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1. Introduction

Starting with Hobson [17], the theory of model-independent pricing has received sub-
stantial attention from the mathematical finance community, we refer to the survey [18].
Starting with [4, 15], the Skorokhod embedding approach has been complemented through
optimal transport techniques. In particular, first versions of a robust super-replication theo-
rem have been established: In discrete time we mention [1] and the important contribution
of Bouchard and Nutz [5]; for related work in a quasi-sure framework in continuous time
we refer to the work of Neufeld and Nutz [25] and Possamai, Royer, and Touzi [28]. Our
results are more closely related to the continuous time super-replication theorem of Dolin-
sky and Soner [12], which we recall here: Given a centered probability measure µ on R
they study the primal maximization problem

P = sup{EP[G(S )]}

where S denotes the canonical process on C[0, 1], the supremum is taken over all mar-
tingale measures P on C[0, 1] with S 1(P) = µ and G denotes a functional on the path
space satisfying appropriate continuity assumptions. The main result of [12] is a super-
replication theorem that appeals to this setup: they show that for each p > P there exists a
hedging strategy H and a “European payoff function” ψ with

∫
ψ dµ = 0 such that

p + (H · S )1 + ψ(S 1) ≥ G(S ).

This is in principle quite satisfying, however, a drawback is that the option G needs to
satisfy rather strong continuity assumptions, which in particular excludes all exotic option
payoffs involving volatility. Given the practical importance of volatility derivatives it is
desirable to give a version of the Dolinsky-Soner theorem that appeals also to this case.
More recently Dolinsky and Soner [13] have extended the original results of [12] to include
càdlàg price processes, multiple maturities and price processes in higher dimensions; Hou
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and Obłój [22] have also recently extended these results to incorporate investor beliefs via
a ‘prediction set’ of possible outcomes.

Subsequently, we shall establish a super-replication theorem that applies to G which
is invariant under time changes in an appropriate sense. Opposed to the result of [12]
this excludes the case of continuously monitored Asian options but covers other practi-
cally relevant derivatives such as options on volatility or realized variance, lookback op-
tions and discretely monitored Asian options. In particular, it constitutes a general du-
ality result appealing to the rich literature on the connection of model-independent fi-
nance and Skorokhod embedding. In a series of impressive achievements, Brown, Cox,
Davis, Hobson, Klimmek, Neuberger, Obłój, Pedersen, Raval, Rogers, Wang, and others
[29, 17, 6, 21, 7, 11, 9, 8, 10, 20, 19] were able to determine the values of related primal
and dual problems for a number of exotic derivatives/market data, proving that they are
equal. Here we establish the duality relation for generic derivatives, in particular recover-
ing duality for the specific cases mentioned above.

After the completion of this work, we learned that Guo, Tan, and Touzi [16] derived a
duality result similar in spirit to Theorem 5.5. Their approach relies on different methods,
and includes an interesting application to the optimal Skorokhod embedding problem.

Organization of the paper: In Section 2 we state our main result. In Section 3 Vovk’s
approach to mathematical finance is introduced and preliminary results are given. Section 4
is devoted to the statement and proof of our main result in its simplest form, a super-
replication theorem for time-invariant payoffs for one period. In Section 5 we present an
extension to finitely many marginals with “zero up to full information”, in particular we
will then obtain our most general super-replication result, Theorem 5.8.

2. Formulation of the super-replication theorem

Let C[0, n] be the space of continuous function ω : [0, n] → R with ω(0) = 0 and
consider G : C[0, n]→ R of the form

G(ω) = γ(t(ω)�[0,〈ω〉n], 〈ω〉1, . . . , 〈ω〉n),

where t(ω) stands for a version of the path ω which is rescaled in time so that its quadratic
variation up to time t equals precisely t. Under appropriate regularity conditions on γ (see
Theorems 4.1 and 5.8 below) we obtain the following robust super-hedging result:

Theorem 2.1. Let I ⊆ {1, . . . , n}, n ∈ I, and consider

Pn := sup{EP[G] : P is a Martingale measure on C[0, n], S 0 = 0, S i ∼ µi for all i ∈ I}

and

Dn := inf
{

a : there exist H and (ψ j) j∈I ,
∫
ψ j dµ j = 0,

a +
∑

j∈I ψ j(S j) + (H · S )n ≥ G((S t)t≤n)

}
.

Then one has Pn = Dn.

Of course the present statement of our main result is imprecise in that neither the path-
wise stochastic integral appearing in the formulation of Dn, nor the pathwise quadratic
variation in the definition of G are properly introduced. We will address this in the follow-
ing sections.

3. Super-hedging and outer measure

Very recently, Vovk [33, 34, 35], see also [32], developed a new hedging based, model
free approach to mathematical finance. Without presuming any probabilistic structure,
Vovk considers the space of real-valued continuous functions as possible price paths and
introduces an outer measure on this space which is based on a minimal super-hedging
price.
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More precisely, the set of price paths is given by the space Ω := C(R+) of all continuous
functions ω : [0,∞) → R with ω(0) = 0. The coordinate process on Ω is denoted by
Bt(ω) := ω(t) and we introduce the natural filtration (Ft)t≥0 := (σ(Bs : s ≤ t))t≥0 and set
F :=

∨
t≥0 Ft. Stopping times τ and the associated σ-algebras Fτ are defined as usual.

A process H : Ω × R+ → R is called a simple strategy if it is of the form

Ht(ω) =
∑
n≥0

Fn(ω)1(τn(ω),τn+1(ω)](t), (ω, t) ∈ Ω × R+,

where 0 = τ0(ω) < τ1(ω) < . . . are stopping times such that for every ω ∈ Ω one has
limn→∞ τn(ω) = ∞, and Fn : Ω→ R are Fτn -measurable bounded functions for n ∈ N. For
such a simple strategy H the corresponding capital process

(H · B)t(ω) =

∞∑
n=0

Fn(ω)(Bτn+1(ω)∧t − Bτn(ω)∧t)

is well-defined for every ω ∈ Ω and every t ∈ R+. A simple strategy H is called λ-
admissible for λ > 0 if (H · B)t(ω) ≥ −λ for all t ∈ [0,∞) and all ω ∈ Ω. We writeHλ for
the set of λ-admissible simple strategies.

To recall Vovk’s outer measure as introduced in [35], let us define the set of processes

Vλ :=

 ∞∑
k=0

Hk : Hk ∈ Hλk , λk > 0,
∞∑

k=0

λk = λ


for an initial capital λ ∈ (0,∞). Note that for every G =

∑
k≥0 Hk ∈ Vλ, all ω ∈ Ω, and all

t ∈ R+, the corresponding capital process

(G · B)t(ω) :=
∑
k≥0

(Hk · B)t(ω) =
∑
k≥0

(λk + (Hk · B)t(ω)) − λ

is well-defined and takes values in [−λ,∞]. Then, Vovk’s outer measure on Ω is given by

Q(A) := inf
{
λ > 0 : ∃G ∈ Vλ s.t. λ + lim inf

t→∞
(G · B)t(ω) ≥ 1A(ω)∀ω ∈ Ω

}
, A ⊆ Ω.

