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Abstract

We consider a system of infinitely many interacting Brownian motions that models the
height of a one-dimensional interface between two bulk phases. We prove that the large scale
fluctuations of the system are well approximated by the solution to the KPZ equation pro-
vided the microscopic interaction is weakly asymmetric. The proof is based on the martingale
solutions of Gonçalves and Jara [GJ14] and the corresponding uniqueness result of [GP15a].

1 Introduction

The Kardar–Parisi–Zhang (KPZ) universality class has been at the center of a very active field of
research during the past decade. The main aim is to understand and prove the strong KPZ univer-
sality conjecture, which roughly speaking states that any model describing the random dynamics
of a one-dimensional interface between two phases and satisfying a few qualitative assumptions
exhibits large time fluctuations that converge under the characteristic “1-2-3 KPZ scaling” to a
universal limit. For example, we can model the interface dynamics by independent Brownian
motions that interact with their neighbors through a potential function V :

dφt(i) = pV ′(φt(i+ 1)− φt(i))− qV ′(φt(i)− φt(i− 1))}dt+ dWt(i), (t, i) ∈ R+ × Z, (1)

where (W (i) : i ∈ Z) is an independent family of standard Brownian motions and p, q ≥ 0 with
p+q = 1. The case p = q = 1/2 describes a type of balance between the two phases, so the dynamics
are reversible and there is no real growth. In that case the model is well understood and it exhibits
Gaussian fluctuations on the “1-2-4 Edwards-Wilkinson (EW) scale” [Spo86, Zhu90, CY92]. If
p 6= q it is in the KPZ universality class and a general understanding of the fluctations seems
to be out of reach at the moment. Indeed most of the research on the KPZ universality class is
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based on stochastically integrable models which admit tractable formulas for key probabilities of
interest that lend themselves to deriving explicit large time asymptotics. The main difficulty is
that the universal limit, the so-called KPZ fixed point, is not very well understood yet, although
some conjectural descriptions are available [CQR15].

The weak KPZ universality conjecture on the other hand claims that the KPZ equation is a
universal object. The KPZ equation is a nonlinear stochastic PDE for the height variable h(t, x)
which reads

∂th(t, x) = ν∆h(t, x) + λ(|∇h(t, x)|2 −∞) +
√
Dξ(t, x), (t, x) ∈ R+ × R, (2)

where ξ is a space-time white noise and ν > 0, D > 0, λ fixed parameters. This equation is not
scale-invariant but locally subcritical in the language of Hairer [Hai14], meaning that on small
time-scales the linear part of the equation dominates the nonlinear part. Due to this lack of
scale-invariance the equation cannot arise as the scaling limit of one fixed model. However, the
conjecture claims that if a one-dimensional stochastic interface growth model satisfies a few basic
qualitative assumptions, and if it admits a tuning parameter that allows to interpolate between
a reversible regime describing a balance between the two phases and a non-symmetric regime
describing an imbalance, then by calibrating the model to be closer and closer to the reversible
regime we can make the large time fluctuations converge to the KPZ equation. In our model (1)
this corresponds to setting p − q =

√
ε and taking the scaling limit along this changing family of

weakly asymmetric models.
The relation between the weak and the strong conjecture goes as follows. The KPZ equation (2)

has to be understood as a one parameter family of models which interpolates between the EW
and the KPZ fixed point in the sense of Wilson’s renormalization group picture of universality in
statistical physics. Indeed by scale transformations the parameters D and ν in (2) can be set to 1
and we remain with only one parameter λ controlling the size of the nonlinearity. When λ→ 0 we
converge to a Gaussian limit while when λ→∞ we should be asymptotically describing the KPZ
fixed point. This last however appears as a singular limit of the KPZ equation and the description
of the limiting dynamics remains highly conjectural. For further information on the strong and
weak KPZ universality conjectures see [Cor12, Qua14, QS15, Spo16].

