = 0

Then gk1,...,kr is a continuous and bounded map.
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Proof. g := gk1,...,kr is obviously bounded since for x 6= 0 g(x) ≤
∑∞

i=1 x
2
i /
∑∞

i=1 x
2
i = 1. To

see that g is continuous we define for n ∈ N

f (n) : ∆→ R, (x1, x2, . . . ) 7→
n∑

i1,...,ir=1
all distinct

xk1i1 . . . x
kr
ir

all the f (n) are continuous and we will show the uniform convergence of f (n) to f(x) :=∑
i1 6=···6=ir x

k1
i1
. . . xkrir , which implies the continuity of f : Let x = (x1, x2, . . . ) ∈ ∆. Then

|f (n)(x)− f(x)| ≤
r∑
j=1

∞∑
ij=n+1

∞∑
i1,...,ij−1,ij+1,...,ir=1

all distinct

xk1i1 . . . x
kr
ir
≤ r

∞∑
i1=n+1

∞∑
i2,...,ir=1

x2
i1
. . . x2

ir

≤ r
∞∑

i1=n+1

x2
i1
≤ r

∞∑
i1=n+1

1

i21

since for x ∈ ∆ and for all i ∈ N xi ≤ 1/i. This bound tends to 0 when n→∞, uniformly in
x. Thus g is the ratio of two continuous functions and therefore continuous whenever x 6= 0.
To see the continuity in 0, we first consider the case r = 1, k1 = 2. In this case we have
g(x) = 1 for all x, which is of course continuous. Otherwise let x ∈ ∆\{0} with d(x,0) < 1/n
where d denotes the distance on ∆. Then for all i we have xi < 1/n, and since

∑∞
i=1 xi ≤ 1

we obtain
∞∑
i=1

xki ≤
∞∑
i=1

x2
i

1

n
≤ 1

n
n

1

n2
=

1

n2

for all k > 2. Therefore

g(x) =
∑

i1 6=···6=ir

xk1i1 . . . x
kr
ir

/
∞∑
i=1

x2
i ≤

∞∑
i1=1

x2
i1

1

n

/
∞∑
i=1

x2
i =

1

n

so g is continuous in 0.

The following proposition was proven in Schweinsberg (2000a) for Dirac masses ν. The
proof here is different from Schweinsberg’s proof since we use our weak convergence results.

Proposition 3.5. Let Ξ be a finite measure on ∆ and let ν ∈ M1(P∞). Let QΞ,ν be the
distribution of a Ξ-coalescent Π with Π0 ' ν. Then the map

(Ξ, ν) 7→ QΞ,ν

is continuous.

Proof. We know that there is uniqueness for the martingale problem for the Ξ-coalescent. We
want to apply Proposition 3.3. Let ΞN be a sequence of finite measures on ∆ that converges
weakly to Ξ and denote by λNb;k1,...,kr;s respectively λ

N
π the rates of the ΞN -coalescent. Denote

by λb;k1,...,kr;s respectively λπ the rates of the Ξ-coalescent. We introduce the operators AN
and A which are defined as in section 2.2.4:

D := {F ∈ C(P∞) : ∃n ∈ N, F̃ ∈ C(Pn), F (π) = F̃ (Rnπ)∀π}

37



AN : D → C(P∞), F (·) 7→
∑
η∈Pn

λNη (F̃ (Coag(Rn·, η))− F̃ (Rn·))

and

A : D → C(P∞), F (·) 7→
∑
η∈Pn

λη(F̃ (Coag(Rn·, η))− F̃ (Rn·))

The Ξ-coalescent Π with Π0 ' ν is the unique càdlàg solution to the (A, ν)-martingale problem.
So by Proposition 3.3 it suffices to show that D contains an algebra that separates points and
contains constants (which is obvious), and that

λNb;k1,...,kr;s → λb;k1,...,kr;s, N →∞

for all b = k1 + · · · + kr + s. Since by the consistency relation (10) every other rate can be
expressed as a finite linear combination of rates with s = 0, it suffices to show the convergence
for s = 0. But for s = 0 we have

λNb;k1,...,kr;0 =

∫
∆

gk1,...,kr(x)ΞN(dx)

which converges to ∫
∆

gk1,...,kr(x)Ξ(dx) = λb;k1,...,kr;0

by Lemma 3.4.

4 Ξ-Fleming-Viot Processes
We will present generalisations of the Fleming-Viot process, so called Ξ-Fleming-Viot pro-
cesses. We will prove that Ξ-Fleming-Viot processes and Ξ-coalescents are dual to each other,
which will yield a characterization of the Ξ-Fleming-Viot process as the unique solution to a
certain martingale problem.

The Λ-Fleming-Viot process was introduced by Bertoin and Le Gall (2003). The Ξ-
Fleming-Viot process was introduced by Birkner et al. (2009). Here we work in the setting of
Bertoin and Le Gall (2003) and extend their results to the Ξ-case.

4.1 Definition and Construction of the Ξ-Fleming-Viot Process

We want to generalize the martingale problem that characterized the Fleming-Viot process.
Let E be a compact metric space. We introduce the following notation: For a partition
π ∈ Pn for some n ∈ N̄ and for i ∈ [n] let π[i] := min{j ∈ [n] : i

π∼ j }. This notation is a
little unfortunate since we already introduced π(i) and πi, so we have to be careful. With this
notation we can rewrite the generator of the Fleming-Viot process:

AΦf (µ) =
∑
π∈Pp:

#π=p−1

∫
[f(xπ[1] , . . . , xπ[p])− f(x1, . . . , xp)]µ

⊗p(dx)

38



With this notation it is quite obvious how to generalize the generator: Let Ξ = Ξ0 + cδ0
be a finite measure on ∆ with Ξ0({0}) = 0. Then for every (b; k1, . . . , kr; s)-partition π we
define

λπ := λb;k1,...,kr;s =

∫
∆

Qk1,...,kr;s(x)∑∞
j=1 x

2
j

Ξ0(dx) + c1{r=1,k=2}

as in (1). Let D := {Φf :M1(E)→ R,Φ(µ) =< f, µ⊗p > for some p ∈ N, f ∈ C(Ep)} be the
domain of the generator of the Fleming-Viot process. We generalize A by defining an operator

G : D → C(M1(E))

such that
GΦf (µ) =

∑
π∈Pp:
π 6=0p

λπ

∫
[f(xπ[1] , . . . , xπ[p])− f(x1, . . . , xp)]µ

⊗p(dx)

Definition 4.1. Let ν be a probability on M1(E). A Ξ-Fleming-Viot process starting
with distribution ν is an M1(E)-valued process (ρt : t ≥ 0) that is a solution to the (Ξ, ν)-
martingale problem. If we just have a family of rates λπ and we do not want to refer explicitly
to the measure Ξ, then ρ is also called a generalized Fleming-Viot process.

Thus the Fleming-Viot process is the special case of the Ξ-Fleming-Viot process corre-
sponding to Ξ = δ0. Every function f : En → R can be interpreted as a function f̃ : En+1 → R
with f̃(x1, . . . , xn+1) = f(x1, . . . , xn). So we must have the consistency relation (7) for the
rates λπ, and we can repeat the proof for the classification of Ξ-coalescents to see that every
generalized Fleming-Viot process is indeed a Ξ-Fleming-Viot process for some finite measure
Ξ on ∆. A priori it is not obvious that a Ξ-Fleming-Viot process exists, nor that the solution
to the considered martingale problem is unique.

Remark. Consider D̄ := {Φf : M1(E) → R,Φ(µ) =< f, µ⊗p > for some p ∈ N, f =∏p
i=1 ϕi, ϕi ∈ C(E)}, and let Ḡ be the restriction of G to D̄. Then for any ν, the (G, ν)-

and the (Ḡ, ν)-martingale problem are equivalent, i.e. any solution of the (G, ν)-martingale
problem is a solution of the (Ḡ, ν)-martingale problem and vice versa. Of course any solution
of the (G, ν)-martingale problem is a solution of the (Ḡ, ν)-martingale problem. To see the
opposite inclusion, note that the functions of the type

∏p
i=1 ϕi(xi) are dense in the uniform

topology of C(Ep) by the Stone-Weierstrass theorem. This means that for any Φf ∈ D there
is a sequence (Φfn) ⊆ D̄ such that Φfn tends uniformly to Φf . By the definition of G we
see that then also ḠΦfn = GΦfn tends uniformly to GΦf . So for any bounded Ft-measurable
random variable Z and for any solution ρ of the (Ḡ, ν)-martingale problem we have by uniform
convergence

E
[(

Φf (ρt+s)− Φf (ρt)−
∫ t+s

t

GΦf (ρu)du

)
Z

]
= lim

n→∞
E
[(

Φfn(ρt+s)− Φfn(ρt)−
∫ t+s

t

ḠΦfn(ρu)du

)
Z

]
= 0

Proposition 4.2. Let E be any compact metric space and let ν be a distribution on M :=
M1(E). Then a càdlàg version of the Ξ-Fleming-Viot process with values inM and with start-
ing distribution ν exists. If (ρt : t ≥ 0) and (ηt : t ≥ 0) are two Ξ-Fleming-Viot processes such
that ρ and η have the same starting distribution, then they have the same finite-dimensional
distributions. In particular any two càdlàg Ξ-Fleming-Viot processes with the same starting
distribution have the same distribution on D([0,∞),M).
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Remark. The existence of càdlàg Ξ-Fleming-Viot processes was also shown by Birkner et al.
(2009) with a particle system construction. Here we take a different approach.

Proof. We prove the proposition in several steps: First we prove uniqueness of the solutions.
Then we show that for measures Ξ satisfying Ξ({0}) = 0 and

∫
∆

(1/
∑∞

i=1 x
2
i ) Ξ(dx) <∞ the

Ξ-Fleming-Viot process exists as a jump-hold process. Finally we obtain general Ξ-Fleming-
Viot processes as limits of those jump-hold processes.

1. To prove uniqueness we will show the duality of Ξ-Fleming-Viot processes and Ξ-
coalescents. Let p ∈ N and let f ∈ C(Ep). Bertoin and Le Gall (2003) introduced
a cleverly chosen function onM1(E)×Pp that gives us the duality: Let for π ∈ Pp and
for (x1, . . . , xp) ∈ Ep Y (π;x1, . . . , xp) := (y1, . . . , yp) where yi = xj if and only if i is in
πj. We define

Θf :M1(E)× Pp → R, Θf (µ, π) :=

∫
Ep
f(Y (π;x1, . . . , xp))µ

⊗p(dx1, . . . , dxp)

When we fix a partition π ∈ Pp, Θf (·, π) is of the form
∫
Ep
g(x1, . . . , xp)µ

⊗p(dx1, . . . , dxp)
for some g ∈ C(Ep). Therefore we can define GΘf (·, π). Let (Πp(t) : t ≥ 0) be
the standard Ξ-coalescent with values in Pp. We assume that Πp is independent of ρ.
Denote Q the generator of Πp. We have

QF (π) =
∑
η∈Pp:
η 6=0p

λη(F (Coag(π, η))− F (π))

for any function F on Pp. Since for fixed µ, Θf (µ, ·) is a function on Pp, we can define
QΘf (µ, ·). We readily see that

GΘf (µ, π) = QΘf (µ, π)

for any µ ∈M1(E) and π ∈ Pp:

GΘf (µ, π) =
∑
η∈Pp:
η 6=0p

λπ

∫
[f(Y (π;xη[1] , . . . , xη[p]))− f(Y (π;x1, . . . , xp))]µ

⊗p(dx)

and

QΘf (µ, π) =
∑
η∈Pp:
η 6=0p

λπ

∫
[f(Y (Coag(π, η);x1, . . . , xp))− f(Y (π;x1, . . . , xp))]µ

⊗p(dx)

Let x1 6= · · · 6= xp ∈ E. Let Y (π;xη[1] , . . . , xη[p]) = (y1, . . . , yp) and Y (Coag(π, η);x1, . . . ,
xp) = (ỹ1, . . . , ỹp). Let i, j ≤ p, i 6= j. Then yi = yj if and only if i ∈ πk, j ∈ πl and
η[k] = η[l]. But this is the case if and only if k and l are in the same block of η and thus
if and only if i and j are in the same block of Coag(π, η). Thus for all x1 6= · · · 6= xp
we have Y (π;xη[1] , . . . , xη[p]) = Y (Coag(π, η);x1, . . . , xp). Of course this also holds for
general choices of x1, . . . , xp. Hence

GΘf (µ, π) = QΘf (µ, π)
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for all µ and π. This implies that for every Ξ-Fleming-Viot process (ρt : t ≥ 0) and for
all f ∈ C(Ep) we have

E(Θf (ρt,Πp(0))) = E(Θf (ρ0,Πp(t)))

and thus that ρ and Πp are dual with respect to Θf in the sense of Liggett (1985). The
following arguments are taken from Etheridge (2000): Let π ∈ Pp. We have

E(Θf (ρt, π)) = E
(∫ t

0

GΘf (ρs,Πp(0))ds

)
+ E(Θf (ρ0, π))

and therefore
d

ds
E(Θf (ρs, π)) = E(GΘf (ρs, π))

Analogously we obtain for µ ∈M1(E):

d

ds
E(Θf (µ,Πp(s))) = E(QΘf (µ,Πp(s)))

Therefore for fixed t and for 0 ≤ s ≤ t:

d

ds
E(Θf (ρs,Πp(t− s))) = E(GΘf (ρs,Πp(t− s)))− E(QΘf (ρs,Πp(t− s))) = 0

and thus

0 =

∫ t

0

d

ds
E(Θf (ρs,Πp(t− s)))ds = E(Θf (ρt,Πp(0)))− E(Θf (ρ0,Πp(t)))

But Πp(0) = 0p and thus Θf (·,Πp(0)) = Φf (·). Since D is an algebra that separates
points onM1(E) and that contains constant functions, it is dense in the uniform topol-
ogy on C(M1(E)). Therefore the one-dimensional marginals of the Ξ-Fleming-Viot
process are uniquely determined by its starting distribution. But for the solution of a
martingale problem it is sufficient to have uniqueness of one-dimensional distributions
to obtain uniqueness of finite-dimensional distributions (cf. Theorem 4.2 of Chapter 4
of Ethier and Kurtz (1986)). This proves our uniqueness statement. It remains to show
existence of Ξ-Fleming-Viot processes.

2. Let Ξ be a finite measure on ∆ satisfying Ξ({0}) = 0 and
∫

∆
(1/
∑∞

i=1 x
2
i ) Ξ(dx) < ∞.

Define Ξ̄(dx) := 1/
∑∞

i=1 x
2
iΞ(dx). Consider the following transition function P on

M×B(M) (B(M) being the Borel σ-algebra ofM):

P (µ,B) :=

∫
∆

∫
EN
1B

((
1−

∞∑
i=1

xi

)
µ+

∞∑
i=1

xiδyi

)
µ⊗N(dy)

Ξ̄(dx)

Ξ̄(∆)

Consider the operator A : B(M)→ B(M),

Af(µ) := Ξ̄(∆)

∫
M

(f(η)− f(µ))P (µ, dη)

Since the jump rate Ξ̄(∆) is bounded, there exists a jump-hold Markov process (ρt :
t ≥ 0) with generator A (cf. Chapter 4.2 of Ethier and Kurtz (1986)), starting with
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distribution ν. We can even construct it explicitly: Let (Ym : m ∈ N0) be a discrete
time Markov process with transition function P and with starting distribution ν. Let
(Nt : t ≥ 0) be a Poisson process with parameter Ξ̄(∆) that is independent of Y . Define

ρt := Y (Nt), t ≥ 0

Then ρ is a Markov process with the desired generator. Now let f(x1, . . . , xp) =
ϕ1(x1) . . . ϕp(xp) with ϕi ∈ C(E) for all i. We want to evaluate AΦf (µ). We have

Φf

((
1−

∞∑
i=1

xi

)
µ+

∞∑
i=1

xiδyi

)
=

p∏
j=1

[(
1−

∞∑
i=1

xi

)
< ϕj, µ > +

∞∑
i=1

xiϕj(yi)

]

=
∑
J⊆[p]

(
1−

∞∑
i=1

xi

)p−|J | ∏
j∈[p]\J

< ϕj, µ >
∏
j∈J

(
∞∑
i=1

xiϕj(yi)

)

=
∑
J⊆[p]

(
1−

∞∑
i=1

xi

)p−|J | ∏
j∈[p]\J

< ϕj, µ > ×∑
π∈PJ

∑
i1 6=···6=i#π

(∏
j∈π1

xi1ϕj(yi1)

)
. . .