A slight modification of the outer measure Q was introduced in [26, 27], which seems more
in the spirit of the classical definition of super-hedging prices in semimartingale models.
In this context one works with general admissible strategies and the Itô integral against a
general strategy is given as limit of integrals against simple strategies. So in that sense the
next definition seems to be more analogous to the classical one.

Definition 3.1. The outer measure P of A ⊆ Ω is defined as the minimal super-hedging
price, that is

P(A) := inf
{
λ > 0 : ∃ (Hn)n∈N ⊆ Hλ s.t. lim inf

t→∞
lim inf

n→∞
(λ + (Hn · B)t(ω)) ≥ 1A(ω)∀ω ∈ Ω

}
.

A set A ⊆ Ω is said to be a null set if it has outer measure zero. A property (P) holds for
typical price paths if the set A where (P) is violated is a null set.

Of course, for both definitions of outer measures it would be convenient to just mini-
mize over simple strategies rather than over the limit (inferior) along sequences of simple
strategies. However, this would destroy the very much appreciated countable subadditivity
of both outer measures.

Remark 3.2. It is conjectured that the outer measure P coincides with Q. However, up to
now it is only known that P(A) ≤ Q(A) for a general set A ⊆ Ω, see Section 2.4 of [26], and
that they coincide for time-superinvariant sets, see Definition 3.5 and Theorem 3.6 below.
Therefore, the outer measures P and Q are basically the same in the present paper since we
focus on time-invariant financial derivatives.

Perhaps the most interesting feature of P is that is comes with the following arbitrage
interpretation for null sets.
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Lemma 3.3 ([26, Lemma 2.4]). A set A ⊆ Ω is a null set if and only if there exists a
sequence of 1-admissible simple strategies (Hn)n∈N ⊆ H1, such that

1 + lim inf
t→∞

lim inf
n→∞

(Hn · B)t(ω) ≥ ∞ · 1A(ω),

where we use the convention∞ · 0 := 0 and∞ · 1 := ∞.

A null set is essentially a model free arbitrage opportunity of the first kind. Recall that
B satisfies (NA1) (no arbitrage opportunities of the first kind) under a probability measure
P on (Ω,F ) if the setW∞

1 := {1 +
∫ ∞

0 Hs dBs : H ∈ H1} is bounded in probability, that is
if limn→∞ supX∈W∞

1
P(X ≥ n) = 0. The notion (NA1) has gained a lot of interest in recent

years since it is the minimal condition which has to be satisfied by any reasonable asset
price model; see for example [24, 30, 23].

The next proposition briefly collects further properties of P.

Proposition 3.4 ([27, Proposition 3.3]). (1) P is an outer measure with P(Ω) = 1, i.e.
P is nondecreasing, countably subadditive, and P(∅) = 0.

(2) Let P be a probability measure on (Ω,F ) such that the coordinate process B is a
P-local martingale, and let A ∈ F . Then P(A) ≤ P(A).

(3) Let A ∈ F be a null set, and let P be a probability measure on (Ω,F ) such that the
coordinate process B satisfies (NA1) under P. Then P(A) = 0.

Especially, the last statement is of interest in robust mathematical finance because it
says that every property which is satisfied by typical price paths holds quasi-surely for all
probability measures fulfilling (NA1).

An essential ingredient to obtain our super-replication theorem for time-invariant deriva-
tives is a very remarkable pathwise Dambis Dubins-Schwarz theorem as presented in [35].
In order to give its precise statement here, we recall the definition of time-superinvariant
sets, cf. Section 3 in [35].

Definition 3.5. A continuous non-decreasing function f : [0,∞)→ [0,∞) satisfying f (0) =

0 is said to be a time-change. The set of all time-changes will be denoted by G0, the group
of all time-changes that are strictly increasing and unbounded will be denoted by G. Given
f ∈ G0 we define T f (ω) := ω ◦ f . A subset A ⊆ Ω is called time-superinvariant if for all
f ∈ G0 it holds that

T−1
f (A) ⊆ A. (3.1)

A subset A ⊆ Ω is called time-invariant if (3.1) holds true for all f ∈ G.

We denote by W the Wiener measure on (Ω,F ) and recall Vovk’s pathwise Dambis
Dubins-Schwarz theorem.

Theorem 3.6 ([35, Theorem 3.1]). Each time-superinvariant set A ⊆ Ω satisfies P(A) =

Q(A) =W(A).

Proof. For every A ⊆ Ω Proposition 3.4 and Remark 3.2 imply W(A) ≤ P(A) ≤ Q(A).
If A is additionally time-superinvariant, Theorem 3.1 in [35] says Q(A) = W(A), which
immediately gives the desired result. �

Let us now introduce the normalizing time transformation t in the sense of [35]. For
this purpose denote Dn := {k2−n : k ∈ Z} for n ∈ N and define the dyadic stopping times

τn
0 := inf{t ≥ 0 : ω(t) ∈ Dn} and τn

k := inf{t ≥ τn
k−1 : ω(t) ∈ Dn and ω(t) , ω(τn

k−1)},

for k ∈ N. For n ∈ N and each ω ∈ Ω the discrete quadratic variation along these stopping
times is given by

Vn
t (ω) :=

∞∑
k=0

(Bτn
k+1∧t − Bτn

k∧t)2, t ∈ R+.
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For typical price paths ω ∈ Ω the sequence (Vn
· (ω)) converges uniformly on compacts, see

[35, Theorem 5.1]. We write

At(ω) := lim sup
n

Vn
t (ω), At(ω) := lim inf

n
Vn

t (ω), 〈B〉t(ω) := At(ω),

and follow [35] in defining the sequence of stopping times

τt(ω) := inf
{

s ≥ 0 : A�[0,s)(ω) = A�[0,s)(ω) ∈ C[0, s) and sup
u<s

Au(ω) = sup
u<s

Au(ω) ≥ t
}

for t ∈ R+ and τ∞ := supn τn. The normalizing time transformation t : C(R+) → RR+ is
given by

t(ω)t := ω(τt), t ∈ R+, (3.2)
where we set ω(∞) := 0 for all ω ∈ Ω. Note that t(ω)· stays constant from time 〈B〉∞(ω) on
(which is of course only relevant if that time is finite). Below we shall also use t : C[0, 1]→
RR+ which is defined analogously. On the product space Ω×R+ = C(R+)×[0,∞) we further
introduce

t̄(ω, t) := (t(ω), 〈B〉t(ω)).

Lemma 3.7. If A is a predictable subset of Ω × [0,∞), then t̄−1(A) is predictable as well.

Proof. It suffices to verify the statement for A = B×(s, t], where 0 ≤ s < t < ∞ and B ∈ Fs,
and in that case the predictability of t̄−1(A) is an easy consequence of Proposition 4.4
in [3]. �

Finally, we also need to keep track of the time where the quadratic variation ceases to
exist:

σ∞(ω) := inf
{
t ≥ 0 : At(ω) , At(ω) or At(ω) = ∞ or At+(ω) , At−(ω)

}
.

Note that due to the fact that (Ft) is not right-continuous, σ∞ is not a stopping time but
only an optional time (that is {σ∞ < t} ∈ Ft but not {σ∞ ≤ t} ∈ Ft). We also define σ∞ on
C[0, 1] in the same way.