For many years the weak KPZ universality conjecture was not much more tractable than the
strong conjecture. But recent breakthroughs in the understanding of the KPZ equation have made
a proof feasible for various models. The first mathematically rigorous work on the KPZ equation
is due to Bertini and Giacomin [BG97] who define the solution h to the KPZ equation (2) via the
Cole-Hopf transform as h := (ν/λ) logZ, where Z solves the linear stochastic heat equation

∂tZ(t, x) = ν∆Z(t, x) +
λ
√
D

ν
ξ(t, x), (t, x) ∈ R+ × R.

While Bertini and Giacomin do not make sense of the equation (2) for h it turns out that the
object they define is indeed the physically relevant one and in [BG97] they are able to show that
the fluctuations of the weakly asymmetric simple exclusion process (WASEP) converge to the
(derivative of the) KPZ equation. Their proof crucially relies on the fact that the WASEP behaves
well under exponentiation and their approach only extends to very specific models that allow for
a useful Cole-Hopf transform on the level of the microscopic system. In recent years several other
models have been identified for which this is the case, see [DT16, CT15, CST16, Lab16], but a
general proof of universality will not be possible with the Cole-Hopf approach because it only
provides us with an equation for e(λ/ν)h.

The main difficulty in interpreting the equation for h is that at fixed times t > 0 the map
x 7→ h(t, x) has no better regularity than the Brownian motion (indeed the law of the Brownian
motion is essentially invariant under the dynamics of h, see [FQ15]), and therefore the nonlinearity
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(|∇h(t, x)|2 − ∞) is the square of a distribution which a priori does not make any sense. This
problem was finally overcome in 2011, when Hairer [Hai13] used a partial series expansion and
rough path integration in order to construct the nonlinearity as a continuous bilinear functional
on a suitable function space and then to solve the equation. Equivalent constructions have also
been carried out using the theory of regularity structures, see [Hai14, FH14], or paracontrolled
distributions [GIP15, GP15b]. This pathwise approach is very robust and it allows to prove
convergence of many models to the KPZ equation or other singular SPDEs; see [HQ15, HS15,
GP15b, Hos16] for examples where the KPZ equation arises in the limit.

However, the pathwise approach is crucially based on the concept of regularity and it requires
very precise quantitative estimates, which usually are not easy to come by. Moreover, it is tailored
to semilinear equations (see however the very recent work [OW16]), and in our example (1) we
are dealing with a quasilinear system which makes it difficult to apply regularity structures or
paracontrolled distributions. Instead we will rely on an alternative approach that was developed
in parallel to Hairer’s work by Gonçalves and Jara [GJ14] and refined by Gubinelli and Jara
in [GJ13]. In these works the KPZ equation is formulated as a martingale problem, and given a
stochastic model it is relatively easy to verify whether it solves the KPZ equation in the martingale
sense (in particular, only very weak quantitative estimates are required). On the other hand,
until recently it was not known whether the martingale description of the solution is sufficient to
characterize it uniquely. This problem was solved in [GP15a], where it was shown that the refined
martingale solution of [GJ13] is unique. So now the martingale approach provides a very powerful
tool for establishing the weak KPZ universality conjecture for a wide class of models, and it has
been successfully applied to many models that still seem out of reach with the pathwise approach,
see [GJ14, GJS15a, GJS15b, FGS16, GP16] for examples. The main drawback is that the method is
crucially based on the stationarity of the microscopic model, and even on a quite explicit knowledge
of its invariant measures. Fortunately these requirements are met quite naturally in most models.

Let us now get to our specific model. We let p = (1 +
√
ε)/2 and q = (1 −

√
ε)/2 with

ε ∈ [0, 1] in Eq. (1) with the aim of studying small perturbations of the reversible case ε = 0.
When ε = 0 the system is known as the (one-dimensional) Ginzburg-Landau ∇φ interface model,
and it has been intensely studied during the past decades. The hydrodynamic limit for φ was
derived in [Fri87, GPV88]. The equilibrium fluctuations were studied in [Spo86, Zhu90], and the
non-equilibrium fluctuations in [CY92]; see also [GOS01] for the equilibrium fluctuations in the
multidimensional case where Z is replace by Zd. The large deviations were derived in [DV92] in
one dimension, and the multidimensional case was treated in [FN01], see also [BD96, DGI00] for
large deviations of the stationary distributions. A nice survey on the ∇φ model is [Fun05] which
contains many further references.