 ∏
j∈π#π

xi#πϕj(yi#π)


and therefore∫

[0,1]N
Φf

((
1−

∞∑
i=1

xi

)
µ+

∞∑
i=1

xiδyi

)
µ⊗N(dy)

=
∑
J⊆[p]

(
1−

∞∑
i=1

xi

)p−|J | ∏
j∈[p]\J

< ϕj, µ > ×∑
π∈PJ

∑
i1 6=···6=i#π

x
|π1|
i1

<
∏
j∈π1

ϕj, µ > . . . x
|π#π |
i#π

<
∏
j∈π#π

ϕj, µ >


Note that

∑
J⊆[p]

(
1−

∞∑
i=1

xi

)p−|J | ∑
π∈PJ

∑
i1 6=···6=i#π

x
|π1|
i1

. . . x
|π#π |
i#π

=
∑
J⊆[p]

(
1−

∞∑
i=1

xi

)p−|J |( ∞∑
i=1

xi

)|J |
=

(
1−

∞∑
i=1

xi +
∞∑
i=1

xi

)p

= 1
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and therefore∫
[0,1]N

Φf

((
1−

∞∑
i=1

xi

)
µ+

∞∑
i=1

xiδyi

)
µ⊗N(dy)− Φf (µ)

=
∑
J⊆[p]

(
1−

∞∑
i=1

xi

)p−|J | ∑
π∈PJ

∑
i1 6=···6=i#π

x
|π1|
i1

. . . x
|π#π |
i#π
×

 ∏
j∈[p]\J

< ϕj, µ ><
∏
j∈π1

ϕj, µ > · · · <
∏
j∈π#π

ϕj, µ > −
p∏
i=1

< ϕi, µ >


=

∑
π∈Pp\0p

(p;k1,...,kr;s)−partition

s∑
l=0

(
s

l

)(
1−

∞∑
i=1

xi

)s−l ∑
i1 6=···6=ir+l

xk1i1 . . . x
kr
ir
xir+1 . . . xir+l×

< ∏
j∈π1

ϕj, µ > · · · <
∏
j∈π#π

ϕj, µ > −
p∏
i=1

< ϕi, µ >


=

∑
π∈Pp\0p:

(p;k1,...,kr;s)−partition

Qk1,...,kr;s(x)×

[< f(yπ[1] , . . . , yπ[p]), µ
⊗p > − < f(y1, . . . , yp), µ

⊗p >]

where the sum over the partitions means that we sum over all partitions π and just
distinguish the different types that π can have. So finally we obtain

AΦf (µ) =

∫
EN
µ⊗N(dy)

∫
∆

Ξ̄(dx)

[
Φf

((
1−

∞∑
i=1

xi

)
µ+

∞∑
i=1

xiδyi

)
− Φf (µ)

]

=
∑

π∈Pp\0p:
(p;k1,...,kr;s)−partition

∫
∆

Qk1,...,kr;s(x)∑∞
i=1 x

2
i

Ξ(dx)×

[< f(yπ[1] , . . . , yπ[p]), µ
⊗p > − < f(y1, . . . , yp), µ

⊗p >]

=
∑

π∈Pp\0p:
(p;k1,...,kr;s)−partition

λb;k1,...,kr;s×

[< f(yπ[1] , . . . , yπ[p]), µ
⊗p > − < f(y1, . . . , yp), µ

⊗p >]

= GΦf (µ) = ḠΦf (µ)

So ρ is a solution to the (Ḡ, µ)-martingale problem, which by our previous remark implies
that ρ is a solution to the (G, µ)-martingale problem, i.e. it is a Ξ-Fleming-Viot process
starting with distribution ν.

3. It remains to show the statement for general Ξ. We choose a sequence of finite measures
ΞN on ∆ with ΞN({0}) = 0 for all N , such that

∫
∆

1 /
∑∞

i=1 x
2
i ΞN(dx) < ∞ for all N ,

and such that ΞN converges weakly to Ξ. For example we can choose for Ξ = Ξ0 + cδ0
a sequence xN 6= 0 that converges to 0 in ∆, and then define

ΞN(dx) := 1{
∑∞
i=1 x

2
i≥1/N}(x)Ξ(dx) + cδxN
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For everyN we construct a ΞN -Fleming-Viot process with values inM, ρN , with starting
distribution ν like in the previous step. We showed in the proof of Proposition 3.5 that
the rates λNπ of the ΞN -coalescent converge to the rates λπ of the Ξ-coalescent. Since
the ρN have càdlàg paths by construction and since the domain D contains an algebra
that separates points and contains constants, we can apply Proposition 3.3 to get the
convergence of ρN to the Ξ-Fleming-Viot process, which therefore has to exist.

Remark. Bertoin and Le Gall (2003) gave a Poisson point process construction for the Λ-
Fleming-Viot process. Since this construction only seems to work for the case E = [0, 1], we
rather constructed the process with a combination of a discrete time Markov process and a
Poisson process. Most of the proof consists just of generalisation of notation for the Λ-case
that was proven by Bertoin and Le Gall (2003). However to obtain Ξ-Fleming-Viot processes
for general Ξ as limits of ΞN -Fleming-Viot ρN processes with 1/

∑∞
i=1 x

2
iΞN(dx) < ∞, we

needed to change the argumentation a little:
In the Λ-setting we obtain that for every bounded measurable function ϕ on [0, 1],(

< ϕ, ρNt >: t ≥ 0
)

is a martingale with quadratic variation∫
[0,1]

x2Λ̄N(dx)

∫ t

0

(
< ϕ2, ρNs > − < ϕ, ρNs >2

)
ds

where Λ̄N(dx) = x−2ΛN(dx) and the ΛN correspond to the ΞN of our proof. So the sequence∫
[0,1]

x2Λ̄N(dx) is bounded and therefore the quadratic variation of the martingale is C-tight,
which implies the tightness of the sequence < ϕ, ρN > by Theorem 4.13 in Chapter VI. of
Jacod and Shiryaev (2002). This in turn yields the tightness of the sequence ρN by Theorem
9.1 in Chapter 3 of Ethier and Kurtz (1986).

However in the Ξ-case we obtain the same sequence of martingales, but now their quadratic
variation is given by∫

[0,1]

(
∞∑
i=1

xi

)2

Ξ̄N(dx)

∫ t

0

(
< ϕ2, ρNs > − < ϕ, ρNs >2

)
ds

and in general the sequence∫
∆

(
∞∑
i=1

xi

)2

Ξ̄N(dx) =

∫
∆

(
∞∑
i=1

xi

)2/ ∞∑
i=1

x2
i ΞN(dx)

is not bounded. To show tightness of < ϕ, ρN > directly does not seem to be very easy either
since the jump-rate Ξ̄N(∆) of the Poisson processes used to construct ρN tends to infinity
when N →∞.

4.2 Some Properties of the Ξ-Fleming-Viot Process

Proposition 4.3. Let E be a compact metric space. Let Ξ be a finite measure on ∆ Then any
Ξ-Fleming-Viot process ρ with values inM1(E) has the strong Markov property with respect to
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the filtration (Ft), i.e. for any bounded measurable function f and for any finite (Ft)-stopping
time τ we have

Eµ(f(ρτ+t)|Fτ ) = Eρτ (f(ρt))

Proof. This is just Theorem 4.2 c) of Chapter 4 in Ethier and Kurtz (1986), since we already
established the uniqueness of the martingale problem for the Ξ-Fleming-Viot process. The
only thing we still need to show is that if Pµ denotes the law on D([0,∞),M1(E)) of the
Ξ-Fleming-Viot process starting in µ, then for any Borel set B in D([0,∞),M1(E)) the map

µ 7→ Pµ(B)

is Borel measurable. But by Theorem 4.6 of Chapter 4 in Ethier and Kurtz (1986) this follows
if M1(E) is complete and separable and if Cb(M1(E)) is separable. Since E is compact,
M1(E) is compact by Prohorov’s theorem (Theorem 2.2 of Chapter 3 of Ethier and Kurtz
(1986)). The topology of weak convergence is generated by the Prohorov distance (cf. Theorem
3.1 in Chapter 3 of Ethier and Kurtz (1986)), so M1(E) is a compact metric space, so it is
complete and separable. Also, Cb(M1(E)) = C(M1(E)) is separable by a Stone-Weierstrass
argument.

Remark. In the case E = [0, 1] it is easy to see that any Ξ-Fleming-Viot process is in fact
a Feller process. This can be shown by using a connection between flows of bridges and Ξ-
Fleming-Viot processes, and it is explained in Bertoin and Le Gall (2003). In the general case
this result is more complicated and it was shown by Birkner et al. (2009):

Proposition 4.4. Let E be a compact metric space and let Ξ be a finite measure on ∆. The
Ξ-Fleming-Viot process with values inM1(E) is a Feller process.

Proof. This is Proposition 4.3 (respectively Remark 4.4 a)) of Birkner et al. (2009). There it
is shown that the operator that we used to introduce the Ξ-Fleming-Viot process satisfies a
necessary and sufficient condition for its closure to generate a Feller semi-group.

Proposition 4.5. For a distribution ν onM1(E) and for a finite measure Ξ on ∆ denote by
P ν,Ξ the law on D([0,∞),M1(E)) of a càdlàg Ξ-Fleming-Viot Process ρ with ρ0 ' ν. Then
the map

M1(M1(E))×Mf (∆) 3 (ν,Ξ) 7→ P ν,Ξ ∈M1(D([0,∞),M1(E)))

is continuous. HereMf (∆) is the space of finite measures on ∆ and of course all the spaces
of measures are equipped with the topology of weak convergence.

Proof. We already proved everything that we need to get the continuity of this map: If AΞ is
the operator that we used to define the Ξ-Fleming-Viot process, then the (AΞ, ν)-martingale
problem has a unique solution by Proposition 4.2. If ΞN converges to Ξ and λNπ are the rates
of the ΞN -Fleming-Viot process and λπ are the rates of the Ξ-Fleming-Viot process, then λNπ
converges to λπ for every π (which was shown in the proof of Proposition 3.5). Therefore
AΞNΦf converges uniformly to AΞΦf for all Φf ∈ D. Since the domain D contains an algebra
that separates points, we can apply Proposition 3.3 to obtain the continuity.
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4.3 Discrete Time Ξ-Fleming-Viot Processes

We introduce a discrete time Ξ-Fleming-Viot process for measures Ξ satisfying Ξ({0}) = 0
and

∫
∆

1/
∑∞

i=1 x
2
iΞ(dx) ≤ 1. Then we show that this process is the unique solution to a

discrete time martingale problem.
Define Ξ̄(dx) := 1/

∑∞
i=1 x

2
iΞ(dx) and consider the transition function from the proof of

Proposition 4.2:
P :M1(E)× B(M1(E))→ [0, 1],

P (µ,B) :=

∫
∆

∫
EN
1B

((
1−

∞∑
i=1

xi

)
µ+

∞∑
i=1

xiδyi

)
µ⊗N(dy)Ξ̄(dx) + (1− Ξ̄(∆))1B(µ)

A discrete time Ξ-Fleming-Viot process is a discrete time Markov process with transition
function P . Define the operator

T : B(M1(E))→ B(M1(E)), T f(·) :=

∫
M1(E)

f(µ)P (·, dµ)

We know that for any discrete time Markov process (Y (m) : m ∈ N0) with transition function
P and for any bounded measurable function f , the process

Mf (m) := f(Y (m))−
m−1∑
i=0

(T − I)f(Yk), m ∈ N0

is a martingale with respect to the filtration Fk := σ(Y0, . . . , Yk). (I is the identity map).
Conversely we know that if for every bounded measurable f Mf is a martingale with respect
to some filtration (Fk), then Y is a Markov process with respect to F , and its transition
function is given by P (µ,B) := T1B(µ). We want to examine T on a certain set of functions
D, and then show that the discrete time Ξ-Fleming-Viot process is the unique process for
which Mf is a martingale for all f ∈ D.

Proposition 4.6. Let D := {Φf ∈ C(M1(E)) : ∃f ∈ C(Ep) s.t. Φf (µ) =< f, µ⊗p >}. Let Ξ
be a finite measure on ∆ with Ξ({0}) = 0 and such that

∫
∆

1/
∑∞

i=1 x
2
iΞ(dx) <∞. Let λπ be

the rates of the Ξ-Fleming-Viot process. Define

G : D → C(M1(E)), GΦf (µ) =
∑
π∈Pp:
π 6=0p

λπ

∫
[f(xπ[1] , . . . , xπ[p])− f(x1, . . . , xp)]µ

⊗p(dx)

If for a discrete time process (Y (m) : m ∈ N0) for every Φf ∈ D

Mf (m) := Φf (Y (m))−
m−1∑
i=0

GΦf (Y (i)), m ∈ N0

is a martingale with respect to the filtration Fk = σ(Y (0), . . . , Y (k)), then Y is a discrete time
Ξ-Fleming-Viot process

Proof. Let Φf ∈ D. Then

E(Φf (Y (m))|Fm−1) = Mf (m− 1) +
m−1∑
i=0

GΦf (Y (i)) = Φf (Y (m− 1)) +GΦf (Y (m− 1))
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In the proof of Proposition 4.2 we saw that for Φf ∈ D

GΦf (µ) =

∫
∆

∫
EN

[
Φf

((
1−

∞∑
i=1

xi

)
µ+

∞∑
i=1

xiδyi

)
− Φf (µ)

]
µ⊗N(dy)Ξ̄(dx)

= TΦf (µ)− Φf (µ)

where T is the transition operator of the discrete time Ξ-Fleming-Viot process. So for such
Φf

E(Φf (Y (m))|Fm−1) = TΦf (Ym−1)

Since the domain D is an algebra that separates points and contains constants and since
M1(E) is compact, D is dense in the uniform topology of C(M1(E)). Thus

E(F (Y (m))|Fm−1) = TF (Ym−1)

for every F ∈ C(M1(E)). We can apply the monotone class theorem to obtain

E(F (Y (m))|Fm−1) = TF (Ym−1)

for every bounded measurable F : The set of functions satisfying this equation is closed under
uniform convergence and under bounded point-wise convergence (FN converges bounded point-
wise to F if for all µ ∈ M1(E) FN(µ) converges to F (µ) and if supN ||FN || < ∞), and it
contains the continuous functions which are closed under multiplication. So Corollary 4.4 in
the Appendix of Ethier and Kurtz (1986) yields that the set contains all bounded measurable
functions. So Y is a discrete time Markov process with transition operator T . Therefore it is
a discrete time Ξ-Fleming-Viot process.

5 Cannings’ Population Model

5.1 The Model

We consider a population model introduced by Cannings (1974, 1975). In this model, we
assume we are given a haploid population with non-overlapping generations, and that in every
generation the population has the constant size N . We suppose there is an infinite number of
generations both in the past and in the future, i.e. for every m ∈ Z we are given a generation.
The model is described by a family of random variables {(νm1,N , . . . , νmN,N) : m ∈ Z}, where
νmi,N is the number of descendants of the ith individual in generation m of a population of size
N . Since the size of the population stays constant in all generations, we necessarily have

νm1,N + · · ·+ νmN,N = N ∀m ∈ Z (20)

We suppose that the reproduction in different generations is independent and of the same law,
i.e.

(νm1,N , . . . , ν
m
N,N),m ∈ Z, are i.i.d. (21)

So if we are only interested in the distribution of (νm1,N , . . . , ν
m
N,N), we can omit the index m.

Finally, we suppose that the reproduction of an individual i does not depend on the index i,
i.e. that

(ν1,N , . . . , νN,N) is an exchangeable random vector. (22)
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We suppose that the individuals in generation m are distributed randomly on the families in
generation m− 1. For example the i-th individual in generation m is a descendant of the j-th
individual in generation m− 1 with probability νm−1

j,N /N .
Clearly the Wright-Fisher model is a special case of this class of models. In that case,

(ν1,N , . . . , νN,N) has the multinomial distribution with parameters (N ; 1/N, . . . , 1/N).
Assume we are interested in the genealogy of a sample of the population. Say we sample

n ≤ N individuals in generation 0, and we introduce a process (Πn,N(m) : m ∈ N0) with values
in Pn: i and j are in the same block of Πn,N(m) if and only if the i-th and the j-th individual
have the same acestor in the −m-th generation. Of course if two individuals have the same
ancestor in the −m-th generation, then this is also the case in the −m − 1-th generation,
and therefore Πn,N(m + 1) is always coarser then Πn,N(m), i.e. Πn,N(m + 1) is obtained by
coagulating blocks of Πn,N(m).