We are now ready to state the main result of [35]:

Theorem 3.8 ([35, Theorem 6.4]). For any bounded and nonnegative Borel measurable
function F : Ω→ R, one has

E[F ◦ t, σ∞ = ∞, 〈B〉∞ = ∞] =

∫
Ω

F dW,

where E is the obvious extension of P from sets to nonnegative functions, F(t(ω)) := 0 for
all ω < t−1(Ω), and 〈B〉∞ := supt≥0〈B〉t.

4. Duality for one period

Here we are interested in a one period duality result for derivatives G on C[0, 1] of
the form ω 7→ G(ω, 〈ω〉1), which are invariant under suitable time changes of ω. Typical
examples for such derivatives are the running maximum up to time 1 or functions of the
quadratic variation. Formally, this amounts to

G = G̃ ◦ t̄(·, 1)

for some predictable process (G̃t)t≥0 on (Ω, (Ft)t≥0), and more specifically we will focus
on processes G̃ which are of the form G̃t(ω) = γ(ω�[0,t], t), where γ : Υ → R is an upper
semi-continuous functional which is bounded from above. Here we wrote Υ for the space
of stopped paths

Υ = {( f , s) : f ∈ C[0, s], s ∈ R+},

equipped with the distance dΥ which is defined for s < t by

dΥ(( f , s), (g, t)) = max
(
t − s, sup

0≤u≤s
| f (u) − g(u)|, sup

s≤u≤t
|g(u) − g(s)|

)
, (4.1)
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and which turns Υ into a Polish space. Given ω ∈ Ω = C(R+) we will often identify it with
an element of Υ and abuse notation by writing (ω, t) := (ω�[0,t], t).

From now we make the following convention: For γ : Υ→ R we write

γ ◦ t̄(ω, t) := 1Ω×R+
(t̄(ω, t)) · (γ ◦ t̄)(ω, t), (ω, t) ∈ C[0, 1] × [0, 1],

where we interpret the first component of t̄(ω, t) as an element ofRR+ by keeping it constant
from time 〈B〉t(ω) on. Similarly for G : Ω→ R we set G ◦ t(ω) := 1Ω(t(ω))(G ◦ t)(ω).

Given a centered probability measure µ on R, we want to solve the primal maximization
problem

P := sup{EP[G] : P is a martingale measure on C[0, 1] s.t. S 1(P) = µ]}, (4.2)

where S denotes the canonical process on C[0, 1].
Since µ satisfies

∫
|x| dµ(x) < ∞, there exists a smooth convex function ϕ : R → R+

with ϕ(0) = 0, limx→±∞ ϕ(x)/|x| = ∞, and such that
∫
ϕ(x) dµ(x) < ∞ (apply for example

the de la Vallée-Poussin Theorem). From now on we fix such a function ϕ and we define

ζt(ω) := 1{σ∞≥t}(ω)
1
2

∫ t

0
ϕ′′(S s(ω)) d〈S 〉s(ω) + 1{σ∞<t}(ω) · ∞, (ω, t) ∈ C[0, 1] × [0, 1],

where we make the convention 0 · ∞ := 0. We then consider for α, c > 0 the set of simple
strategies

Qα,c :=
{
H : H is a simple strategy s.t. (H · S )t(ω) ≥ −c−αζt(ω) ∀(ω, t) ∈ C[0, 1]× [0, 1]

}
.

We also define the set of “European options available at price 0”:

E0 :=
{
ψ ∈ C(R) :

|ψ|

1 + ϕ
is bounded,

∫
ψ(x) dµ(x) = 0

}
.

Theorem 4.1. Let γ : Υ → R be Υ- upper semi-continuous and bounded from above and
let G̃t = γ(ω, t), G = G̃ ◦ t̄(·, 1). Put

D := inf
{

p :
∃c, α > 0, (Hn) ⊆ Qα,c, ψ ∈ E0 s.t. ∀ω ∈ C[0, 1]
p + lim infn(Hn · S )1(ω) + ψ(S 1(ω)) ≥ G(ω)

}
.

Then we have the duality relation

P = D. (4.3)

The inequality P ≤ D is easy: If p > P, then there exists a sequence (Hn) ⊆ Qα,c and a
ψ ∈ C(R) with

∫
ψ(x) dµ(x) = 0 such that p + lim infn(Hn · S )1(ω) + ψ(S 1(ω)) ≥ G(ω). In

particular, for all martingale measures P on C[0, 1] with S 1(P) = µ we have

EP[G] ≤ EP[p + lim inf
n

(Hn · S )1 + ψ(S 1)] ≤ p + lim inf
n
EP[(Hn · S )1] + EP[ψ(S 1)] ≤ p,

where in the second step we used Fatou’s lemma, which is justified because (Hn · S )1 is
uniformly bounded from below by −c−αζ1 and from Itô’s formula we get P-almost surely

ϕ(S t) =

∫ t

0
ϕ′(S s) dS s + ζt,

which shows that ζ is the compensator of the P-submartingale ϕ(S ) and therefore EP[ζ1] <
∞.

In the following we concentrate on the inequality P ≥ D. The idea, going back to Hob-
son [17], is to translate the primal problem to that of finding a solution to the Skorokhod
embedding problem which is in a certain sense optimal. Let us start by observing that if
P is a martingale measure for S , then by the Dambis-Dubins-Schwarz theorem the pro-
cess (t(S )t∧〈S 〉1 )t≥0 is a stopped Brownian motion under P in the filtration (F S

τt
)t≥0, where

(F S
t )t∈[0,1] is the canonical filtration generated by S and where (τt)t≥0 are the stopping

times defined in (3.2). It is then straightforward to verify that 〈S 〉1 = τ(t(S )), where τ is a
stopping time with respect to the filtration (F S

τt
). Moreover,

EP[t(S )〈S 〉1 |Fτt ] = EP[S 1|Fτt ] = S τt = t(S )t∧〈S 〉1 ,
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where we used that S and 〈S 〉 have P-almost surely the same intervals of constancy. To
conclude, we arrive at the following observation:

Lemma 4.2. The value P defined in (4.2) is given by

P = P∗ := sup
{
EW[γ((Bs)s≤τ)] :

(F̄t)t≥0 ∈ F,W ∈ W(F̄t), τ ∈ T((F̄t)),
Bτ ∼ µ, B·∧τ is a u.i. martingale

}
, (4.4)

where F denotes the set of all filtrations of (Ω,F ) to which B is adapted, W(F̄t) is the set
of all probability measures on (Ω,

∨
t≥0 F̄t) for which B is a (F̄t) Brownian motion, and

T((F̄t)) denotes the set of (F̄t)-stopping times.

For what follows it will be convenient to fix a nice version of the conditional expectation
with respect to the Wiener measure.

Definition 4.3. Let X : C(R+)→ R be a measurable function which is bounded or positive.
Then we define EW[X|Ft] to be the unique Ft-measurable function satisfying

EW[X|Ft](ω) =
∫

X((ω�[0,t]) ⊕ ω̃)W(dω̃),

where ω�[0,t] denotes the restriction of ω to the interval [0, t], and where (ω�[0,t]) ⊕ ω̃ is the
concatenation of ω�[0,t] and ω̃, that is (ω�[0,t]) ⊕ ω̃(r) := 1r≤tω(r) + 1r>t(ω(t) + ω̃(r − t)).
Then EW[X|Ft](ω) depends only on ω�[0,t], and in particular we can (and will) interpret the
conditional expectation also as a function on C[0, t].

Proposition 4.4 ([3, Proposition 4.11]). Let X ∈ Cb(C(R+)). Then Xt(ω) := EW[X|Ft](ω)
defines a Υ-continuous martingale on (Ω, (Ft),W).

We need the following result from [3]:

Theorem 4.5. Let γ : Υ→ R be Υ-upper semi-continuous and bounded from above. Put

D∗ := inf
{

p :
∃α ≥ 0, ψ ∈ E0,m ∈ Cb(Ω) s.t. EW[m] = 0 and ∀(ω, t) ∈ Ω × R+

p + EW[m|Ft](ω) + αQ(ω, t) + ψ(Bt(ω)) ≥ γ(ω, t)

}
,

where we wrote Q(ω, t) :=
(
ϕ(Bt(ω)) − 1/2

∫ t
0 ϕ
′′(Bs(ω)) ds

)
. Let P∗ be as defined in (4.4).

Then one has
P∗ = D∗.

Let now p > P = P∗. Then the previous theorem gives us a function ψ ∈ E0, a constant
α ≥ 0, and a continuous bounded function m : Ω → R with EW[m] = 0 such that for all
(ω, t) ∈ Ω × R+

Mt(ω) := EW[m|Ft](ω) ≥ −p − ψ(Bt(ω)) − αQ(ω, t) + γ(ω, t). (4.5)

Consider now the functional m̃ : Ω→ R given by

m̃ := m ◦ t := 1t−1(Ω)m ◦ t,

which is G-invariant, i.e. invariant under all strictly increasing time changes, and satisfies
EW[m̃] = EW[m] = 0. Denote by m0 the supremum of |m(ω)| over all ω ∈ Ω. Then
m0 + m ≥ 0, and if we fix ε > 0 and apply Theorem 3.8 in conjunction with Remark 3.2,
we obtain a sequence of simple strategies (H̃n) ⊆ Hm0+ε such that

lim inf
t→∞

lim inf
n→∞

ε + (H̃n · B)t(ω) ≥ m̃(ω)1{σ∞=∞,〈B〉∞=∞}(ω), ω ∈ Ω.

By stopping we may suppose without loss of generality that (H̃n ·B)t(ω) ≤ m0 for all (ω, t).
Set

M̃t(ω) := (M ◦ t̄)(ω, t) := 1Ω×R+
(t̄(ω, t))(M ◦ t̄)(ω, t), (ω, t) ∈ Ω × R+.

Lemma 4.6. For all (ω, t) ∈ Ω × R+ we have

ε + lim inf
n→∞

(H̃n · B)t(ω) ≥ 1{σ∞≥t,τ∞>t}(ω)M̃t(ω).
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Proof. We claim that (M ◦ t̄)t1{σ∞≥t,τ∞>t} = E[1{σ∞=∞,〈B〉∞=∞}m ◦ t |Ft]. Indeed we have

[(M ◦ t̄)1{σ∞≥t,τ∞>t}]
(
ω�[0,t] ⊕ ω̃, t

)
= 1{σ∞≥t,τ∞>t}(ω�[0,t] ⊕ ω̃)M〈B〉t

(
t(ω�[0,t] ⊕ ω̃)

)
,

where the latter quantity actually does not depend on ω̃, i.e. with a slight abuse of notation
we may write it as [1{σ∞≥t,τ∞>t}M〈B〉t ◦ t]

(
ω�[0,t]

)
. Also, we have

E[1{σ∞=∞,〈B〉∞=∞}m ◦ t |Ft](ω�[0,t])

=

∫
1{σ∞=∞,〈B〉∞=∞}(ω�[0,t] ⊕ ω̃)1Ω(t(ω�[0,t] ⊕ ω̃))(m ◦ t)(ω�[0,t] ⊕ ω̃)W(dω̃)

=

∫
1{σ∞=∞,〈B〉∞=∞}(ω̃)1{σ∞≥t,τ∞>t}(ω�[0,t])1Ω(t(ω�[0,t]))1Ω(t(ω̃))m

(
t(ω�[0,t]) ⊕ t(ω̃)

)
W(dω̃)

= 1{σ∞≥t,τ∞>t}(ω�[0,t])1Ω(t(ω�[0,t]))
∫

m
(
t(ω�[0,t]) ⊕ ω̃

)
W(dω̃)

= 1{σ∞≥t,τ∞>t}(ω�[0,t])M〈B〉t
(
t(ω�[0,t])

)
.

Writing (H̃n · B)∞t = (H̃n · B)∞ − (H̃n · B)t, we thus find

1{σ∞≥t,τ∞>t}M̃t = E[1{σ∞=∞,〈B〉∞=∞}m̃|Ft] ≤ ε + E[lim inf
n

(H̃n · B)s|Ft]

= ε + E[lim inf
s

lim inf
n

((H̃n · B)t + (H̃n · B)s
t )|Ft]

= ε + lim inf
n

(H̃n · B)t + E[lim inf
s

lim inf
n

(H̃n · B)s
t |Ft].

Now it is easily verified that (lim infn(H̃n · B)s
t )s≥t is a boundedW-supermartingale started

in 0 (recall that −m0 −ε ≤ (H̃n ·B)s ≤ m0 for all s, which yields |(H̃n ·B)s
t | ≤ 2m0 +ε for all

s), and therefore the conditional expectation on the right hand side is nonpositive, which
concludes the proof. �

We are now ready to prove the main result of this section.

Proof of Theorem 4.1. Lemma 4.6 and (4.5) show that

ε + lim inf
n

(H̃n · B)t(ω) ≥ 1{σ∞≥t,τ∞>t}(ω)
(
− p − ψ((t̄B)(ω, t)) − αQ ◦ t̄(ω, t) + γ ◦ t̄(ω, t)

)
for all (ω, t) ∈ Ω × R+. Noting that ψ(t̄B(ω, t)) = 1Ω×[0,∞)(t̄(ω, t))ψ(Bt(ω)) and

Q ◦ t̄(ω, t) = 1Ω×[0,∞)(t̄(ω, t))(ϕ(Bt(ω)) − ζt(ω)),

we get

p + ε + lim inf
n

(H̃n · B)t(ω)

≥ 1{σ∞≥t,τ∞>t}(ω)1Ω×[0,∞)(t̄(ω, t))
[
− ψ(Bt(ω)) − α(ϕ(Bt(ω)) − ζt(ω))

)
+ γ ◦ t̄(ω, t)

]
.