On the other side, if we wish to model the distribution of genetic types, we can introduce
a measure-valued process (ρN(m) : m ∈ N0): Assume that in generation 0 every individual
has some genetic type, which we will represent by an element x of some metric compact space
E. Assume that every individual in generation m inherits its genetic type without mutation
from its ancestor in generation m− 1. We introduce a process (Y N(m) : m ∈ N0) with values
in EN , such that Y N

i (m) is the genetic type of individual i in generation m. Then we define

ρN(m) :=
N∑
i=1

1

N
δY Ni (m)

which therefore is a process with values inMN(E) := {
∑N

i=1
1
N
δxi : (x1, . . . , xN) ∈ EN}.

5.2 Convergence Results

We want to let the size N of the population tend to infinity to obtain diffusion approximations
for our processes Πn,N and ρN . To obtain a diffusion approximation, obviously we will need
to rescale the time. The right factor with which to rescale the time is the probability of two
individuals in generation m to have the same ancestor in generation m− 1, which is

cN =
N∑
i=1

E((νi,N)2)

(N)2

=
E((ν1,N)2)

N − 1
=

σ2
N

N − 1

where (N)k := N(N − 1) . . . (N − k + 1) and where σ2
N is the variance of ν1,N (and the last

equality is true because E(ν1,N) = 1).
Let π ∈ Pb be a (b; k1, . . . , kr; s)-partition - where we could have r = 0. If we take b

individuals in generation m and label them from 1 to b, then the probability that exactly the
individuals whose numbers are in the same block of π have the same ancestor in generation
m− 1 is given by

N∑
i1,...,ir+s=1
all distinct

E((νi1,N)k1 . . . (νir,N)krνir+1,N
. . . νir+s,N )

(N)b

=
(N)r+s
(N)b

E((ν1,N)k1 . . . (νr,N)krνr+1,N . . . νr+s,N) (23)
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We will first state the most general convergence theorem, and later we will present some
criteria to check whether the assumptions of the theorem hold. First we give the partition-
valued formulation which was proven by Möhle and Sagitov (2001). Here we use their ideas,
only in the end of the proof we use the general weak convergence results that we established,
rather than using the arguments from Möhle (1999), where convergence in distribution in the
Skorohod-topology is proven with coupling techniques.

Theorem 5.1. Suppose that for every r ∈ N, k1, . . . , kr ≥ 2, the limits

lim
N→∞

E((ν1,N)k1 . . . (νr,N)kr)

Nk1+···+kr−rcN
=: Φr(k1, . . . , kr) (24)

exist.

1. Suppose limN→∞ cN = 0. Then for all n ∈ N, (Πn,N(bt/cNc) : t ≥ 0) converges in
distribution in the Skorohod topology to an exchangeable coalescent (Πn,∞(t) : t ≥ 0)
with values in Pn. The transition rates λb;k1,...,kr;0 of Πn,∞ are given by Φr(k1, . . . , kr),
and these rates determine all the λb;k1,...,kr;s.

2. If limN→∞ cN = c > 0, then for all n ∈ N, (Πn,N(m) : m ∈ N0) converges in distribution
to a discrete time exchangeable coalescent (Πn,∞(m) : m ∈ N0) with values in Pn.
The transition probabilities pb;k1,...,kr;0 of Πn,∞ are given by c×Φr(k1, . . . , kr), and these
transition probabilities determine all the pb;k1,...,kr;s.

Before we begin with the proof, we show two lemmas that we will need for this proof as
well as for the proof of convergence for the measure-valued formulation. They are both shown
in Möhle and Sagitov (2001).

Lemma 5.2. Define

Ψr,s(k1, . . . , kr) := lim
N→∞

E((ν1,N)k1 . . . (νr,N)krνr+1,N . . . νr+s,N)

Nk1+···+kr−rcN

if the limit exists. Then Ψr,0 = Φr, and the existence of the Φr implies the existence of all
Ψr,s, since the Ψr,s satisfy the following recursion:

Ψr,s+1(k1, . . . , kr) =Ψr,s(k1, . . . , kr)−
r∑
j=1

Ψr,s(k1, . . . , kj−1, kj + 1, kj+1, . . . , kr)

− sΨr+1,s−1(k1, . . . , kr, 2) (25)

for all s ∈ N0, r ∈ N, k1, . . . , kr ≥ 2 (where Ψr,−1 := 0).
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Proof. We have

(N − r − s)E((ν1,N)k1 . . . (νr,N)krνr+1,N . . . νr+s+1,N)

(22)
= E((ν1,N)k1 . . . (νr,N)krνr+1,N . . . νr+s,N(νr+s+1,N + · · ·+ νN,N))

(20)
= E((ν1,N)k1 . . . (νr,N)krνr+1,N . . . νr+s,N(N − ν1,N − · · · − νr+s,N))

= E[(ν1,N)k1 . . . (νr,N)krνr+1,N . . . νr+s,N(N − k1 − · · · − kr − s

−
r∑
i=1

(νi,N − ki)−
r+s∑
i=r+1

(νi,N − 1))]

= (N − k1 − · · · − kr − s)E[(ν1,N)k1 . . . (νr,N)krνr+1,N . . . νr+s,N ]

−
r∑
i=1

E[(ν1,N)k1 . . . (νi,N)ki+1 . . . (νr,N)krνr+1,N . . . νr+s,N ]

− sE[(ν1,N)k1 . . . (νr,N)kr(νr+1,N)2νr+2,N . . . νr+s,N ]

Then we divide by Nk1+···+kr+1−rcN and let N tend to infinity to obtain the recursion.

Lemma 5.3. Define

γb := lim
N→∞

1− E(ν1,N . . . νb,N)

cN

if the limit exists. Then the existence of the Φr implies the existence of all γb, since the γb
satisfy the following recursion:

γb+1 = γb + bΨ1,b−1(2)

Proof. This is shown exactly like the previous lemma.

Proof of Theorem 5.1. 1. Let π ∈ Pn with b blocks and let η ∈ Pn be a (b; k1, . . . , kr; s)-
collision of π. Then the transition probability of Πn,N from π to η is given by

pNπη := P(Πn,N(m+ 1) = η|Πn,N(m) = π)

(23)
=

(N)r+s
(N)b

E((ν1,N)k1 . . . (νr,N)krνr+1,N . . . νr+s,N) (26)

In particular, the transition probability from π to π is given by

E(ν1,N . . . νb,N)

2. Suppose limN→∞ cN = 0. In this case we can apply Theorem 3.1 to obtain the weak
convergence: Define for every (n; k1, . . . , kr; s)-partition η Ψη := Ψr,s(k1, . . . , kr). Let
D(A) := {F : Pn → R} and

AF (π) :=
∑
η∈Pn

Ψη(F (Coag(π, η))− F (π))

This martingale problem has at most one solution since Pn is finite (cf. example in
Appendix C). We can rewrite the recursion (25) to see that the Ψr,s satisfy the same
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consistency relation (10) as the λb;k1,...,kr;s. This allows us to rewrite A. We define
for every π ∈ Pn with #π = b and for every (b; k1, . . . , kr; s)-collision η of π Ψπη :=
Ψr,s(k1, . . . , kr). Then we have

AF (π) :=
∑
η∈Pn:
η⊇π

Ψπη(F (η)− F (π))

On the other side, AN is given by

ANF (π) =
∑
η∈Pn:
η⊇π

pNπη
cN

(F (η)− F (π))

To apply Theorem 3.1, all we still need to check is whether for every π ( η ∈ Pn we
have

lim
N→∞

pNπη
cN

= Ψπη

But if η is a (b; k1, . . . , kr; s)-collision of π, then by (26) we have

lim
N→∞

pNπη
cN

= lim
N→∞

(N)r+s
(N)bcN

E((ν1,N)k1 . . . (νr,N)krνr+1,N . . . νr+s,N)

= lim
N→∞

E((ν1,N)k1 . . . (νr,N)krνr+1,N . . . νr+s,N)

N b−r−scN

= lim
N→∞

E((ν1,N)k1 . . . (νr,N)krνr+1,N . . . νr+s,N)

Nk1−···−kr−rcN
= Ψr,s(k1, . . . , kr) = Ψπη (27)

3. Now suppose limN→∞ cN = c > 0. Set for π * η Ψπη := 0 and set for every π
with #π = b Ψππ := limN→∞ E(ν1,N . . . νb,N)/cN (which exists under the assumption
limN→∞ cN > 0 because of Lemma 5.3). We have for every π ∈ Pn∑

η∈Pn:
η⊇π

cΨπη =
∑
η∈Pn:
η⊇π

lim
N→∞

c
pNπη
cN

= lim
N→∞

∑
η∈Pn:
η⊇π

pNπη = 1

So let (Πn,∞(m) : m ∈ N0) be the Markov chain with transition matrix P = (cΨπη)π,η∈Pn .
Then the finite-dimensional distributions of Πn,N converge to the finite-dimensional dis-
tributions of Πn,∞. But of course for discrete time processes, convergence of finite-
dimensional distributions is equivalent to convergence in distribution of the processes
(cf. e.g. Proposition 4.6 in Chapter 3 of Ethier and Kurtz (1986) or p. 19 of Billingsley
(1968)).

Now we present the most general convergence result for the measure-valued formulation:
We recall that we assumed that every individual has a genetic type that can be described
by an element x in some metric compact space E. Further we assumed that every individual
inherits the genetic type of its ancestor. The distribution of genetic types in the model with N
elements is at each time given by a measure µ ∈MN(E) = {

∑N
i=1 δxi/N : (x1, . . . , xN) ∈ EN}.

We start in generation 0 with a random distribution of genetic types, and then we follow the
development of the distribution of genetic types forward in time. Like that we will obtain a
measure-valued stochastic process (ρN(m) : m ∈ N0).
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Theorem 5.4. Suppose that for every r ∈ N, k1, . . . , kr ≥ 2, the limits

lim
N→∞

E((ν1,N)k1 . . . (νr,N)kr)

Nk1+···+kr−rcN
=: Φr(k1, . . . , kr) (28)

exist and suppose that the distribution of ρN(0) converges weakly to some distribution ν on
M1(E).

1. Suppose limN→∞ cN = 0. Then (ρN(bt/cNc) : t ≥ 0) converges in distribution in the Sko-
rohod topology to a generalized Fleming-Viot process (ρ(t) : t ≥ 0). The rates λb;k1,...,kr;0
of ρ are given by Φr(k1, . . . , kr), and these rates determine all the λb;k1,...,kr;s.

2. If limN→∞ cN = c > 0, then (ρN(m) : m ∈ N0) converges in distribution to a discrete
time generalized Fleming-Viot process (ρ(m) : m ∈ N0). The transition probabilities
pb;k1,...,kr;0 of ρ are given by c×Φr(k1, . . . , kr), and these transition probabilities determine
all the pb;k1,...,kr;s.

Proof. 1. Let for i ≤ N Y N
i (m) ∈ E be the genetic type of individual i in generation m of

the population with N individuals. Let f(x1, . . . , xp) =
∏p

i=1 ϕi(xi) with ϕi ∈ C(E) for
all i. Let (x1, . . . , xN) ∈ EN and let µN :=

∑N
i=1

1
N
δxi . We want to evaluate

1

cN
{E [Φf (ρN(1)) |ρN(0) = µN ]− Φf (µN)}

to apply Theorem 3.1. We have

E [Φf (ρN(1)) |ρN(0) = µN ] = E

[
p∏
i=1

N∑
j=1

1

N
ϕi(Y

N
j (1))

∣∣∣∣∣Y N(0) = (x1, . . . , xN)

]

= N−p
N∑

j1,...,jp=1

E

[
p∏
i=1

ϕi(Y
N
ji

(1))

∣∣∣∣∣Y N(0) = (x1, . . . , xN)

]
Let for i, j ≤ N ANi,j be the event that the j-th individual in generation 1 is a descendant
of the i-th individual in generation 0. Then we have

E [Φf (ρN(1)) |ρN(0) = µN ]

= N−p
∑
π∈Pp

N∑
j1,...,j#π=1

all distinct

N∑
l1,...,l#π=1

E

∏
i∈π1

ϕi(Y
N
j1

(1)) · · ·
∏
i∈π#π

ϕi(Y
N
j#π

(1))1∩#πi=1A
N
li,ji

∣∣∣∣∣∣Y N(0) = (x1, . . . , xN)


Of course ANli,ji is independent of Y

N(0) by our assumptions, and therefore

E

∏
i∈π1

ϕi(Y
N
j1

(1)) · · ·
∏
i∈π#π

ϕi(Y
N
j#π

(1))1∩#πi=1A
N
li,ji

∣∣∣∣∣∣Y N(0) = (x1, . . . , xN)


= E

∏
i∈π1

ϕi(Y
N
j1

(1)) · · ·
∏
i∈π#π

ϕi(Y
N
j#π

(1))

∣∣∣∣∣∣ {Y N(0) = (x1, . . . , xN)} ∩#π
i=1 A

N
li,ji

P
[
∩#π
i=1A

N
li,ji

]
=
∏
i∈π1

ϕi(xl1) · · ·
∏
i∈π#π

ϕi(xl#π)P
[
∩#π
i=1A

N
li,ji

]
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which yields

E [Φf (ρN(1)) |ρN(0) = µN ]

= N−p
∑
π∈Pp

∑
η∈P#π

N∑
j1,...,j#π=1

all distinct

N∑
l1,...,l#η=1

all distinct

#η∏
m=1

 ∏
i∈Coag(π,η)m

ϕi(xlm)

P

[
#η⋂
k=1

(
∩i∈ηkANlk,ji

)]

= N−p
∑
π∈Pp

∑
η∈P#π

(N)#π

N∑
l1,...,l#η=1

all distinct

#η∏
m=1

 ∏
i∈Coag(π,η)m

ϕi(xlm)

 E[(νl1,N)|η1| . . . (νl#η ,N)|η#η |]

(N)#π

(29)

2. Let π 6= 0p and η 6= 0#π. Set C :=
∏p

i=1 ||ϕi||. Then we have∣∣∣∣∣∣∣∣N
−p(N)#π

N∑
l1,...,l#η=1

all distinct

#η∏
m=1

 ∏
i∈Coag(π,η)m

ϕi(xlm)

 E[(ν1,N)|η1| . . . (ν#η,N)|η#η |]

(N)#π

∣∣∣∣∣∣∣∣
≤ N−p(N)#ηCE[(ν1,N)|η1| . . . (ν#η,N)|η#η |]

≤ C

Np−#π

E[(νl1,N)|η1| . . . (νl#η ,N)|η#η |]

N#π−#η
= o(cN) (30)

o(cN) means that this term tends to 0 when it is divided by cN and when N tends to
infinity. This is true because by Lemma 5.2 E[(νl1,N)|η1| . . . (νl#η ,N)|η#η |]/(N

#π−#ηcN)
converges and because #π < p.