Theorem 5.1 in [35] shows that the complement of the set in the indicator function on the
right hand side has outer measure 0, and therefore we obtain a new sequence of simple
strategies (Gn) ⊆ Hm0+2ε such that

p + 2ε + lim inf
n

(Gn · B)t(ω) + ψ(Bt(ω)) + α(ϕ(Bt(ω)) − ζt(ω)) ≥ γ ◦ t̄(ω, t)

for all (ω, t) ∈ Ω × R+. It now suffices to apply Föllmer’s pathwise Itô formula [14] along
the dyadic Lebesgue partition defined in Section 3 to obtain a sequence of simple strategies
(Gn) ⊆ Q1,α such that lim infn(ε + (Gn · B)t(ω)) ≥ α(ϕ(Bt(ω)) − ζt(ω)) for all (ω, t), and,
hence, we have established that there exist (Hn) ⊆ Qm0+2,α and ψ ∈ E0 such that

p + 3ε + lim inf
n

(Hn · B)t(ω) + ψ(Bt(ω)) ≥ γ ◦ t̄(ω, t)

for all (ω, t) ∈ C(R+)×R+. Now the functionals on both sides are adapted (see Lemma 3.7),
so for fixed time t we can consider them as functionals on C[0, t], and thus the inequality
holds in particular for all (ω, t) ∈ C[0, 1] × [0, 1]. Since p > P and ε > 0 are arbitrarily
small, we deduce that D ≤ P and thus that D = P. �
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Remark 4.7. We observe that the requirement that G = G̃ ◦ t̄(·, 1) in Theorem 4.1 can
now easily be weakened to require only G = G̃ ◦ t̄(·, 1) outside of a P-null set, since by
Lemma 3.3 we can find a sequence of simple strategies with arbitrarily small cost which
superhedge the payoff on the set where G = G̃ ◦ t̄(·, 1). One particular case where this
difference is important is on the class of paths with smooth sections. If a path contains an
interval on which the path is smooth, starts and ends at the same point, and is not constant,
then the normalising time transformation will simply cut out this section of the path. In
some cases (e.g. when the payoff depends on the running maximum), then G = G̃ ◦ t̄(·, 1)
may not hold for such paths. However it is easily checked that these paths form an atypical
set, and hence may be ignored in computing the super-hedging price.

5. Duality in the multi-marginal case

In this section, we will show a general duality result for the multi marginal Skorokhod
embedding problem and moreover, for a slightly more general problem.

To do this we first recall some notions and results from the one-marginal case covered
in [3, Section 4], in fact we shall also be interested in certain (relatively straightforward)
extensions.

5.1. Revision of one-marginal duality. We denote by F the natural and by F a the aug-
mented filtration on C(R+). A process (Xt)t∈R+

is F -predictable iff (Xt)t∈R+
is F -optional

iff Xt(ω) can be calculated from the restriction ω�[0,t], [3, Proposition 4.4]. We introduce
the mapping

r : C(R+) × R+ → Υ, r(ω, t) = (ω�[0,t], t). (5.1)

Note that the topology on Υ introduced in (4.1) coincides with the final topology induced
by the mapping r; in particular r is a continuous open mapping. A function X : C(R+) ×
R+ → R is called Υ- (upper/lower semi-) continuous iff there exists a (upper/lower semi-)
continuous function H : Υ→ R such that X = H ◦ r.

Our principle interest is in the probability space (Ω,F ,P), where Ω = C(R+) and P =

W. In what follows, we will also use a natural extension of the filtered probability space
denoted by (Ω̄, F̄ , (F̄t)t≥0, P̄), where we take Ω̄ = Ω×[0, 1], F̄ = F ⊗B([0, 1]), P̄(A1×A2) =

P(A1)L(A2), and set F̄t = F a
t ⊗ σ([0, 1]). Here, L denotes Lebesgue measure. We will

write B̄ = (B̄t)0≤t for the canonical process on Ω̄, i.e. B̄t(ω, u) = ωt.
Given random times τ, τ′ on Ω̄ and a bounded continuous function f : C(R+)×R+ → R

we define
d f (τ, τ′) :=

∣∣∣Ē[ f (ω, τ(ω, x)) − f (ω, τ′(ω, x))]
∣∣∣ .

We then identify τ and τ′ if d f (τ, τ′) = 0 for all continuous bounded f . On the resulting
space of equivalence classes denoted by RT, the family of semi-norms (d f ) f gives rise to
a Polish topology. It follows from the characterization given in [3, Corollary 4.19] that for
a stopping time τ on Ω̄ all elements of the respective equivalence class are stopping times.
We will call this equivalence class, as well as (by abuse of notation) its representatives
randomized stopping times (in formulae: RST).

Given a martingale M on (C(R+),W) we write M̄ for its extension to Ω̄, that is M̄t(ω, u) =

Mt(ω). A random time τ on Ω̄ is a pseudo randomized stopping time if

ĒM̄τ = M0

for all Υ-continuous bounded martingales. (As before, random times which are equivalent
to a pseudo randomized stopping time are in turn pseudo randomized stopping times.)

A random time τ is a pseudo randomized stopping time iff its dual optional projection
τo is a randomized stopping time. Moreover the set of pseudo randomized stopping times
is a closed subset of RT, we refer to [3, Section 4.4] for details.

Fix a centered probability measure µ with finite first moment. As above, there exists
a convex function ϕ such that ϕ(0) = 0, limx→±∞ ϕ(x)/|x| = ∞, and

∫
ϕ(x) dµ(x) < ∞.
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Moreover, there exists a continuous compensating process ζt : Υ→ R such that ϕ(Bt) − ζt

is a martingale underW (see [3, Proposition 8.3]). We write RST(µ) (resp. PRST(µ)) for
the sets of (pseudo) randomized stopping times which embed a given measure µ, and such
that E[ζτ] < ∞, this last condition also being equivalent to E[ζτ] = V , for V =

∫
ϕ(x) µ(dx).

It it is then not hard to show that these sets are compact, see [3, Theorem 4.28, Corollary
4.29 and Proposition 8.3].

Given an upper semi-continuous function γ : Υ → R, in the previous section we were
interested in the primal problem

P := sup
τ∈RST(µ)

Ēγτ,

where γτ = γ(ω�[0,τ], τ). Recall that we use the abbreviation γ(ω, t) = γ(ω�[0,t], t). Theo-
rem 4.5 gave a duality result for this problem.

5.2. Multi-marginal duality. We now go on to extend these notions and results to the
multi-marginal case. (In fact, in many cases the results follow exactly as in the one-
marginal case.) In particular, we establish an extension of the duality result Theorem 4.5 to
multiple marginals which will then imply the main result of this paper by a straightforward
modification of the proof of the one-period result. To this end, we introduce the set of all
randomized multi stopping times or n-tuples of randomized stopping times. As before we
consider the space (Ω̄, F̄ , P̄). We consider all n-tuples τ̄ = (τ1, . . . , τn) with τ1 ≤ . . . ≤ τn

and τi ∈ RT for all i. We identify two such tuples if

d f (τ̄, τ̄′) :=
∣∣∣Ē f (ω, τ1(ω, x), . . . , τn(ω, x)) − Ē f (ω, τ′1(ω, x), . . . , τ′n(ω, x))

∣∣∣ (5.2)

vanishes for all continuous, bounded f : C(R+) × Rn
+ → R and denote the resulting space

by RTn. Moreover we consider RTn as a topological space by testing against all continuous
bounded functions as in (5.2). As above we need to consider pseudo randomized stopping
times.

Analogously to the result of [3] recalled above we get

Proposition 5.1. Let k ≤ n.

(1) If τ1 ≤ · · · ≤ τk are stopping times, and τk+1 ≤ · · · ≤ τn are pseudo stopping times
on Ω̄ w.r.t. F̄ , and τ′1 ≤ . . . ≤ τ

′
n get identified with them by (5.2), then τ′1, . . . τ

′
k are

stopping times as well, and τ′k+1, . . . , τ
′
n are pseudo-stopping times. We then say

that (τ1, . . . , τn) is a (k, n)-pseudo multi-stopping time. If k = n, we simply say that
(τ1, . . . , τn) is a multi-stopping time. We write PRSTk,n for the set of (k, n)-pseudo
multi-stopping times, and RSTn = PRSTn,n.

(2) The set PRSTk,n of all (k, n)-pseudo multi-stopping times (τ1 ≤ . . . ≤ τn) is closed
for all k ≤ n. In particular, the set RSTn of multi-stopping times is closed.

Below we will only be interested in the sets PRSTk,n for k = n, and k = n − 1.
Fix I ⊆ {1, . . . , n} with n ∈ I and |I| ≤ n measures (µi)i∈I = µ in convex order with finite

first moment. If i ∈ {1, . . . , n} \ I, write i+ for the smallest element of { j ∈ I : j ≥ i}.
By an iterative application of the de la Vallée-Poussin Theorem, there is an increasing
family of smooth, non-negative, strictly convex functions (ϕi)i=1,...,n (increasing in the sense
that ϕi ≤ ϕ j for i ≤ j) such that ϕi+1/ϕi → ∞ as x → ±∞, and

∫
ϕidµi+ < ∞ for all

i = 1, . . . , n. Denote the corresponding compensating processes by ζ i
t such that Qi(ω, t) :=

ϕi(Bt(ω)) − ζ i
t (ω) is a martingale. We also write Ei :=

{
ψ ∈ C(R) : |ψ|

1+ϕi
is bounded

}
.

Then, we define RSTn(µ) (resp. PRSTk,n(µ)) to be the subset of RSTn (resp. PRSTn,k)
consisting of all tuples (τ1 ≤ . . . ≤ τn) such that Bτi ∼ µi for all i ∈ I and Ē[ζn

τn
] < ∞. As a

consequence of Proposition 5.1 and the compactness of RST(µn) (resp. PRST(µn)) we get

Lemma 5.2. For any I ⊆ {1, . . . , n} with n ∈ I and any family of measures (µi)i∈I = µ in
convex order the set RSTn(µ) (resp. the “pseudo” version PRSTk,n(µ)) is compact.
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We introduce the space of paths where we have stopped n times:

Υn := {( f , s1, . . . , sn) : ( f , sn) ∈ Υ, 0 ≤ s1 ≤ . . . ≤ sn},

equipped with the topology generated by the obvious analogue of (4.1). As a natural
extension of an optional process, we say that a process γ : Ω × Rn

+ is optional if for any
family of stopping times τ1 ≤ · · · ≤ τn, the map γ(τ1, . . . , τn) is Fτn -measurable. On Υn,
the optional processes are functions γ : Υn → R. Indeed, it is easy to show that a Borel
function, γ : Υn → R is an optional process in the sense given above, and moreover, any
optional process can be written in this way (see [3] for the case with one stopping time; the
general case is then immediate).

The critical property (for our purposes) of pseudo multi-stopping times is the following
result:

Lemma 5.3. Let (τ1, . . . , τn) ∈ PRSTn−1,n(µ). Then:
(1) There exists a stopping time τo

n (on a possibly extended probability space) such
that for all Borel measurable γ : Υn → R

Ē
[
γ(τ1, . . . , τn)

]
= Ē

[
γ(τ1, . . . , τ

o
n)
]
.

Moreover, (τ1, . . . , τ
o
n) ∈ RSTn(µ).

(2) We have (τ1, . . . , τn) ∈ PRSTn−1,n if and only if (τ1, . . . , τn−1) ∈ RSTn−1 and

τn ∈
{
τ ∈ RT : τ ≥ τn−1, Ē

[
M̄τ

]
= M̄0 for all bounded Υ-continuous martingales (Mt)

}
.

Proof. The first part of the proof follows once we take the dual optional projection of τn.
Specifically, we get an increasing, optional process An

t such that An
τn−1−

= 0, and, since γ is
optional,

Ē
[
γ(τ1, . . . , τn)

]
= Ē

[∫ ∞

0
γ(τ1, . . . , τn−1, s) dAn

s

]
.

Identifying a randomized stopping time with its distribution function (for more details we
refer to Section 4.3 of [3]) An

s is the law of a stopping time τo
n on an extended probabil-

ity space, on which space the above equality holds also. By taking the special choice
γ(t1, . . . , tn) = f (Btn ), we conclude that Bτn ∼ Bτo

n , and since ζn
t is optional, we also have

Ē[ζn
τn

] = Ē[ζn
τo

n
].

The second half of the statement follows immediately from the definition of a pseudo-
stopping time. �

Given γ : Υn → R, we are interested in the following n-step primal problem

P := sup
{
Ē[γ(ω, τ1, . . . , τn)] : (τi)n

i=1 ∈ RSTn(µ)
}

(5.3)

and its relation to the dual problem

D := inf
{

a : there exist (ψ j) j∈I , martingales (Mi)n
i=1, Ē[Mi] = 0,

∫
ψ jdµ j = 0,

a +
∑

j∈I ψ j(Bt j (ω)) +
∑n

i=1 Mi(ω, ti) ≥ γ(ω, t1, . . . , tn)

}
.

(5.4)

Remark 5.4. Important convention: In the formulation of D in (5.4) and in the rest of
this section M1, . . . ,Mn will range over Υ-continuous martingales such that Mk(ω, t) =

Ē[m|F 0
t ] + Q(ω, t) for some m ∈ Cb(Ω) and Q(ω, t) = f (Bt(ω)) − ζ f

t (ω) where f is a
smooth function such that | f |/(1+ϕk) is bounded, and ζ f is the corresponding compensating
process (ζ f

t = 1
2

∫ t
0 f ′′(Bs) ds). In addition, we assume that the functions ψi ∈ Ei for all

i ≤ n.

Theorem 5.5. Let γ : Υn → R be upper semicontinuous and bounded from above. Under
the above assumptions we have P = D.

As usual the inequality P ≤ D is not hard to see. The proof of the opposite inequality is
based on the following minmax theorem.
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Theorem 5.6 (see e.g. [31, Thm. 45.8] or [2, Thm. 2.4.1]). Let K, L be convex subsets of
vector spaces H1 resp. H2, where H1 is locally convex and let F : K × L→ R be given. If

(1) K is compact,
(2) F(·, y) is continuous and convex on K for every y ∈ L,
(3) F(x, ·) is concave on L for every x ∈ K

then
sup
y∈L

inf
x∈K

F(x, y) = inf
x∈K

sup
y∈L

F(x, y).