3. Let π = 0p and η ∈ Pp. Then

N−p(N)p

N∑
l1,...,l#η=1

all distinct

#η∏
m=1

 ∏
i∈Coag(π,η)m

ϕi(xlm)

 E[(ν1,N)|η1| . . . (ν#η,N)|η#η |]

(N)p

=
N∑

l1,...,l#η=1

all distinct

#η∏
m=1

(∏
i∈ηm ϕi(xlm)

N

) E[(ν1,N)|η1| . . . (ν#η,N)|η#η |]

Np−#η

=<
∏
i∈η1

ϕi, µN > · · · <
∏
i∈η#η

ϕi, µN >
E[(ν1,N)|η1| . . . (ν#η,N)|η#η |]

Np−#η

−
N∑

l1,...,l#η=1
∃i 6=j:li=lj

#η∏
m=1

(∏
i∈ηm

ϕi(xlm)

)
E[(ν1,N)|η1| . . . (ν#η,N)|η#η |]

Np
(31)
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But for η 6= 0p the “minus-term” is of order o(cN) by Lemma 5.2:∣∣∣∣∣∣∣∣
N∑

l1,...,l#η=1
∃i 6=j:li=lj

#η∏
m=1

(∏
i∈ηm

ϕi(xlm)

)
E[(ν1,N)|η1| . . . (ν#η,N)|η#η |]

Np

∣∣∣∣∣∣∣∣
≤
(

#η

2

)
N#η−1C

E[(ν1,N)|η1| . . . (ν#η,N)|η#η |]

Np

=
C

N

(
#η

2

)E[(ν1,N)|η1| . . . (ν#η,N)|η#η |]

Np−#η
= o(cN) (32)

For η = 0p we can rewrite the “minus-term” as follows:

N∑
l1,...,lp=1
∃i 6=j:li=lj

p∏
m=1

ϕi(xlm)
E[ν1,N . . . νp,N ]

Np

=
∑

σ∈Pp\{0p}

N∑
l1,...,l#σ=1

all distinct

#σ∏
m=1

(∏
i∈σm

ϕi(xlm)

)
E[ν1,N . . . νp,N ]

Np
(33)

4. Finally let π 6= 0p but η = 0#π. Then

N−p(N)#π

N∑
l1,...,l#η=1

all distinct

#η∏
m=1

 ∏
i∈Coag(π,η)m

ϕi(xlm)

 E[(ν1,N)|η1| . . . (ν#η,N)|η#η |]

(N)#π

=
N∑

l1,...,l#π=1

all distinct

#π∏
m=1

(∏
i∈πm

ϕi(xlm)

)
E[ν1,N . . . ν#π,N ]

Np
(34)

5. We combine (29) - (34) to obtain

E [Φf (ρN(1)) |ρN(0) = µN ]

= o(cN) +
∑

η∈Pp\{0p}

<
∏
i∈η1

ϕi, µN > · · · <
∏
i∈η#η

ϕi, µN >
E[(ν1,N)|η1| . . . (ν#η,N)|η#η |]

Np−#η

− o(cN) +

p∏
i=1

< ϕi, µN > E[ν1,N . . . νp,N ]

−
∑

σ∈Pp\{0p}

N∑
l1,...,l#σ=1

all distinct

#σ∏
m=1

(∏
i∈σm

ϕi(xlm)

)
E[ν1,N . . . νp,N ]

Np

+
∑

π∈Pp\{0p}

N∑
l1,...,l#π=1

all distinct

#π∏
m=1

(∏
i∈πm

ϕi(xlm)

)
E[ν1,N . . . ν#π,N ]

Np
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But ∣∣∣∣∣∣∣∣−
∑

σ∈Pp\{0p}

N∑
l1,...,l#σ=1

all distinct

#σ∏
m=1

(∏
i∈σm

ϕi(xlm)

)
E[ν1,N . . . νp,N ]

Np

+
∑

π∈Pp\{0p}

N∑
l1,...,l#π=1

all distinct

#π∏
m=1

(∏
i∈πm

ϕi(xlm)

)
E[ν1,N . . . ν#π,N ]

Np

∣∣∣∣∣∣∣∣
≤

∑
π∈Pp\{0p}

(N)#πC

∣∣∣∣E[ν1,N . . . ν#π,N ]− 1− (E[ν1,N . . . νp,N ]− 1)

Np

∣∣∣∣
≤

∑
π∈Pp\{0p}

N#π−pC |(E[ν1,N . . . ν#π,N ]− 1)− (E[ν1,N . . . νp,N ]− 1)| = o(cN)

by Lemma 5.3 and since for π 6= 0p #π < p.

So if we define for η ∈ Pp\{0p}

Ψη := lim
N→∞

E[(ν1, N)|η1| . . . (ν#η,N)|η#η |]

Np−#ηcN

(which exists by Lemma 5.2), then

1

cN

(
E [Φf (ρN(1)) |ρN(0) = µN ]−

p∏
i=1

< ϕi, µN >

)

=
∑

η∈Pp\{0p}

<
∏
i∈η1

ϕi, µN > · · · <
∏
i∈η#η

ϕi, µN >
E[(ν1,N)|η1| . . . (ν#η,N)|η#η |]

cNNp−#η

−
p∏
i=1

< ϕi, µN >
1− E[ν1,N . . . νp,N ]

cN
+
o(cN)

cN

=
∑

η∈Pp\{0p}

Ψη <
∏
i∈η1

ϕi, µN > · · · <
∏
i∈η#η

ϕi, µN > −γp
p∏
i=1

< ϕi, µN >

+
o(cN)

cN
+ ε(N)

with

ε(N) =
∑

η∈Pp\{0p}

(E[(ν1,N)|η1| . . . (ν#η,N)|η#η |]

cNNp−#η
−Ψη

)
<
∏
i∈η1

ϕi, µN > · · · <
∏
i∈η#η

ϕi, µN >

−
(

1− E[ν1,N . . . νp,N ]

cN
− γp

) p∏
i=1

< ϕi, µN >

which tends to 0 when N → ∞, uniformly in µN . Note that also the o(cN)/cN -term
tends to 0 uniformly in µN . We have

Ψη = lim
N→∞

1

cN

(N)#η

(N)p
E[(ν1,N)|η1| . . . (ν#η,N)|η#η |]
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If we consider the partition-valued formulation of the model for a sample of size p, then
(N)#η/(N)pE[(ν1, N)|η1| . . . (ν#η,N)|η#η |] is the transition probability pN0pη of Πp,N from
0p to η (cf. (26)). E[ν1,N . . . νp,N ] is the probability pNππ of Πp,N to stay in π. Therefore∑

η∈Pp\{0p}

Ψη = lim
N→∞

1

cN

∑
η∈Pp\{0p}

(N)#π

(N)p
E[(ν1,N)|η1| . . . (ν#η,N)|η#η |]

= lim
N→∞

1

cN

∑
η∈Pp\{0p}

pN0pη = lim
N→∞

1

cN
(1− pN0p0p) = γp

So finally we obtain

1

cN
(E [Φf (ρN(1)) |ρN(0) = µN ]− Φf (µN))

=
∑

η∈Pp\{0p}

Ψη

<∏
i∈η1

ϕi, µN > · · · <
∏
i∈η#η

ϕi, µN > −
p∏
i=1

< ϕi, µN >

+
o(cN)

cN
+ ε(N)

=
∑

η∈Pp\{0p}

Ψη

∫
Ep

(
p∏
i=1

ϕi(xη[i])−
p∏
i=1

ϕi(xi)

)
µ⊗pN (dx1, . . . , dxp) +

o(cN)

cN
+ ε(N)

= GΦf (µN) +
o(cN)

cN
+ ε(N)

where G is the operator that we used to introduce the generalized Fleming-Viot pro-
cess corresponding to the rates Ψη. Recall that MN(E) was defined as {

∑N
i=1 δxi/N :

(x1, . . . , xN) ∈ EN}. Let TN be the transition operator of ρN (i.e. TNΦf (µN) =
E [Φf (ρN(1)) |ρN(0) = µN ]). Then we have

sup
µN∈MN (E)

∣∣∣∣ 1

cN
(TN − I) Φf (µN)−GΦf (µN)

∣∣∣∣→ 0, N →∞ (35)

6. Suppose cN → 0. We can apply Theorem 3.1 with EN = MN(E) and with πN being
the inclusion map from MN(E) to M1(E). We obtain that (ρN(bt/cNc) : t ≥ 0)
converges in distribution in the Skorohod-topology to the unique solution to the (Ḡ, ν)-
martingale problem, i.e. the generalized Fleming-Viot process with rates Ψπ, starting
with distribution ν.

7. Suppose limN→∞ cN = c > 0. Note that M1(E)N is a compact space as a product of
compact spaces. This is easy to see with a diagonal sequence argument, sinceM1(E) is
a metric space when equipped with the Prohorov distance. Also, the statement is true
by Tychonoff’s theorem (which uses the axiom of choice, cf. Munkres (2000), Theorem
37.3). So by Prohorov’s theorem (Theorem 2.2 in Chapter 3 of Ethier and Kurtz (1986)),
any sequence of discrete time processes with values inM1(E) is tight. By Proposition
4.6 it therefore suffices to show that any cluster point of the sequence ρN is a solution to
the discrete time (Ḡ, ν)-martingale problem (since the discrete time (G, ν)- and (Ḡ, ν)-
martingale problems are equivalent, just as in the continuous time case). Let m ∈ N0,
let h be a bounded and measurable function onM1(E)m+1, and let Φf ∈ D̄. Using (35)
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and bounded convergence, we obtain

lim
N→∞

E [(Φf (ρN(m+ 1))− Φf (ρN(m))− cGΦf (ρN(m)))h(ρN(0), . . . , ρN(m))]

= lim
N→∞

E [(Φf (ρN(m+ 1))− Φf (ρN(m))− (TN − I)Φf (ρN(m)))h(ρN(0), . . . , ρN(m))]

= 0

which completes the proof.

5.3 Convergence Criteria

Sometimes it is not easy to check the conditions of Theorem 5.1 respectively Theorem 5.4. So
we present two criteria for that. We will not give the proofs here.

The first result is Theorem 4. b) of Möhle (2000).

Proposition 5.5. Suppose

lim
N→∞

E((ν1, N)3)

N2cN
= 0

Then cN tends to 0 when N tends to infinity, and for any b and for any π ∈ Pb with #π < b−1,
we have

lim
N→∞

E((ν1,N)|π1| . . . (ν#π,N)|#π|)

N b−#πcN
= 0

That means, that the limit in the partition-valued formulation will be Kingman’s coalescent,
and the limit in the measure-valued formulation will be the classical Fleming-Viot process.

The second result is Theorem 2.1 respectively Remark 1 from Möhle and Sagitov (1998).

Proposition 5.6. Suppose limN→∞ cN = 0 and

lim
N→∞

E((ν1,N)2(ν2,N)2)

N2cN
= 0

Also, suppose that there exists a probability Λ on [0, 1] such that

lim
N→∞

N

cN
P(ν1,N > Nx) =

∫
[x,1]

y−2Λ(dy)

for all x ∈ (0, 1) where the limiting function is continuous. Then for any (b; k1, . . . , kr; s)-
partition π ∈ Pb with r > 1 we have

lim
N→∞

E((ν1,N)|π1| . . . (ν#π,N)|#π|)

N b−#πcN
= 0

and for a (b; k1, . . . , kr; s)-partition π with r = 1 and k ≥ 2 we have

lim
N→∞

E((ν1,N)|π1| . . . (ν#π,N)|#π|)

N b−#πcN
=

∫
[0,1]

xk−2(1− x)b−kΛ(dx)

That means, that the limit will be a Λ-coalescent or a Λ-Fleming-Viot process.
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6 Convergence Results for Schweinsberg’s Model
We present a realistic population model that was introduced by Schweinsberg (2003). The
model is a special case of Cannings’ model, and we show convergence results.

Suppose we have a haploid population with non-overlapping discrete generations, an infi-
nite number of generations both in the future and in the past. Suppose every individual in
every generation has the same reproduction law, which is independent of the reproduction
of all the other individuals. Further we suppose that the population size is restricted due to
some external influence. So only a fixed number of the descendants in each generation can
survive. This model can be described mathematically in the following way:

Let (Xm
i : i ∈ N,m ∈ Z) be a family of i.i.d. variables with values in N0. If we are only

interested in the distribution of the Xm
i we can therefore omit the index m. We suppose

E(X1) > 1 (36)

We interpret the Xm
i as reproduction laws of a supercritical Galton-Watson process. The

Galton-Watson process describes the size of a population. It is given by Y0 := N and Yk+1 :=
Xk

1 + · · ·+Xk
Yk
. The restriction of the population size can be modelled as follows:

If Xk
1 + · · · + Xk

N > N , we choose randomly N individuals which will be the descendants
from generation k that actually survive. The size of family i in generation k, νki,N , is thus
given by the number of chosen descendants of Xk

i .
If Xk

1 + · · · + Xk
N < N , we define (νk1,N , . . . , ν

k
N,N) := (1, . . . , 1). The probability of this

event will tend to 0 when N tends to infinity because of (36).
So we have a haploid population with non-overlapping generations, infinitely many both

in the past and in the future. The population has a fixed size, the family size vectors
(νk1,N , . . . , ν

k
N,N) are i.i.d. and exchangeable. So we are in the setting of Cannings’ model,

and we can use our previous results.
For most of the results we will suppose that there exists a > 0 such that the tail of the

distribution of X1 is of regular variation with index −a, which means that for any C > 0
we have

lim
k→∞

P(X1 ≥ Ck)

P(X1 ≥ k)
= C−a (37)

Cf. Appendix D for an overview of functions of regular variation.
In the original article Schweinsberg (2003), the assumption was slightly stronger. There it

was supposed that there would be some constant C > 0 such that

P(X1 ≥ k) ∼ Ck−a (38)

where ∼ means that the ratio of the two sides tends to 1 when k tends to infinity. This special
case was also presented in Perkowski (2009).

Let for n ∈ N (Πn,N(m) : m ∈ N0) be the partition-valued formulation of the population
model, and let (ρN(m) : m ∈ N0) be the measure-valued formulation with values inM1(E).

Theorem 6.1. Suppose (36) and that the distribution of ρN(0) converges weakly to some
distribution ν onM1(E).

1. If E(X2
1 ) < ∞, then (Πn,N(bt/cNc))t≥0 converges in distribution in the Skorohod topol-

ogy to Kingman’s n-coalescent when N → ∞, and (ρN(bt/cNc) : t ≥ 0) converges in
distribution in the Skorohod topology to the classical Fleming-Viot process starting with
distribution ν. If X1 satisfies the assumption (37) with a > 2, then E(X2

1 ) <∞.
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2. Under assumption (37) with a = 2, (Πn,N(bt/cNc))t≥0 converges in distribution in the
Skorohod topology to Kingman’s n-coalescent when N → ∞, and (ρN(bt/cNc) : t ≥ 0)
converges in distribution in the Skorohod topology to the classical Fleming-Viot process
starting with distribution ν.

3. (37) with 1 < a < 2 implies the convergence of (Πn,N(bt/cNc))t≥0 in the Skorohod
topology towards a Beta(2−a, a)-coalescent with values in Pn when N →∞. Recall that
Beta-coalescents are coalescent with multiple asynchronous collisions. Under assumption
(37) with a ∈ (1, 2), (ρN(bt/cNc) : t ≥ 0) converges in distribution in the Skorohod
topology to the Beta(2− a, a)-Fleming-Viot process starting with distribution ν.

The transition rates of the limit processes are given by

λb;k =
B(k − a, b− k + a)

B(2− a, a)

4. (38) (attention: not (37)!) with a = 1 implies the convergence of (Πn,N(bt/cNc))t≥0 in
the Skorohod topology towards a Beta(1, 1) = U-coalescent with values in Pn when N →
∞. Under assumption (38) with a = 1, (ρN(bt/cNc) : t ≥ 0) converges in distribution
in the Skorohod topology to the U-Fleming-Viot process starting with distribution ν.

The transition rates of the limit processes are given by

λb;k = B(k − 1, b− k + 1)

5. Let 0 < a < 1 and let Θa(dx) be the probability measure on ∆ that corresponds to the
PD(a, 0)-distribution. Define

Ξa(dx) :=
∞∑
j=1

x2
jΘa(dx)

Under assumption (37) with 0 < a < 1, (Πn,N(m))m∈N0 converges in distribution to
a discrete time Ξa-coalescent with values in Pn when N → ∞, and (ρN(m) : m ∈
N0) converges in distribution to a discrete time Ξa-Fleming-Viot process starting with
distribution ν.

The transition probabilities of the limit processes are given by

pb;k1,...,kr;s =
ar+s−1(r + s− 1)!

(b− 1)!

r∏
i=1

(ki − 1− a)ki−1

Remark. Note that for a = 1 we do not show the generalisation, but we just quote Schweins-
berg’s result. This is not because this case is fundamentally different and because in this case
the generalisation will not be true. Probably the generalisation is also true in that case, and
in fact this can be easily shown if E(X1) is finite, or if P(X1 ≥ k) = k−1l(k) for a function
of slow variation l that is bounded and bounded away from 0, or if l is given by a suitable
function of the logarithm, e.g. l = log or l = 1/ logn or l(x) = log log x2.

The reason why we are not able to show the generalisation for general l is that a = 1 is a
special case in Karamata’s theorem (Theorem D.3), in which we can not control the behaviour
of
∫ x

0
P(X1 ≥ y)dy for x → ∞ as precisely as in the other cases. So this seems to be only a

technical difficulty.
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The importance of Schweinsberg’s work lays in the fact that he introduced a natural
population model in which other coalescents than Kingman’s coalescent are obtained as limits.
This result motivated the deeper study of the Beta-coalescents.

In the proof we will always argue for the convergence of coalescents. But of course those
arguments stay valid for Fleming-Viot processes since in both cases we prove convergence with
some variation of Theorem 5.1 respectively Theorem 5.4.

6.1 Preliminary Results

We remark that assumption (37) yields the existence of a function of slow variation l such
that

P(X1 ≥ k) = k−al(k) ∀k ≥ 1 (39)

Of course in this case l has to satisfy l(k) ≤ ka for all k ≥ 1 and therefore it is locally bounded.

Lemma 6.2. Let g : N0 → R and let X be a random variable with values in N0. Then

N∑
k=0

g(k)P(X = k) = g(0)− g(N)P(X ≥ N + 1) +
N∑
k=1

[g(k)− g(k − 1)]P(X ≥ k)

If limN→∞ g(N)P(X ≥ N + 1) = 0, we obtain

E(g(X)) = g(0) +
∞∑
k=1

[g(k)− g(k − 1)]P(X ≥ k)

This lemma is proven by summation by parts. Before continuing, we introduce a new
notation: We define µ := E(X1) and SN := X1 + · · ·+XN .

Lemma 6.3. If µ > 1, then there is an A < 1 such that P(SN ≤ N) ≤ AN for all N ∈ N.

Proof. Let ρ(r) := E(rX1), r ∈ [0, 1], be the generating function of X1. ρ is continuously
differentiable on (0, 1), and we have ρ′(1) = µ if µ < ∞ but also if µ = ∞ (cf. for example
Klenke (2008), Theorem 3.2). So ρ(1) = 1 and ρ′(1) > 1. Therefore there exists r < 1 such
that ρ(r) < r. We define A := ρ(r)

r
. With Markov’s inequality and because the Xi are i.i.d.

we obtain

P(SN ≤ N) ≤ E(rSN )

rN
= AN

The following lemma is essential for the proofs of all parts of Theorem 6.1 since it expresses
the important limits

lim
N→∞

E((ν1,N)k1 . . . (νr,N)kr)

Nk1+···+kr−rcN

in terms of the Xi.

Lemma 6.4. For r ≥ 1, k1, . . . , kr ≥ 2, we have

lim
N→∞

E((ν1,N)k1 . . . (νr,N)kr)

Nk1+···+kr−rcN
= lim

N→∞

N r

cN
E
(

(X1)k1 . . . (Xr)kr
Sk1+···+kr
N

1{SN≥N}

)
(40)
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This means that the existence of one of those limits implies the existence of the other one, and
in this case the two sides are equal. Further we have

cN ∼ NE
(

(X1)2

S2
N

1{SN≥N}

)
(41)

and there exists A1 > 0 such that

cN ≥
A1

N
∀N ≥ 1 (42)

Proof. 1. We order the individuals of a fixed generation randomly. Independently of that
we order the individuals of the preceding generation randomly. Let Bk1,...,kr be the event
that the k1 first individuals of the present generation descend from the first individual
of the preceding generation, the next k2 individuals descend from the second individual
of the preceding generation, etc. We have

P(Bk1,...,kr) =
E((ν1,N)k1 . . . (νr,N)kr)

(N)k1+···+kr
(43)

Further we have

P(Bk1,...,kr) = E(P(Bk1,...,kr ∩ {SN ≥ N}|X1, . . . , XN)) + P(Bk1,...,kr ∩ {SN < N})

= E
(

(X1)k1 . . . (Xr)kr
(SN)k1+···+kr

1{SN≥N}

)
+ P(Bk1,...,kr ∩ {SN < N}) (44)

2. For cN we have the following inequality:

cN =
NE((ν1,N)2)

(N)2

= NP(B2)
(44)

≥ NE
(

(X1)2

(SN)2

1{SN≥N}

)
≥ NE

(
(X1)2

S2
N

1{SN≥N}

)
≥ N

2
E

((
X1

SN

)2

1{X1≥2,SN≥N}

)
Jensen’s inequality yields

≥ N

2

[
E
(
X1

SN
1{X1≥2,SN≥N}

)]2

=
N

2

[
E
(
X1

SN

∣∣∣∣X1 ≥ 2, SN ≥ N

)
P(X1 ≥ 2, SN ≥ N)

]2

≥ N

2

[
E
(
X1

SN

∣∣∣∣X1 ≥ 2, SN ≥ N

)
(P(X1 ≥ 2)− AN)

]2

since the Xi are i.i.d. this is

≥ N

2

[
P(X1 ≥ 2)− AN

N

]2

=
(P(X1 ≥ 2)− AN)2

2N

Let N0 be such that P(X1 ≥ 2)− AN > 0 for N ≥ N0. If we define

A1 := min{(P(X1 ≥ 2)− AN0)2/2, 1c1, . . . , N0cN0}

then A1 > 0 and

cN ≥
A1

N
∀N ≥ 1
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3. Equation (43) yields

N r

cN
P(Bk1,...,kr) ∼

E((ν1,N)k1 . . . (νr,N)kr)

Nk1+···+kr−rcN

To prove (40) it therefore suffices to show

lim
N→∞

N r

cN
P(Bk1,...,kr) = lim

N→∞

N r

cN
E
(

(X1)k1 . . . (Xr)kr
Sk1+···+kr
N

1{SN≥N}

)
Since P(SN ≤ N) ≤ AN and cN ≥ A1/N , we have limN→∞

Nr

cN
P(Bk1,...,kr ∩{SN < N}) =

0. With (44) we obtain

lim
N→∞

N r

cN
P(Bk1,...,kr)

(44)
= lim

N→∞

N r

cN
E

(
(X1)k1 . . . (Xr)kr

(SN)k1+···+kr
1{SN≥N}

)
= lim

N→∞

N r

cN
E
(

(X1)k1 . . . (Xr)kr
Sk1+···+kr
N

1{SN≥N}

)

4. (41) is a special case of (40) with r = 1 and k1 = 2 since in this case the left side of (40)
is equal to 1.

We will need another estimation of cN for which the proof is a little technical.

Lemma 6.5. If µ <∞, then there exists A2 > 0 such that

cN ≥ A2NE
(

(X1)2

max{X2
1 , N

2}

)
for all large enough N .

Proof. We have

NE
(

(X1)2

S2
N

1{SN≥N}

)
≥ NE

(
(X1)2

(X1 + 2(N − 1)µ)2
1{SN≥N}1{X2+···+XN≤2(N−1)µ}

)
≥ NE

(
(X1)2

(X1 + 2(N − 1)µ)2
1{X2+···+XN≤2(N−1)µ}

)
−NP(SN < N)

≥ NE
(

(X1)2

(X1 + 2(N − 1)µ)2

)
P(X2 + · · ·+XN ≤ 2(N − 1)µ)−NAN

with Markov’s inequality we get P(X2 + · · ·+XN ≤ 2(N − 1)µ}) ≥ 1/2

≥ N

8µ2
E
(

(X1)2

(X1 +N)2

)
−NAN ≥ N

(
1

32µ2
E
(

(X1)2

max{X2
1 , N

2}

)
− AN

)
But there exists a c > 0 such that

E
(

(X1)2

max{X2
1 , N

2}

)
≥ c

N2
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for all N large enough:

E
(

(X1)2

max{X2
1 , N

2}

)
=

N∑
k=0

P(X1 = k)
k(k − 1)

N2
+

∞∑
k=N+1

P(X1 = k)
k2 − k
k2

≥ 1

N2

N∑
k=0

P(X1 = k) ≥ P(X1 ≤ L)

N2

for L ≤ N . We choose L such that P(X1 ≤ L) > 0 and we obtain the desired inequality for
all N ≥ L with c := P(X1 ≤ L). This inequality yields

AN = o

(
E
(

(X1)2

max{X2
1 , N

2}

))
when N →∞. This means that for all N that are large enough we have

AN ≤ 1

64µ2
E
(

(X1)2

max{X2
1 , N

2}

)
With (41) we can find a c′ > 0 such that

cN ≥ c′NE
(

(X1)2

S2
N

1{SN≥N}

)
≥ N

c′

64µ2
E
(

(X1)2

max{X2
1 , N

2}

)
for large enough N . We define A1 := c′

64µ2
.

Lemma 6.6. If Y is a positive random variable such that P (Y ≥ k) is of regular variation
with index −a < −k for some k ∈ N, then E(Y k) <∞.

Proof. We have

E(Y k) =

∫ ∞
0

kxk−1P(Y ≥ x)dx =

∫ ∞
0

kxk−1x−al(x)dx

for some function of slow variation l by (39). By Karamata’s theorem (Theorem D.3), we
have ∫ ∞

y

xk−a−1l(x)dx ∼ yk−al(y)

a− k

which tends to 0 when y tends to infinity by Proposition D.1. At the same time∫ y

0

kxk−1P(Y ≥ x)dx

is finite for every finite y, which yields the finiteness of
∫∞

0
kxk−1P(Y ≥ x)dx.
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6.2 Proof of Theorem 6.1, 1.

By Lemma 6.6, if X1 satisfies (37) with a > 2, then E(X2
1 ) <∞.

We would like to use Proposition 5.5 to show convergence to the n-coalescent. So we need
to show limN→∞ E((ν1,N)3)/(N2cN) = 0. With Lemma 6.4 this is equivalent to

lim
N→∞

N

cN
E
(

(X1)3

S3
N

1{SN≥N}

)
= 0

And since cN ≥ A1/N by (42), it suffices to show that

lim
N→∞

N2E
(

(X1)3

S3
N

1{SN≥N}

)
= 0

We have

N2E
(

(X1)3

S3
N

1{SN≥N}

)
≤ N2E

(
X3

1

max{X3
1 , N

3}

)
= N2

(
N−1∑
k=0

k3

N3
P(X1 = k) +

∞∑
k=N

P(X1 = k)

)

=
1

N

N−1∑
k=0

k3P(X1 = k) +N2P(X1 ≥ N) (45)

The second term tends to 0 when N →∞ since E(X2
1 ) <∞. The first term also tends to 0:

Let L ≤ N .

1

N

N−1∑
k=0

k3P(X1 = k) =
1

N

L−1∑
k=0

k3P(X1 = k) +
1

N

N−1∑
k=L

k3P(X1 = k)

≤ L

N

L−1∑
k=0

k2P(X1 = k) +
N−1∑
k=L

k2P(X1 = k) ≤ LE(X2
1 )

N
+ E(X2

11{X1≥L})

Since we can choose L arbitrarily large, this expression tends to 0 for N →∞. Therefore we
proved the first part of Theorem 6.1.

6.3 Proof of Theorem 6.1, 2.

1. Under assumption (37) with a = 2 we have µ <∞ (cf. Lemma 6.6). Therefore we can
apply Lemma 6.5. We will need a preliminary result: Under (37) with a = 2, we have

lim
N→∞

l(N)

NcN
= 0 (46)
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where l is the function of slow variation satisfying P (X1 ≥ k) = k−2l(k). This is
equivalent to limN→∞NcN/l(N) =∞.

NcN
l(N)

Lemma 6.5

≥
NA2NE

(
(X1)2

max{X2
1 ,N

2}

)
l(N)

≥ N2A2

∑N
k=0(k)2P(X1 = k)/N2

l(N)

Lemma 6.2
=

A2

l(N)

−N(N − 1)P(X1 ≥ N + 1) +
N∑
k=1

((k)2 − (k − 1)2)︸ ︷︷ ︸
=2(k−1)

P(X1 ≥ k)


≥ A2

l(N)

(
−N(N − 1)(N + 1)−2l(N + 1) +

∫ N

2

2(x− 1)P(X1 ≥ x)dx

)
≥ A2

(
−N(N − 1)(N + 1)−2 l(N + 1)

l(N)
+

2

l(N)

∫ N

2

2

(
x− 1

2
x

)
x−2l(x)dx

)
= A2

(
−N(N − 1)(N + 1)−2 l(N + 1)

l(N)
+

2

l(N)

∫ N

2

l(x)

x
dx

)
The first term between the brackets tends to −1, and by Theorem D.3, the second term
tends to +∞ when N tends to infinity. Since A2 > 0, this yields (46).

2. To obtain the convergence of (Πn,N(bt/cNc)) to the n-coalescent, it suffices to show that

lim
N→∞

N

cN
E
(

(X1)3

S3
N

1{SN≥N}

)
= 0

(cf. the proof of Theorem 6.1, 1.). We use (45) to obtain

N

cN
E
(

(X1)3

S3
N

1{SN≥N}

)
≤ 1

N2cN

N−1∑
k=0

k3P(X1 = k) +
N

cN
P(X1 ≥ N)

For the first term we get

lim
N→∞

1

N2cN

N−1∑
k=0

k3P(X1 = k)
Lemma 6.2

≤ lim
N→∞

1

N2cN

N−1∑
k=1

(k3 − (k − 1)3)P(X1 ≥ k)

≤ lim
N→∞

1

N2cN

∫ N−1

0

3(x+ 1)2P(X1 ≥ x)dx

≤ lim
N→∞

const

N2cN
+

1

N2cN

∫ N

1

3(x+ x)2P(X1 ≥ x)dx

(42)

≤ lim
N→∞

const

NA1

+
12Nl(N)

N2cN

∫ N

1

l(x)dx

/
(Nl(N))

Theorem D.3
= lim

N→∞
12
l(N)

NcN

(46)
= 0

and the second term tends to 0 as well:

lim
N→∞

N

cN
P(X1 ≥ N) = lim

N→∞

l(N)

NcN

(46)
= 0

So the proof of Theorem 6.1, 2. is complete.
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6.4 Proof of Theorem 6.1, 3.

The following result is true under assumption (37) with a ≤ 1 < 2:

Lemma 6.7. If (39) is satisfied with 1 ≤ a < 2, then

lim
M→∞

1

P(X1 ≥M)
E
(

(X1)2

(X1 +M)2

)
= lim

M→∞

Ma

l(M)
E
(

(X1)2

(X1 +M)2

)
= aB(2− a, a)

Proof. 1. We can express

lim
M→∞

Ma

l(M)
E
(

(X1)2

(X1 +M)2

)
in terms of

lim
M→∞

2M1+a

∫ ∞
L

x1−al(x)

(x+M)3
dx

This means that the existence of the second limit yields the existence of the first limit,
and in this case the two are equal: We use Lemma 6.2 to obtain

E
(

(X1)2

(X1 +M)2

)
=
∞∑
k=1

(
(k)2

(k +M)2
− (k − 1)2

(k − 1 +M)2

)
P(X1 ≥ k)

Let ε > 0. We choose L large enough such that for k,M ≥ L

(1− ε)
∫ k

k−1

2Mx1−al(x)

(x+M)3
dx ≤

(
(k)2

(k +M)2
− (k − 1)2

(k − 1 +M)2

)
k−al(k)

≤ (1 + ε)

∫ k

k−1

2Mx1−al(x)

(x+M)3
dx

This is possible because the derivative of x(x− 1)/(x+M)2 is asymptotically equal to
2Mx/(x+M)3 for M →∞. Hence(

(k)2

(k +M)2
− (k − 1)2

(k − 1 +M)2

)
k−a ∼ k−a

∫ k

k−1

2Mx

(x+M)3
dx

for large M , and for large values of k we get(
(k)2

(k +M)2
− (k − 1)2

(k − 1 +M)2

)
k−a ∼

∫ k

k−1

2Mx1−a

(x+M)3
dx

So finally with Theorem D.2:(
(k)2

(k +M)2
− (k − 1)2

(k − 1 +M)2

)
k−al(k) ∼

∫ k

k−1

2Mx1−al(x)

(x+M)3
dx

For all L ∈ N we have

0 ≤ lim
M→∞

Ma

L∑
k=1

(
(k)2

(k +M)2
− (k − 1)2

(k − 1 +M)2

)
P(X1 ≥ k)

≤ lim
M→∞

Ma

L∑
k=1

(k)2

(k +M)2
= 0
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since a < 2. So we obtain the two inequalities that confirm the statement that we want
to prove:

lim sup
M→∞

MaE
(

(X1)2

(X1 +M)2

)
≤ lim sup

M→∞
(1 + ε)2M1+a

∫ ∞
L

x1−al(x)

(x+M)3
dx

and
lim inf
M→∞

MaE
(

(X1)2

(X1 +M)2

)
≥ lim inf

M→∞
(1− ε)2M1+a

∫ ∞
L

x1−al(x)

(x+M)3
dx

2. With the substitution y = M/(M + x) we obtain∫ ∞
L

x1−al(x)

(x+M)3
dx =

∫ M/(M+L)