The inequality P ≥ D will be proved inductively on n. To this end, we need the follow-
ing preliminary result.

Theorem 5.7. Let c : Υ2 → R be upper semi-continuous and bounded from above. Let
V2 :=

∫
ϕ2(x) dµ2(x). Put

PV2 := sup{Ē[c(ω, τ1, τ2)] : τ1 ∈ RST1(µ1), Ē[ζ2
τ2

] ≤ V2, (τ1, τ2) ∈ RT2}

and

DV2 := inf
{
µ1(ψ1) :

ψ1 ∈ E1, there exists a Υ-continuous martingale M1, α ≥ 0
M1(·, 0) = 0, ψ1(ω(t1)) + M1(ω, t1) − α(V2 − ζ

2
t2 ) ≥ c(ω, t1, t2)

}
.

Then, we have
PV2 = DV2 .

Proof. The inequality PV2 ≤ DV2 follows easily, so we are left to show the other inequality.
Using standard approximation procedures (cf. [3, Lemma 5.6]), we can assume that c is
continuous and bounded, bounded from above by 0 and satisfies for some L

supp(c) ⊆ {( f , s1, s2) ∈ Υ⊕2, s2 ≤ L}.

Then, it follows that

sup
τ1∈RST1(µ1)
Ē[ζ2

τ2
]≤V2

(τ1,τ2)∈RT2

Ē[c(ω, τ1, τ2)] = sup
τ1∈RST1(µ1)
τ2≤max{L,τ1}
(τ1,τ2)∈RT2

inf
α≥0
Ē[c(ω, τ1, τ2) + α(V2 − ζ

2
τ2

)]

= inf
α≥0

sup
τ1∈RST1(µ1)
τ2≤max{L,τ1}
(τ1,τ2)∈RT2

Ē[c(ω, τ1, τ2) + α(V2 − ζ
2
τ2

)]

= inf
α≥0

sup
τ1∈RST1(µ1)

Ē[c̄α(ω, τ1)],

where
c̄α(ω, t1) = sup

t1≤t2≤max{L,t1}
c(ω, t1, t2) + α(V2 − ζ

2
t2 )

which is a continuous and bounded function since c is bounded, ζ2 is Υ-continuous and
increasing, and {t2 : t1 ≤ t2 ≤ max{L, t1}} is closed, and we used Theorem 5.6. Using
Theorem 4.5 we get

sup
τ1∈RST1(µ1)
Ē[ζ2

τ2
]≤V2

(τ1,τ2)∈RT2

Ē[c(ω, τ1, τ2)] = inf
α≥0

inf
ψ1+M1≥c̄α

∫
ψ1 dµ1 = DV2

where the final infimum is taken over terms of the form described in Remark 5.4. �

Proof of Theorem 5.5. By [3, Lemma 5.6] we can assume that γ is continuous and bounded.
We will show the result inductively by including more and more constraints (resp. La-
grange multipliers) in the duality result Theorem 4.5. In fact, we will only show the result
for the two cases n = 2, I = {2} and n = |I| = 2. The general claim follows then by an
iterative application of the arguments that lead to Theorem 5.7 and the arguments below.
We first consider the case where n = |I| = 2.
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Observe that, by Lemma 5.3, we have

sup
(τ1,τ2)∈RST2(µ1,µ2)

Ē[γ(ω, τ1, τ2)] = sup
(τ1,τ2)∈PRST1,2(µ1,µ2)

Ē[γ(ω, τ1, τ2)].

Moreover, by the characterising property of pseudo-random times, we can write this sec-
ond term as an infimum over random times which satisfy a martingale constraint, and a
distributional constraint. Hence, we have using Theorem 5.6 and the notation XM

t (ω) :=
Ē[X|F 0

t ](ω)

sup
(τ1,τ2)∈RST2(µ1,µ2)

Ē[γ(ω, τ1, τ2)]

= sup
τ1∈RST(µ1)
(τ1,τ2)∈RT2
Ē[ζ2

τ2
]≤V2

inf
ψ2∈Cb(R)
m2∈Cb(Ω)

Ē

[
γ(ω, τ1, τ2) − mM

2 (ω, τ2) + Ē[m2] − ψ2(ω(τ2)) +

∫
ψ2 dµ2

]

= inf
ψ2∈Cb(R)
m2∈Cb(Ω)

sup
τ1∈RST(µ1)
(τ1,τ2)∈RT2
Ē[ζ2

τ2
]≤V2

Ē
[
γψ2,m2 (ω, τ1, τ2)

]
,

where γψ2,m2 (ω, t1, t2) := γ(ω, t1, t2)−mM
2 (ω, t2) + Ē[m2]−ψ2(ω(t2)) +

∫
ψ2 dµ2 ∈ Cb (Υ2) .

Applying Theorem 5.7, we get

sup
(τ1,τ2)∈RST2(µ1,µ2)

Ē[γ(ω, τ1, τ2)]

= inf
ψ2∈Cb(R)
m2∈Cb(Ω)

inf


∫

ψ1dµ1 :
there exist a Υ- continuous martingale M1,
M1(·, 0) = 0, ψ1 ∈ E1, α ≥ 0 such that:
ψ1(ω(t1)) + M1(ω, t1) − α(V2 − ζ

2
t2 ) ≥ γψ2,m2 (ω, t1, t2)


= inf
ψ2∈Cb(R)

inf


∫

ψ1dµ1 +

∫
ψ2dµ2 :

there exist two Υ- continuous martingales Mi,
Mi(·, 0) = 0, ψ1 ∈ E1and α ≥ 0 such that:∑2

i=1(ψi(ω(ti)) + Mi(ω, ti))
−α(V2 − ϕ2(ω(t2)) + ϕ2(ω(t2)) − ζ2

t2 )
≥ γ(ω, t1, t2)


= inf
ψ1,ψ2∈E1×E2


∫

ψ1dµ1 +

∫
ψ2dµ2 :

there exist two Υ- continuous martingales Mi,
Mi(·, 0) = 0, such that:∑2

i=1(ψi(ω(ti)) + Mi(ω, ti)) ≥ γ(ω, t1, t2)


= D,

where in the final step we used the fact that Ē[ϕ2(Bτ2 )] = Ē[ζ2
τ2

] = V2 and that ϕ2(Bt) − ζ2
t

is a martingale.
For later use, we write:

D(γ) :=
{

(ψ1, ψ2) ∈ E1 × E2 :
there exist two Υ-continuous martingales Mi,Mi(·, 0) = 0
such that:

∑2
i=1(ψi(ω(ti)) + Mi(ω, ti)) ≥ γ(ω, t1, t2)

}
We now consider the case where n = 2, |I| = 1 and I = {2}, so we are prescribing µ2 but

not µ1. Writing ρ � ν to denote that ρ precedes ν in convex order, we use the result of the
case where |I| = 2 to see that:

P = sup
(τ1,τ2)∈RST2(µ2)

Ē[γ(ω, τ1, τ2)] = sup
µ1�µ2

sup
(τ1,τ2)∈RST2(µ1,µ2)

Ē[γ(ω, τ1, τ2)]

= sup
µ1�µ2

inf
(ψ1,ψ2)∈D(γ)