0

(
M(1− y)

y

)1−a

l

(
M(1− y)

y

)( y
M

)3

(My−2)dy

Hence

lim
M→∞

Ma

l(M)
E
(

(X1)2

(X1 +M)2

)
= lim

M→∞
2M1+aM−1−a

∫ M/(M+L)

0

ya(1− y)1−a l(M(1− y)/y)

l(M)
dy

Now l(M(1− y)/y)/l(M) tends pointwise to 1. We want to exchange the limit with the
integral. We have

ya(1− y)1−a l(M(1− y)/y)

l(M)
= (1− y)

P(X1 ≥M(1− y)/y)

P(X1 ≥M)

On (0, 1/2], (1 − y)/y is larger than 1, so P(X1 ≥ M(1 − y)/y)/P(X1 ≥ M) ≤ 1. On
every compact subset of [1/2,∞), l is bounded away from 0 and ∞ (if limx→x0 l(x) = 0,
then limx→x0 P(X1 ≥ x) = 0 and therefore P(X1 ≥ x0) = 0). So we can apply Potter’s
bound (cf. Proposition D.5) on [1/2,∞) with some δ > 0 such that a+ δ < 2:

ya(1− y)1−a l(M(1− y)/y)

l(M)
≤ ya(1− y)1−aCδ

(
y

1− y

)δ
= Cδy

(1+a+δ)−1(1− y)(2−a−δ)−1

and this is integrable on [0, 1] (since its integral is CδB(a+ δ + 1, 2− a− δ)). So finally
we obtain with dominated convergence

lim
M→∞

Ma

l(M)
E
(

(X1)2

(X1 +M)2

)
= 2

∫ 1

0

ya(1− y)1−ady = 2B(a+ 1, 2− a)

= 2
Γ(a+ 1)Γ(2− a)

Γ(3)
= 2

aΓ(a)Γ(2− a)

2Γ(2)
= aB(2− a, a)

In both cases, a = 1 and 2 > a > 1, we would like to use Proposition 5.6 to show
convergence to the Beta(2− a, a)-coalescent. Thus we need to show:

lim
N→∞

cN = 0,
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lim
N→∞

E((ν1,N)2(ν2,N)2)

N2cN
= 0

and for all x ∈ (0, 1)

lim
N→∞

N

cN
P(ν1,N > Nx) =

∫
[x,1]

y−2y
2−a−1(1− y)a−1

B(2− a, a)
dy

We will show in a series of lemmas that under assumption (37) with a ∈ (1, 2) we have

lim
N→∞

cN
NP(X1 ≥ N)

= lim
N→∞

Na−1cN
l(N)

= aµ−aB(2− a, a)

(since a ∈ (1, 2), this yields limN→∞ cN = 0 by Proposition D.1),

lim
N→∞

E((ν1,N)2(ν2,N)2)

N2cN
= 0 (47)

and for all x ∈ (0, 1)

lim
N→∞

N

cN
P
(
X1

SN
1{SN≥N} ≥ x

)
=

1

B(2− a, a)

∫ 1

x

y−1−a(1− y)a−1dy (48)

With these lemmas it suffices to show

lim
N→∞

N

cN
P(ν1,N > Nx) = lim

N→∞

N

cN
P
(
X1

SN
1{SN≥N} ≥ x

)
Let x ∈ (0, 1) and let ε > 0, ε < x. On {SN ≥ N}, conditionally on X1, . . . , XN , ν1,N has
the hypergeometric distribution with parameters (X1, SN , N). In Chvátal (1979) we find the
following bound for the tails of the hypergeometric distribution:

Let Z be hypergeometrically distributed with parameters (N,M, n). Then for all ε > 0 we
have

P
(
Z ≥

(
M

N
+ ε

)
n

)
≤ e−2ε2n2

With the symmetry of the hypergeometric distribution and a small calculation this also yields

P
(
Z ≤

(
M

N
− ε
)
n

)
≤ e−2ε2n2

We apply these bounds and the fact that limN→∞N/cNP(SN < N) = 0 since cN ≥ A1/N and
P(SN ≤ N) ≤ AN . Like this we obtain

lim sup
N→∞

N

cN
P(ν1,N > Nx) = lim sup

N→∞

N

cN
E(P(ν1,N > Nx|X1, . . . , XN)1{SN≥N}1{X1/SN≥x−ε})

≤ lim sup
N→∞

N

cN
P({SN ≥ N} ∩ {X1/SN ≥ x− ε})

= lim sup
N→∞

N

cN
P
(
X1

SN
1{SN≥N} ≥ x− ε

)
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and

lim inf
N→∞

N

cN
P(ν1,N > Nx) ≥ lim inf

N→∞

N

cN
E(P(ν1,N > Nx|X1, . . . , XN)1{SN≥N}1{X1/SN≥x+ε})

= lim inf
N→∞

N

cN
P({SN ≥ N} ∩ {X1/SN ≥ x+ ε})

= lim inf
N→∞

N

cN
P
(
X1

SN
1{SN≥N} ≥ x+ ε

)
Now we let ε tend to 0 and obtain the equality of the limits.

Note that the same calculation works in the case a = 1 if we know cN → 0 and if we know
(47) and (48) for a = 1.

It remains to prove the mentioned lemmas.

Lemma 6.8. Under (37) with a ∈ (1, 2) we have

lim
N→∞

cN
NP(X1 ≥ N)

= lim
N→∞

Na−1cN
l(N)

= µ−aaB(2− a, a)

Proof. We showed in Lemma 6.4 that

cN ∼ NE
(

(X1)2

S2
N

1{SN≥N}

)
So is suffices to show that

lim
N→∞

Na

l(N)
E
(

(X1)2

S2
N

1{SN≥N}

)
= µ−aaB(2− a, a)

We want to use Lemma 6.7. Let ε > 0 and δ > 0 such that (1− δ)µ > 1. By the law of large
numbers

P((1− δ)Nµ ≤ X2 + · · ·+XN ≤ (1 + δ)Nµ) > 1− ε (49)

for large enough N . For such N we have

E
(

(X1)2

S2
N

1{SN≥N}

)
= E

(
(X1)2

S2
N

1{SN≥N}1{X2+···+XN<(1−δ)Nµ}

)
+ E

(
(X1)2

S2
N

1{X2+···+XN≥(1−δ)Nµ}

)
≤ εE

(
(X1)2

max{X2
1 , N

2}

)
+ E

(
(X1)2

(X1 + (1− δ)Nµ)2

)
≤ 4εE

(
(X1)2

(X1 +N)2

)
+ E

(
(X1)2

(X1 + (1− δ)Nµ)2

)
Because l is of slow variation, this yields

lim sup
N→∞

Na

l(N)
E
(

(X1)2

S2
N

1{SN≥N}

)
≤ lim sup

N→∞

Na

l(N)
4εE

(
(X1)2

(X1 +N)2

)
+ ((1− δ)µ)−a

((1− δ)Nµ)a

l((1− δ)Nµ)
E
(

(X1)2

(X1 + (1− δ)Nµ)2

)
Lemma 6.7

= 4εaB(2− a, a) + ((1− δ)µ)−aaB(2− a, a)
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For N large enough that (49) holds, we also have

E
(

(X1)2

S2
N

1{SN≥N}

)
≥ E

(
(X1)2

S2
N

1{X2+···+XN≤(1+δ)Nµ}

)
≥ (1− ε)E

(
(X1)2

(X1 + (1 + δ)Nµ)2

)
which implies

lim inf
N→∞

Na

l(N)
E
(

(X1)2

S2
N

1{SN≥N}

)
≥ (1− ε)((1 + δ)µ)−a

((1 + δ)Nµ)a

l((1 + δ)Nµ)
E
(

(X1)2

(X1 + (1 + δ)Nµ)2

)
Lemma 6.7

= (1− ε)((1 + δ)µ)−aaB(2− a, a)

so by letting ε, δ → 0 we get the desired limit.

Lemma 6.9. Under (37) with a ∈ (1, 2):

lim
N→∞

E((ν1,N)2(ν2,N)2)

N2cN
= 0

Proof. With Lemma 6.4 it suffices to show:

lim
N→∞

N2

cN
E
(

(X1)2(X2)2

S4
N

1{SN≥N}

)
= 0

We have

E
(

(X1)2(X2)2

S4
N

1{SN≥N}

)
≤ E

(
(X1)2(X2)2

max{X2
1 , N

2}max{X2
2 , N

2}

)
= E

(
(X1)2

max{X2
1 , N

2}

)2

By Lemma 6.5 we know

E
(

(X1)2

max{X2
1 , N

2}

)
≤ cN
A2N

Since by Lemma 6.8 cN tends to 0 when N tends to infinity, we obtain

lim sup
N→∞

N2

cN
E
(

(X1)2(X2)2

S4
N

1{SN≥N}

)
≤ lim sup

N→∞

N2

cN

(
cN
A2N

)2

= lim sup
N→∞

cN
A2

2

= 0

Lemma 6.10. Under (37) with a ∈ (1, 2) we have for all x ∈ (0, 1):

lim
N→∞

N

cN
P
(
X1

SN
1{SN≥N} ≥ x

)
=

1

B(2− a, a)

∫ 1

x

y−1−a(1− y)a−1dy

Proof. This proof is based on Lemma 6.8. Let x ∈ (0, 1). Let ε > 0, δ > 0 such that
(1− δ)µ > 1. For N large enough we have

P [(1− δ)Nµ ≤ X2 + · · ·+XN ≤ (1 + δ)Nµ] > 1− ε
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So for such N :

P
(
X1

SN
1{SN≥N} ≥ x

)
= P

({
X1

SN
1{SN≥N} ≥ x

}
∩ {X2 + · · ·+XN < (1− δ)Nµ}

)
+ P

({
X1

SN
1{SN≥N} ≥ x

}
∩ {X2 + · · ·+XN ≥ (1− δ)Nµ}

)
≤ εP

(
X1

N
≥ x

)
+ P

(
X1

X1 + (1− δ)Nµ
≥ x

)
By taking the lim sup we get

lim sup
N→∞

N

cN
P
(
X1

SN
1{SN≥N} ≥ x

)
≤ lim sup

N→∞

N

cN

(
εP
(
X1

N
≥ x

)
+ P

(
X1

X1 + (1− δ)Nµ
≥ x

))
= lim sup

N→∞

N

cN

(
εl(Nx)(Nx)−a + l

(
x

1− x
(1− δ)Nµ

)(
x

1− x
(1− δ)Nµ

)−a)

= lim sup
N→∞

l(N)

Na−1cN

(
εx−a +

(
x

1− x
(1− δ)µ

)−a)
Lemma 6.8

=
1

B(2− a, a)

(
εx−aµa

a
+

1

a

(
1− x
x

)a
(1− δ)−a

)
We need a similar estimate for the lim inf: For large enough N we have

P
(
X1

SN
1{SN≥N} ≥ x

)
(1−δ)µ>1

≥ P
({

X1

SN
≥ x

}
∩ {(1− δ)Nµ ≤ X2 + · · ·+XN ≤ (1 + δ)Nµ}

)
≥ (1− ε)P

(
X1

X1 + (1 + δ)Nµ
≥ x

)
= (1− ε)P

(
X1 ≥

x

1− x
(1 + δ)Nµ

)
Thus

lim inf
N→∞

N

cN
P
(
X1

SN
1{SN≥N} ≥ x

)
≥ lim inf

N→∞

N

cN
(1− ε)l

(
x

1− x
(1 + δ)Nµ

)(
x

1− x
(1 + δ)Nµ

)−a
= lim inf

N→∞

l(N)

Na−1cN
µ−a(1− ε)

(
1− x
x

)a
(1 + δ)−a

Lemma 6.8
=

1

aB(2− a, a)

(
1− x
x

)a
(1− ε)(1 + δ)−a

By letting ε and δ tend to 0 we get

lim
N→∞

N

cN
P
(
X1

SN
1{SN≥N} ≥ x

)
=

1

B(2− a, a)

1

a

(
1− x
x

)a
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But with the substitution z = (1− y)/y, dz = −y−2dy we easily see that

1

a

(
1− x
x

)a
=

∫ 1

x

y−1−a(1− y)a−1dy

6.5 Proof of Theorem 6.1, 4.

We will show in a series of lemmas that under the assumption (38) with a = 1 we have

lim
N→∞

cN logN = 1

(in particular this yields limN→∞ cN = 0),

lim
N→∞

E((ν1,N)2(ν2,N)2)

N2cN
= 0

and for all x ∈ (0, 1)

lim
N→∞

N

cN
P
(
X1

SN
1{SN≥N} ≥ x

)
=

∫ 1

x

y−2dy

With these lemmas the case a = 1 is proven exactly as the case 1 < a < 2.
Note that under the assumption (38) with a = 1, there exist C ′, C ′′ > 0, such that for all

k ≥ 1

C ′k−1 ≤ P(X1 ≥ k) ≤ C ′′k−1 (50)

Lemma 6.11. Under (38) with a = 1 we have

lim
N→∞

cN logN = 1

Proof. With Lemma 6.4 it suffices to show

lim
N→∞

logN

(
NE

(
(X1)2

S2
N

1{SN≥N}

))
= 1.

1. Let B > 0. We define Yi := 1{Xi≤BN}Xi. We will show that

lim
N→∞

E(Y1)

logN
= C

where C is the constant from P(X1 ≥ k) ∼ Ck−1. Let 1 ≤ L ≤ BN . Then

E(Y1) =

∫ ∞
0

P(Y1 ≥ x)dx =

∫ BN

0

P(BN ≥ X1 ≥ x)dx

=

∫ BN

0

(P(X1 ≥ x)− P(X1 > BN))dx

=

∫ L

0

P(X1 ≥ x)dx+

∫ BN

L

P(X1 ≥ x)dx−BNP(X1 > BN)
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Since (50) implies P(X1 > BN) ≤ C ′′(BN)−1, we obtain

lim
N→∞

1

logN

(∫ L

0

P(X1 ≥ x)dx−BNP(X1 > BN)

)
= 0

Let η > 0. If L is large enough, then we have for all k ≥ L:

C(1− η)
1

k
≤ P(X1 ≥ x) ≤ C(1 + η)

1

x

Since the logarithm is a function of slow variation, we have

lim
N→∞

1

logN
C

∫ BN

L

1

x
dx = lim

N→∞

C

logN
(log(BN)− logL) = C

By letting η → 0 we get

lim
N→∞

E(Y1)

logN
= C

2. We will need a number of auxiliary inequalities: With Lemma 6.2 and (50) we see that

varY1 ≤ E(Y 2
1 ) =

∞∑
k=1

(k2 − (k − 1)2)P(Y1 ≥ k) ≤
bBNc∑
k=1

2kP(X1 ≥ k) ≤ 2C ′′BN (51)

We will also need the following inequality

lim
N→∞

P
(

max
1≤i≤N

Xi > BN

)
= lim

N→∞
1− (1− P(X1 > BN))N

(38)
= lim

N→∞
1−

(
1− C

BN

)N
= 1− exp(−C/B) (52)

Let ε > 0 and 0 < δ < 1/2. We choose B large enough that the following condition (2a)
is satisfied and then we choose N large enough that the other conditions are satisfied:

(a) 1− e−C/B < ε/4

(b) C(1− δ) logN > 1

(c)
∣∣∣1− E

(
Y2+···+YN
CN logN

)∣∣∣ < δ
2

(d) |P(max1≤i≤N Xi > BN)− (1− e−C/B)| < ε/4 and finally

(e) (8C ′′B)/(C2δ2(logN)2) < ε/2

3. We evaluate the probabilities of two events that we will need in the proof: With (2c) we
obtain

P
(∣∣∣∣X2 + · · ·+XN

CN logN
− 1

∣∣∣∣ ≥ δ

)
≤P
(∣∣∣∣Y2 + · · ·+ YN

CN logN
− E

(
Y2 + · · ·+ YN
CN logN

)∣∣∣∣ ≥ δ

2

)
+ P

(
max

1≤i≤N
Xi > BN

)
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We use Chebyshev’s inequality, (2a), and (2d) to see that this is

≤ var

(
Y2 + · · ·+ YN
CN logN

)(
δ

2

)−2

+
ε

2

with (51) and then (2e) we finally obtain

P
(∣∣∣∣X2 + · · ·+XN

CN logN
− 1

∣∣∣∣ ≥ δ

)
≤ 8C ′′BN(N − 1)

δ2C2N2(logN)2
+
ε

2
≤ ε

2
+
ε

2
= ε (53)

The other event is {X2 + · · ·+XN ≤ C
2
N logN}:

P
(
X2 + · · ·+XN ≤

C

2
N logN

)
≤ P

(
Y2 + · · ·+ YN
CN logN

≤ 1

2

)
with (2c) and since δ < 1/2:

≤ P
(∣∣∣∣Y2 + · · ·+ YN

CN logN
− E

(
Y2 + · · ·+ YN
CN logN

)∣∣∣∣ ≥ 1

4

)
with Chebyshev’s inequality this is

≤ 16 var(Y1)
N − 1

C2N2(logN)2

and with (51) we get

P
(
X2 + · · ·+XN ≤

C

2
N logN

)
≤ 32C ′′BN

N − 1

C2N2(logN)2
≤ 32C ′′B

C2(logN)2
(54)

4. After this technical preparation we are now able to calculate the limit

lim
N→∞

logN

(
NE

(
(X1)2

S2
N

1{SN≥N}

))
We define the events

D1 :=

{
X2 + · · ·+XN ≤

C

2
N logN

}
(we showed in (54) that P(D1) ≤ 32C′′B

C2(logN)2
for B and N large enough)

D2 :=

{
C

2
N logN < X2 + · · ·+XN ≤ C(1− δ)N logN

}

(P(D2) ≤ P
(∣∣∣X2+···+XN

CN logN
− 1
∣∣∣ ≥ δ

) (53)

≤ ε for large enough N)

D3 := {X2 + · · ·+XN > C(1− δ)N logN}
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So

E
(

(X1)2

S2
N

1{SN≥N}

)
≤ P(D1)E

(
(X1)2

max{X2
1 , N

2}

)
+ P(D2)E

(
(X1)2

(X1 + C
2
N logN)2

)

+ E
(

(X1)2

(X1 + C(1− δ)N logN)2

)
≤ 128C ′′B

C2(logN)2
E
(

(X1)2

(X1 +N)2

)
+ εE

(
(X1)2

(X1 + C
2
N logN)2

)

+ E
(

(X1)2

(X1 + C(1− δ)N logN)2

)
We use Lemma 6.7 with M = N , M = C

2
N logN and M = C(1− δ)N logN to obtain

lim sup
N→∞

N logNE
(

(X1)2

S2
N

1{SN≥N}

)
≤ lim sup

N→∞

128C ′′B

C2 logN
C + ε

2

C
C +

1

C(1− δ)
C

= 2ε+
1

1− δ
To evaluate the lim inf we introduce

D4 := {C(1− δ)N logN ≤ X2 + · · ·+XN ≤ C(1 + δ)N logN}

We calculated in (53) that P(Dc
4) ≤ ε for large enough N . With (2b) we get

E
(

(X1)2

S2
N

1{SN≥N}

)
≥ P(D4)E

(
(X1)2

(X1 + C(1 + δ)N logN)2

)
We use Lemma 6.7 with M = C(1 + δ)N logN to obtain

lim inf
N→∞

N logNE
(

(X1)2

S2
N

1{SN≥N}

)
≥ (1− ε) 1

C(1 + δ)
C =

1− ε
1 + δ

The proof is completed by letting ε, δ → 0.

Lemma 6.12. Under (38) with a = 1 we have

lim
N→∞

E((ν1,N)2(ν2,N)2)

N2cN
= 0

Sketch of the proof. With Lemma 40 it suffices to show

lim
N→∞

N2

cN
E
(

(X1)2(X2)2

S4
N

1{SN≥N}

)
= 0

We distinguish the events

D := {X3 + · · ·+XN ≤
C

2
N logN}

and Dc. We showed in the proof of 6.11, (54) that there is a K > 0 such that P(D) ≤ K
(logN)2

for N large enough. We use Lemma 6.7 and Lemma 6.11, the rest is a more or less elementary
calculation.
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Lemma 6.13. Under (38) with a = 1, we have for all x ∈ (0, 1)

lim
N→∞

N

cN
P
(
X1

SN
1{SN≥N} ≥ x

)
=

∫ 1

x

y−2dy

Proof. The proof is similar to the last part of the proof of Lemma 6.11. Let ε > 0 and
0 < δ < 1/2. Let D1, D2, D3, D4 be as in the proof of Lemma 6.11. For large enough N we
have P (D1) ≤ K/(logN)2 for some K > 0 and P(D2) < ε, exactly as in the proof of Lemma
6.11. So

P
(
X1

SN
1{SN≥N} ≥ x

)
≤ K

(logN)2
P
(
X1

N
> x

)
+ εP

(
X1

X1 + C
2
N logN

≥ x

)

+ P
(

X1

X1 + C(1− δ)N logN
≥ x

)
With Lemma 6.11 and (38) we get

lim sup
N→∞

N

cN
P
(
X1

SN
1{SN≥N} ≥ x

)
≤ lim sup

N→∞
N logN(

K

(logN)2
C(Nx)−1 + εC

(
xCN logN

2(1− x)

)−1

+ C

(
xC(1− δ)N logN

1− x

)−1
)

= ε
2(1− x)

x
+

1

1− δ
1− x
x

For large enough N we have P(D4) ≥ (1− ε). So

lim inf
N→∞

N

cN
P
(
X1

SN
1{SN≥N} ≥ x

)
≥ lim inf

N→∞
N logN(1− ε)P

(
X1

X1 + C(1 + δ)N logN
≥ x

)
(38)
= lim inf

N→∞
N logN(1− ε)C

(
xC(1 + δ)N logN

1− x

)−1

=
1− ε
1 + δ

1− x
x

By letting ε, δ → 0, we obtain

lim
N→∞

N

cN
P
(
X1

SN
1{SN≥N} ≥ x

)
=

1− x
x

=

∫ 1

x

y−2dy

6.6 Proof of Theorem 6.1, 5.

Let (ξ(t) : t ∈ [0, 1]) be a stable subordinator of index a with Lévy measure

Λa(dx) = ax−a−1dx

Let g be an asymptotic inverse of f(x) := P(X1 ≥ x). This is a positive function which diverges
to ∞ when N tends to infinity and which satisfies f(g(x)) ∼ 1/x for x→∞ (cf. Proposition
D.4). Let Z1 ≥ Z2 ≥ . . . be the ordered jumps of ξ. For all N , let Y1,N ≥ · · · ≥ YN,N be the
decreasing sequence of the values of X1/g(N), . . . , XN/g(N).
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Lemma 6.14. For all j ∈ N: (Y1,N , . . . , Yj,N) converges in distribution on Rj to (Z1, . . . , Zj)
when N →∞.

Proof. Let x1 ≥ · · · ≥ xj > 0 be given. We define x0 := ∞ and by convention x−a0 := 0. We
define

LNi := #{k : Yk,N ∈ [xi, xi−1)} and
Ki := #{k : Zk ∈ [xi, xi−1)}

Ki corresponds to the number of atoms on [0, 1] ⊗ [xi, xi−1) of a Poisson random measure
with intensity λ⊗ Λa where λ is the Lebesgue measure on [0, 1]. Therefore Ki has a Poisson
distribution with parameter Λa([xi, xi−1)) = (x−ai − x−ai−1). Also, all the Ki are independent.

(LN1 , . . . , L
N
j , N−LN1 −· · ·−LNj ) has a multinomial distribution with parameters (N ; p1,N ,

. . . , pj,N , pN) where pi,N := P(X1/g(N) ∈ [xi, xi−1)) and pN := 1− p1,N − · · · − pj,N . We have

pi,N = P(X1/g(N) ≥ xi)− P(X1/g(N) ≥ xi−1) = f(g(N)xi)− f(g(N)xi−1)

∼ f(g(N))x−ai − f(g(N))x−ai−1 ∼ N−1(x−ai − x−ai−1) and

p
N−n1−···−nj
N = (1− P(X1/g(N) ≥ xj))

N−n1−···−nj ∼ (1−N−1x−aj )N ∼ e−x
−a
j

So for all (n1, . . . , nj) ∈ Nj:

P(LN1 = n1, . . . , L
N
j = nj) =

N !

n1! . . . nj!(N −
∑j

i=1 ni)!
pn1

1,N . . . p
nj
j,Np

N−n1−···−nj
N

∼ Nn1+···+nj

n1! . . . nj!

(
j∏
i=1

N−ni(x−ai − x−ai−1)ni

)
e−x

−a
j

=

j∏
i=1

e−(x−ai −x
−a
i−1)((x−ai − x−ai−1))ni

ni!
=

j∏
i=1

P(Ki = ni)

= P(K1 = n1, . . . , Kj = nj)

We have Yi,N ≥ xi if and only if LN1 + · · ·+LNi ≥ i and Zi ≥ xi if and only if K1 + · · ·+Ki ≥ i.
So

lim
N→∞

(Y1,N ≥ x1, . . . , Yj,N ≥ xj) = lim
N→∞

P(LN1 + · · ·+ LNi ≥ i, 1 ≤ i ≤ j)

= P(K1 + · · ·+Ki ≥ i, 1 ≤ i ≤ j)

= P(Z1 ≥ x1, . . . , Zj ≥ xj)

With the remarks from the section "Euclidean Space" of Chapter 1, 3. of Billingsley (1968)
(p. 17) we get the convergence in distribution.

Lemma 6.15. For all j ∈ N: When N → ∞, (Y1,N , . . . , Yj,N ,
∑N

i=j+1 Yi,N) converges in
distribution on Rj+1 to (Z1, . . . , Zj,

∑∞
i=j+1 Zj).

Proof. Let d be the Prohorov distance on the space of probabilities on Rj+1. d is defined as

d(P,Q) := inf{r > 0 : P (A) ≤ Q(Ar) + r and Q(A) ≤ P (Ar) + r for all A ∈ B(Rj+1)}
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where Ar := {x ∈ Rj+1 : |y − x| < r for some y ∈ A}. Convergence in distribution on Rj+1 is
equivalent to convergence of the distributions in the Prokhorov distance (cf. Theorem 3.3.1
of Ethier and Kurtz (1986).)

Let forM ≤ N QM,N be the distribution of (Y1,N , . . . , Yj,N ,
∑M

i=j+1 Yi,N) and let QN be the
distribution of (Y1,N , . . . , Yj,N ,

∑N
i=j+1 Yi,N). Let ε > 0. We choose a B(ε) > δ > 0 where B(ε)

is a certain bound depending on ε, which will be found later. For large enough M we have
P(ZM ≥ δ) < ε/4. We showed in the preceding lemma that YM,N converges in distribution to
ZM . Portmanteau’s theorem (cf. Theorem 3.3.1 of Ethier and Kurtz (1986)) yields

lim sup
N→∞

P(YM,N ∈ [δ,∞)) ≤ P(ZM ≥ δ)

Therefore we have for large enough M and N P(YM,N ≥ δ) ≤ ε/2. Hence

E

(
N∑
i=1

Yi,N1{Yi,N≤δ}

)
=

N

g(N)
E
(
X11{X1≤g(N)δ}

)
=

N

g(N)

∫ ∞
0

P
(
X11{X1≤g(N)δ} ≥ x

)
dx

≤ N

g(N)

∫ g(N)δ

0

x−al(x)dx

By Karamata’s theorem (Theorem D.3),∫ g(N)δ

0

x−al(x)dx ∼ (g(N)δ)1−al(g(N)δ)

1− a
=
g(N)δf(g(N)δ)

1− a

∼ g(N)δf(g(N))δ−a

1− a
∼ g(N)

N

δ1−a

1− a

So for large enough N

E

(
N∑
i=1

Yi,N1{Yi,N≤δ}

)
≤ N

g(N)
(1 + ε)

g(N)

N

δ1−a

1− a
= (1 + ε)

δ1−a

1− a

With Markov’s inequality we obtain

P

(
N∑

i=M+1

Yi,N ≥ ε

)
≤ P(YM,N ≥ δ) + P

(
N∑
i=1

Yi,N1{Yi,N≤δ} ≥ ε

)

≤ ε

2
+

1 + ε

ε

δ1−a

1− a

for large enough M and N . For the right B(ε) and for δ < B(ε) we therefore obtain

P

(
N∑

i=M+1

Yi,N ≥ ε

)
≤ ε
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Hence for all A ∈ B(Rj+1):

QM,N(A) = P

(
(Y1,N , . . . , Yj,N ,

M∑
i=j+1

Yi,N) ∈ A

)

≤ P

(
(Y1,N , . . . , Yj,N ,

N∑
i=j+1

Yi,N) ∈ Aε
)

+ P

(
N∑

i=M+1

Yi > ε

)
≤ QN(Aε) + ε

and analogously QN(A) ≤ QM,N(Aε) + ε, hence d(QN , QM,N) ≤ ε.
Let P be the distribution of (Z1, . . . , Zj,

∑∞
i=j+1 Zi) and let PM be the distribution of (Z1,

. . . , Zj,
∑M

i=j+1 Zi).
Since

∑M
i=j+1 Zi converges a.s. (and therefore also in distribution) to

∑∞
i=j+1 Zi when

M →∞, we have for large enough M d(PM , P ) < ε.
For all M , (Y1,N , . . . , YM,N) converges in distribution to (Z1, . . . , ZM) according to the last

lemma. Hence

(Y1,N , . . . , Yj,N ,
M∑

i=j+1

Yi,N) converges in distribution to (Z1, . . . , Zj,
M∑

i=j+1

Zi)

and for N (depending on M) large enough we have d(QM,N , PM) < ε.
We thus choose M large enough such that P(ZM ≥ δ) < ε/4 and such that d(PM , P ) < ε.

Then we choose N0 large enough such that every N ≥ N0 satisfies all the other conditions
that we needed. So for all N ≥ N0:

d(QN , P ) ≤ d(QN , QM,N) + d(QM,N , PM) + d(PM , P ) ≤ ε+ ε+ ε = 3ε

We define Wi := Zi/
∑∞

j=1 Zj for all i ≥ 1. So (W1,W2, . . . ) has the PD(a, 0) distribution.

Lemma 6.16. When N →∞,(
Y1,N∑N
i=1 Yi,N

, . . . ,
YN,N∑N
i=1 Yi,N

, 0, . . .

)
converges in distribution on ∆ to (W1,W2, . . . )

Proof. We just showed that for all j,

(Y1,N , . . . , Yj,N ,
N∑

i=j+1

Yi,N) converges in distribution to (Z1, . . . , Zj,
∞∑

i=j+1

Zj)

We define

h : Rj+1 → Rj, (x1, . . . , xj+1) 7→
(

x1

x1 + . . . , xj+1

, . . . ,
xj

x1 + . . . , xj+1

)
h is continuous on Rj+1\{0}. But P(Z1 + · · · + Zj +

∑∞
i=j+1 Zi = 0) = 0. Therefore the

continuous mapping theorem (Corollary 3.1.9 in Ethier and Kurtz (1986)) implies that

h((Y1,N , . . . , Yj,N ,
N∑

i=j+1

Yi,N)) converges in distribution to h((Z1, . . . , Zj,
∞∑

i=j+1

Zj))
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Hence we have the convergence in distribution of(
Y1,N∑N
i=1 Yi,N

, . . . ,
Yj,N∑N
i=1 Yi,N

)
to (W1, . . . ,Wj)

for all j. But the functions on ∆ that only depend on a finite number of coordinates are con-
vergence determining (cf. Theorem 3.4.5 in Ethier and Kurtz (1986), take e.g. the coordinate
projections as strongly separating subset). Therefore we have the convergence in distribution
on ∆.

Lemma 6.17. For all r ∈ N and k1, . . . , kr ≥ 2 we have

lim
N→∞

N rE
(

(X1)k1 . . . (Xr)kr
Sk1+···+kr
N

1{SN≥N}

)
=

∞∑
i1,...,ir=1

all distinct

E(W k1
i1
. . .W kr

ir
)

Proof. We have

N rE
(

(X1)k1 . . . (Xr)kr
Sk1+···+kr
N

1{SN≥N}

)
∼ (N)rE

(
(X1)k1 . . . (Xr)kr

Sk1+···+kr
N

1{SN≥N}

)
=

N∑
i1,...,ir=1
all distinct

E
(

(Xi1)k1 . . . (Xir)kr
Sk1+···+kr
N

1{SN≥N}

)

and

lim
N→∞

N∑
i1,...,ir=1
all distinct

E
(

(Xi1)k1 . . . (Xir)kr
Sk1+···+kr
N

1{SN≥N}

)

= lim
N→∞

N∑
i1,...,ir=1
all distinct

E

(
Xk1
i1
. . . Xkr

ir

Sk1+···+kr
N

1{SN≥N}

)

since
N∑

i1,...,ir=1
all distinct

E
(

(Xi1)k1 . . . (Xir)kr
Sk1+···+kr
N

1{SN≥N}1{Xij≥N
1/4,1≤j≤r}

)

∼
N∑

i1,...,ir=1
all distinct

E

(
Xk1
i1
. . . Xkr

ir

Sk1+···+kr
N

1{SN≥N}1{Xij≥N
1/4,1≤j≤r}

)

and since
N∑

i1,...,ir=1
all distinct

E
(

(Xi1)k1 . . . (Xir)kr
Sk1+···+kr
N

1{SN≥N}1{Xi1<N1/4}

)

≤
N∑
i1=1

(
N1/4

N

)k1 N∑
i2,...,ir=1

E

((
Xi2

SN

)k2
. . .