{∫
ψ1 dµ1 +

∫
ψ2 dµ2

}



14 BEIGLBÖCK, COX, HUESMANN, PERKOWSKI, AND PRÖMEL

We now need to introduce some additional compactness. Recall from the definitions of ϕi

that ϕ2/ϕ1 → ∞ as x→ ±∞. Now let ε > 0 and write

Dε(γε) :=

(ψε1, ψ2) :
ψε1 + εϕ2 ∈ E1, ψ2 ∈ E2, and there exist two Υ-continuous
martingales Mi,Mi(·, 0) = 0 such that:
ψε1(ω(ti)) + ψ2(ω) +

∑2
i=1 Mi(ω, ti)) ≥ γε(ω, t1, t2)

 .
In particular, we have (ψ1, ψ2) ∈ D(γ) ⇐⇒ (ψ1 − εϕ2, ψ2) ∈ Dε(γ − εϕ2(ω(t1))) and so
(with ψε1 = ψ1 − εϕ2, γ

ε = γ − εϕ2(ω(t1)))

inf
(ψ1,ψ2)∈D(γ)

{∫
ψ1 dµ1 +

∫
ψ2 dµ2

}
= inf

(ψε1,ψ2)∈Dε(γε)

{∫
(ψε1 + εϕ2) dµ1 +

∫
ψ2 dµ2

}
= inf

(ψε1,ψ2)∈Dε(γε)

{∫
ψε1 dµ1 +

∫
ψ2 dµ2

}
+ ε

∫
ϕ2 µ1(dx).

In particular, the final integral can be bounded over the set of µ1 � µ2, and so by taking
ε > 0 small, this term can be made arbitrarily small. Moreover, by neglecting it we get a
quantity that is smaller than P.

If we introduce the set

CV = {c : R→ R : c convex, c(x) ≥ 0, c smooth, c(x) ≤ L(1 + |x|), some L ≥ 0},

then we may test the convex ordering property by penalising against CV. In particular, we
can write after another application of Theorem 5.6

P ≥ inf
(ψε1,ψ2)∈Dε(γε)

sup
µ1�µ2

{∫
ψε1 dµ1 +

∫
ψ2 dµ2

}
= inf

(ψε1,ψ2)∈Dε(γε)
sup
µ1

inf
c∈CV

{∫
(ψε1 − c) dµ1 +

∫
(ψ2 + c) dµ2

}

In addition, for fixed ψε1 ∈ Dε(γε), we observe that, by the fact that ψε1 + εϕ2 ∈ E1,
we must have ψε1(x) → −∞ as x → ±∞. Hence we can find a constant K, which may
depend on ψε1, so that ψε1(x) < ψε1(0) for all x < [−K,K]. In particular, we may restrict
the supremum over measures µ1 above to the set of probability measures PK := {µ :
µ({[−K,K]) = 0}, where {A denotes the complement of the set A. Note that this set is
compact, so we can then apply Theorem 5.6 to get:

inf
(ψε1,ψ2)∈Dε(γε)

sup
µ1�µ2

{∫
ψε1 dµ1 +

∫
ψ2 dµ2

}
= inf

(ψε1,ψ2)∈Dε(γε)
inf

c∈CV
sup
µ1∈PK

{∫
(ψε1 − c) dµ1 +

∫
(ψ2 + c) dµ2

}
= inf

(ψε1,ψ2)∈Dε(γε)
inf

c∈CV

{
sup

x∈[−K,K]

[
ψε1(x) − c(x)

]
+

∫
(ψ2 + c) dµ2

}

In particular, for any δ > 0, we can find (ψε1, ψ2) ∈ Dε(γε) and c ∈ CV such that

P ≥ sup
x∈R

[
ψε1(x) − c(x)

]
+

∫
(ψ2 + c) dµ2 − δ.
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Take ψε2(ω(t2)) := supx∈R

[
ψε1(x) − c(x)

]
+ ψ2(ω(t2)) + c(ω(t2)) + εϕ2(ω(t2)). Then there

exist M1,M2 such that

γε(ω, t1, t2) ≤ ψε1(ω(t1)) + ψ2(ω(t2)) +

2∑
i=1

Mi(ω, ti)

= ψε2(ω(t2)) +

2∑
i=1

Mi(ω, ti) − εϕ2(ω(t2)) − c(ω(t2)) + c(ω(t1))

+
[
ψε1(ω(t1)) − c(ω(t1))

]
− sup

x∈R

[
ψε1(x) − c(x)

]
≤ ψε2(ω(t2)) +

2∑
i=1

Mi(ω, ti) + ε(ϕ2(ω(t1)) − ϕ∗(ω(t2)))

− c(ω(t2)) + c(ω(t1))

= ψε2(ω(t2)) +

2∑
i=1

Mi(ω, ti)

+ ε
[
(ϕ2(ω(t1)) − ζ2

t1 ) − (ϕ2(ω(t2)) − ζ2
t2 )

]
+ ε(ζ2

t1 − ζ
2
t2 )

+
[
(c(ω(t1)) − ζc

t1 ) − (c(ω(t2)) − ζc
t2 )

]
+ (ζc

t1 − ζ
c
t2 )

Since ζ2
t is an increasing process, compensating ϕ2, then ζt2 − ζt1 ≥ 0 whenever t1 ≤ t2.

Similarly, ζc
t is the increasing process compensating c, and the same argument as above

holds. Note that ζc is Υ-continuous since c is assumed smooth. It follows that (ψε1, ψ2) ∈
Dε(γε) implies ψε2 ∈ D′(γ), where

D′(γ) :=
{
ψ2 ∈ E2 :

there exist two Υ-continuous martingales Mi,Mi(·, 0) = 0
such that ψ2(ω(t2)) +

∑2
i=1 Mi(ω, ti) ≥ γ(ω, t1, t2)

}
.

It follows by making ε, δ small that

P ≥ inf
ψ2∈D′(γ)

∫
ψ2 dµ2(x),

and as usual, the inequality in the other direction is easy.

To establish the claim in the general case we can now successively introduce more and
more constraints accounting for more and more Lagrange multipliers and use either only
the first or the first and the second argument to prove the full claim. �

To conclude, we can follow the reasoning of Section 4 and obtain for all G : C[0, n]→ R
of the form

G(ω) = γ(t(ω)�[0,〈ω〉n], 〈ω〉1, . . . , 〈ω〉n), (5.5)

where γ is Υn-upper semi-continuous and bounded from above the following robust super-
hedging result:

Theorem 5.8. Let I ⊆ {1, . . . , n}, n ∈ I, and consider

Pn := sup{EP[G] : P is a Martingale measure on C[0, n], S 0 = 0, S i ∼ µi for all i ∈ I}

and

Dn := inf
{

a : there exist H and (ψ j) j∈I ,
∫
ψ j dµ j = 0 such that:

a +
∑

j∈I ψ j(S j(ω)) + (H · S )n ≥ G((S t)t≤n)

}
.

Under the above assumptions we have P = D.

Finally, we note that Theorem 5.8 could be further extended based on the above argu-
ments. For example, we could include additional market information on prices of further
options of the invariant form (5.5).
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