(
Xir

SN

)kr)

≤ N

(
N1/4

N

)2 N∑
i2,...,ir=1

E
((

Xi2

SN

)
. . .

(
Xir

SN

))
≤ 1√

N
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and this inequality remains valid if we replace 1{Xi1<N1/4} by 1{Xij<N1/4}.
Further

lim
N→∞

N∑
i1,...,ir=1
all distinct

E

(
Xk1
i1
. . . Xkr

ir

Sk1+···+kr
N

1{SN≥N}

)
= lim

N→∞

N∑
i1,...,ir=1
all distinct

E

(
Xk1
i1
. . . Xkr

ir

Sk1+···+kr
N

)

since by Lemma 6.3 P(SN < N) ≤ AN and hence

lim
N→∞

N∑
i1,...,ir=1
all distinct

E

(
Xk1
i1
. . . Xkr

ir

Sk1+···+kr
N

1{SN<N}

)
≤ lim

N→∞
N rAN = 0

So

lim
N→∞

N rE
(

(X1)k1 . . . (Xr)kr
Sk1+···+kr
N

1{SN≥N}

)
= lim

N→∞

N∑
i1,...,ir=1
all distinct

E

(
Xk1
i1
. . . Xkr

ir

Sk1+···+kr
N

)

= lim
N→∞

N∑
i1,...,ir=1
all distinct

E

((
Yi1,N

Y1,N + YN,N

)k1
. . .

(
Yir,N

Y1,N + YN,N

)kr)

We introduce the function

f : ∆→ R, (x1, x2, . . . ) 7→
∞∑

i1,...,ir=1
all distinct

xk1i1 . . . x
kr
ir

By Lemma 6.16 it suffices to show that f is continuous and bounded to obtain the desired
convergence. Of course every continuous function on ∆ is bounded, since ∆ is compact. And
the continuity we already showed in the proof of Lemma 3.4.

Now we can combine these lemmas to complete the proof of Theorem 6.1, 4.
We define the measures Θa and Ξa as in Theorem 6.1: Θa is the probability on ∆ that

corresponds to the PD(a, 0) distribution and Ξa(dx) :=
∑∞

j=1 x
2
jΘa(dx). To obtain the con-

vergence of (Πn,N(m) : m ∈ N0) to a discrete time Ξa-coalescent with values in Pn we use
Theorem 5.1. Thus we need to show:

1. limN→∞ cN = c > 0

2. For all r ∈ N, k1, . . . , kr ≥ 2:

lim
N→∞

E((ν1,N)k1 . . . (νr,N)kr)

Nk1+···+kr−r
=

∫
∆

∑
i1 6=···6=ir

xk1i1 . . . x
kr
ir

/ ∞∑
j=1

x2
jΞa(dx)

Under assumption 1 we already proved condition 2: In this case we obtain from Lemma 6.4

lim
N→∞

E((ν1,N)k1 . . . (νr,N)kr)

Nk1+···+kr−r
= lim

N→∞
N rE

(
(X1)k1 . . . (Xr)kr

Sk1+···+kr
N

1{SN≥N}

)
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with Lemma 6.17 this is

lim
N→∞

N rE
(

(X1)k1 . . . (Xr)kr
Sk1+···+kr
N

1{SN≥N}

)
=

∞∑
i1,...,ir=1
all distinct

E(W k1
i1
. . .W kr

ir
)

=
∞∑

i1,...,ir=1
all distinct

∫
∆

xk1i1 . . . x
kr
ir

Θa(dx) =
∞∑

i1,...,ir=1
all distinct

∫
∆

xk1i1 . . . x
kr
ir

/
∞∑
j=1

x2
j Ξa(dx)

To prove the condition 1 and to calculate the transition probabilities, we will need a result of
Pitman. This is Proposition 9 in Pitman (1995): Let Π be a random partition in P∞ whose
distribution is given by the paint box mixture corresponding to Θa. Let k1, . . . , kr ≥ 2 such
that k1 + · · · + kr = n and let π ∈ Pn be the unique partition with blocks {1, . . . , k1}, {k1 +
1, . . . , k1 + k2}, . . . , {k1 + · · ·+ kr−1 + 1, . . . , k1 + · · ·+ kr}. Then

P(RnΠ = π) =
ar−1(r − 1)!

(n− 1)!

r∏
i=1

[1− a]ki−1

where [x]0 := 1 and [x]k := x(x + 1) . . . (x + k − 1) for k ≥ 1. On the other side we obtain
from the paint box construction:

P(RnΠ = π) =
∞∑

i1,...,ir=1
all distinct

E(W k1
i1
. . .W kr

ir
)

Now it is easy to see that limN→∞ cN > 0: We use Lemma 6.4 and Lemma 6.17 to obtain

lim
N→∞

cN = lim
N→∞

NE
(

(X1)2

S2
N

1{SN≥N}

)
=
∞∑
i=1

E(W 2
i ) = P(R2Π = {1, 2}) = 1− a > 0

Thus (Πn,N(m) : m ∈ N0) converges to a discrete time Ξa-coalescent with values in Pn. The
transition probabilities are given by

pb;k1,...,kr;0 =

∫
∆

∑
i1 6=···6=ir

xk1i1 . . . x
kr
ir

/
∞∑
j=1

x2
j Ξa(dx) =

∫
∆

∑
i1 6=···6=ir

xk1i1 . . . x
kr
ir

Θa(dx)

=
∑

i1 6=···6=ir

E(W k1
i1
. . .W kr

ir
) =

ar−1(r − 1)!

(b− 1)!

r∏
i=1

[1− a]ki−1

To calculate the transition probabilities for s > 0 we will need the exchangeable probability
function of Π. This is a function on the space of finite sequences of positive integers. For
k1, . . . , kr ≥ 1 let π be a partition of k1 + · · · + kr with blocks of respective sizes k1, . . . , kr.
Then

p(k1, . . . , kr) = P(Rk1+···+krΠ = π) =
ar−1(r − 1)!

(k1 + · · ·+ kr − 1)!

r∏
i=1

[1− a]ki−1

In Proposition 10 of Pitman (1995) it is shown that

p(k1, . . . , kr) =
r∑
j=1

p(k1, . . . , kj−1, kj + 1, kj+1, . . . , kr) + p(k1, . . . , kr, 1)
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For k1, . . . , kr ≥ 2 we define ps(k1, . . . , kr) := p(k1, . . . , kr, 1, . . . , 1︸ ︷︷ ︸
s

). So

ps+1(k1, . . . , kr) = ps(k1, . . . , kr)−
r∑
j=1

ps(k1, . . . , kj−1, kj + 1, kj+1, . . . , kr)

− sps−1(k1, . . . , kr, 2)

and this is the same recursion that we have for the pb;k1,...,kr;s (cf. the remark in the proof of
Theorem 5.1). Since pb;k1,...,kr;0 = p0(k1, . . . , kr), we therefore have

pb;k1,...,kr;s = ps(k1, . . . , kr) =
ar+s−1(r + s− 1)!

(b− 1)!

r∏
j=1

[1− a]kj−1

=
ar+s−1(r + s− 1)!

(b− 1)!

r∏
j=1

(kj − a− 1)kj−1

for all b, r ∈ N, s ∈ N0, k1, . . . , kr ≥ 2 such that b = k1 + · · ·+ kr + s.

Appendix

A Poisson Point Processes
Let (E, E) be a Polish space, equipped with its Borel σ-algebra.

Definition A.1. A random measure on E is a map ν : Ω× E 7→ R+ such that

1. For all ω ∈ Ω, ν(ω, .) is a measure on (E, E).

2. For all A ∈ E, ν(., A) is a random variable.

Let µ be a σ-finite measure on E.

Definition A.2. A Poisson random measure of intensity µ is a random measure M on
E such that for all A with µ(A) <∞ we have

P(M(., A) = k) = e−µ(A)µ(A)k

k!
for all k ∈ N0 and

if A ∩B = ∅, M(., A) and M(., B) are independent.

Now let µ be a σ-finite measure on E and let λ be the Lebesgue measure on R+. Let M
be a Poisson random measure on R+ ×E of intensity λ⊗ µ. With the definition of a Poisson
process that is given in Revuz and Yor (1999), Chapter XII. Definition (1.3), it is easy to see
that for all A ∈ E with µ(A) <∞,

MA
t (ω) := M(ω, [0, t]× A)

defines a Poisson process with intensity µ(A). Since µ is σ-finite, we therefore have M({t} ×
E) ∈ {0, 1} a.s. Since E is Polish and E is its Borel σ-algebra: If M({t}×E) = 1, then there
exists x ∈ E such that M({(t, x)}) = 1.
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Now we are able to define a Poisson point process of intensity µ: Let δ /∈ E be a point
that does not belong to E. We define

e(t) :=

{
δ, if M({t} × E) = 0
x, if M({(t, x)}) = 1

It is easy to see that a Poisson point process (e(t))t≥0 satisfies for all s ≥ 0:

(e(t+ s))t≥0 ⊥⊥ (e(t))0≤t<s and (55)
(e(t+ s))t≥0 ' (e(t))t≥0 where ' denotes equality in law. (56)

Let A ∈ E such that µ(A) <∞ and let B ⊆ A be a Borel subset of A. Let TA := inf{t ≥
0 : e(t) ∈ A}. With the elementary properties of exponential random variables we obtain

P(e(TA) ∈ B) = µ(B)/µ(A) (57)

B Subordinators
We consider a measure Λ on (0,∞) that satisfies∫

(0,∞)

(1 ∧ x)Λ(dx) <∞ (58)

Let (e(t), 0 ≤ t ≤ 1) be a Poisson point process on [0, 1] with intensity Λ. We define

ξt :=
∑

0≤s≤t:e(s)6=δ

e(s), t ∈ [0, 1]

(ξt, 0 ≤ t ≤ 1) is called a subordinator and Λ is its Lévy measure. We remark that this
is not the most general form of a subordinator. This special case is also called pure jump
subordinator.

The condition (58) assures that ξ1 is finite. It is easily verified that (ξt) is an increasing
process with independent and stationary increments, hence it is a Lévy process. With the
Lévy-Khintchine formula we obtain the Laplace exponent of (ξt) (cf. Bertoin (1996), p. 72):

E(e−qξt) = exp(−tΦ(q)) where

Φ(q) =

∫
(0,∞)

(1− e−qx)Λ(dx)

On the other side, this exponent determines the law of the subordinator.
Note that because of condition (58), for x > 0 there is only a finite number of jumps of

(ξt) of size > x. Therefore we can order the jumps of (ξt) in decreasing order: a1 ≥ a2 ≥ . . .

C Martingale Problems
Definition C.1. Assume we are given a Polish space E, a distribution ν on E, and an
operator

A : B(E) ⊇ D(A)→ B(E)
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where B(E) denotes the space of bounded measurable functions on E. We call a process
(Xt : t ≥ 0) with values in E a solution to the (A, ν)-martingale problem if and only if

X0 ∼ ν

and for all f ∈ D(A) the process

f(Xt)−
∫ t

0

Af(Xs)ds, t ≥ 0

is a martingale with respect to the filtration

Ft := σ(Xs : s ≤ t) ∨ σ
(∫ s

0

h(Xu)du : s ≤ t, h ∈ B(E)

)
We say that there is uniqueness for the (A, ν)-martingale problem if any two solutions
have the same finite-dimensional distributions.

Example C.2. Let X be a Markov process with starting distribution ν and with infinitesimal
generator G. Then X is a solution to the (G, ν)-martingale problem. Cf. Ethier and Kurtz
(1986), Proposition 1.7 of Chapter 4.

Proposition C.3. Let E be a Polish space and let A be an operator on B(E). Suppose that
for every distribution ν on E the one-dimensional distributions of the solution of the (A, ν)-
martingale problem are uniquely determined. That is, for every two solutions X and Y of the
(A, ν)-martingale problem and for every t ≥ 0 we have

Xt ' Yt

where ' denotes equality in law. Then any two solutions X and Y have the same finite-
dimensional distributions, and any solution X is a Markov process with respect to the filtration
(Ft). If X and Y are two solutions with càdlàg paths, then they have the same distribution on
D([0,∞), E) since from Proposition 7.1 in Chapter 3 of Ethier and Kurtz (1986) we obtain
easily that the distribution of a process on D([0,∞), E) is determined by its finite-dimensional
distributions.

Proof. Cf. Theorem 4.2 of Chapter 4 in Ethier and Kurtz (1986).

Example C.4. Let E := {1, . . . , N} and let A be any operator whose domain includes all
functions on E. Let ν be any distribution on E. Then the (A, ν)-martingale problem has at
most one solution (i.e. any two solutions have the same finite-dimensional distributions): Let
f be a function on E and let X be a solution to the (A, ν)-martingale problem. Then

E(f(Xt+s)|Ft) = f(Xt)−
∫ t

0

Af(Xu)du+ E
(∫ t+s

0

Af(Xu)du|Ft
)

= f(Xt) +

∫ t+s

t

AE(f(Xu)|Ft)du

And this integral equation has a unique solution

E(f(Xt+s)|Ft) = esAf(Xt)

In particular we have

E(f(Xt)) =

∫
E

etAf(y)ν(dy)

which shows that the one-dimensional distributions of any solution are uniquely determined
which by Proposition C.3 implies the uniqueness of the solutions.
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D Regular Variation
A function f : R+ → R+ is said to be of regular variation with index a ∈ R, if for any
C > 0

lim
x→∞

f(Cx)

f(x)
= Ca (59)

If a = 0, then f is said to be of slow variation. In particular, every function f of regular
variation with index a can be written as

f(x) = xax−af(x) = xal(x)

for x > 0. l(x) := x−af(x) is a function of slow variation:

lim
x→∞

l(Cx)

l(x)
= lim

x→∞

C−ax−af(Cx)

x−af(x)
= 1

Proposition D.1. If l is a function of slow variation, then limx→∞ x
al(x) =∞ for all a > 0,

and limx→∞ x
al(x) = 0 for all a < 0.

Cf. Proposition 1.3.6 of Bingham et al. (1989).
In fact, for functions of slow variation the convergence (59) is uniformly in C:

Theorem D.2. Let l be a function of slow variation. Then for any compact set K ⊂ (0,∞)
we have

lim
x→∞

sup
C∈K

l(Cx)

l(x)
= 1

One of the most useful results for functions of regular variation is Karamata’s theorem:

Theorem D.3 (Karamata). Let l be a function of regular variation that is bounded on each
compact interval. Then we have for all K > 0

1. For a > −1 ∫ x

K

yal(y)dy ∼ xa+1l(x)

a+ 1
, x→∞

2. For a = −1,
∫ x
K
l(y)y−1dy is of regular variation and

1

l(x)

∫ x

K

l(y)

y
dy →∞, x→∞

3. For a < −1,
∫∞
x
yal(y)dy converges when x tends to infinity, and∫ ∞

x

yal(y)dy ∼ xa+1l(x)

−a− 1
, x→∞

This is shown in Bingham et al. (1989), Proposition 1.5.8 to 1.5.10.
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Proposition D.4. If f is a function of regular variation with index −a for some a > 0, then
there exists an asymptotic inverse g of f . g is of regular variation with index 1/a and
satisfies

f(g(x)) ∼ 1

x

This is Theorem 1.5.12 in Bingham et al. (1989).

Proposition D.5 (Potter’s bound). Let l be a function of slow variation that is bounded away
from 0 and from ∞ on every compact subset of [K,∞) for some K ≥ 0. Then for every δ > 0
there exists a constant Cδ such that

l(x)

l(y)
≤ Cδ max

{(
x

y

)δ
,

(
x

y

)−δ}

for all x, y > K.
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