If ε does not go to zero, the model is conjectured to be in the KPZ universality class. In the
recent paper [SS15] a special potential V is considered which formally corresponds to V (x) = δ(x)
and under which the dynamics become stochastically integrable, and it is shown that the rescaled
fluctuations are in the KPZ universality class; see also [FSW15] for the totally asymmetric case
(ε = 1) and [BC14, BCF14] for the totally asymmetric case with potential V (u) = e−u. However,
in all these works the long time behavior of the one-time marginal at a single site is tracked, while
here we are interested in the dynamic behavior on large temporal and spatial scales.

So let now ε→ 0. We will not actually study the fluctuations of φ itself, but instead we focus
on the height differences ut(i) := φt(i)− φt(i− 1) which solve

dut(i) =
1

2

{(
1 +
√
ε
)

(V ′(ut(i+ 1))− V ′(ut(i)))−
(
1−
√
ε
)

(V ′(ut(i))− V ′(ut(i− 1)))
}

dt

+ dWt(i+ 1)− dWt(i), (t, i) ∈ R+ × Z.
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Splitting the drift into symmetric and antisymmetric part (see Section 2), we obtain

dut(i) =
(1

2
∆D[V ′(ut)](i) +

√
ε∇(2)

D [V ′(ut)](i)
)

dt+ d∇(1)
D Wt(i), (t, i) ∈ R+ × Z,

with
∆Df(i) := f(i+ 1) + f(i− 1)− 2f(i), ∇(1)

D f(i) := f(i+ 1)− f(i),

∇(2)
D f(i) :=

1

2
(f(i+ 1)− f(i− 1)).

As we shall see, there is a one parameter family of stationary measures, given for λ ∈ R by

µλ(du) =
∞∏

j=−∞

exp(λu(j)− V (u(j)))

Zλ
du(j) =:

∞∏
j=−∞

pλ(u(j))du(j)

where Zλ > 0 is a normalization constant. This is true both in the symmetric (ε = 0) and in the
non-symmetric case. We write

ρ′(λ) :=

∫
R
u pλ(u)du

for the mean of the coordinates u(j) under µλ. Due to the stationarity of u it easily follows from
the weak law of large numbers that if u0 ∼ µλ, then for every test function η ∈ S , the Schwartz
functions on R, and for every fixed t ≥ 0 we have

lim
n→∞

1

n

∑
k∈Z

ut(k)η(n−1k) = ρ′(λ)

∫
R
η(x)dx,

where the convergence is in probability. So on large spatial scales u looks constant. The central
limit theorem shows that the fluctuations around that constant limiting profile are Gaussian. Our
aim is to understand the dynamic fluctuations of u on large time-scales. We fix λ0 ∈ R for the rest
of the paper. Choosing the non-symmetry parameter in the SDE as

ε =
1

n

and under the rescaling u→ vn with

vn(t, x) = n1/2(u(n2t, bnx− cntc)− ρ′(λ0)), (t, x) ∈ R+ × R,

we show that vn converges to the stochastic Burgers equation (the derivative of the KPZ equation),
for a properly chosen sequence of diverging constants cn. Their presence can heuristically be
explained by the fact that the non-symmetry introduces a net transport of mass into one direction,
which has to be compensated for by observing the system in a moving frame.

To obtain an intuitive understanding why we should expect the stochastic Burgers equation as
the scaling limit for the fluctuations, note that the equation satisfied by the rescaled vn is

dvnt (x) =
{1

2
n1/2∆n[V ′(n−1/2vnt + ρ′(λ0))](x) + n∇(2)

n [V ′(n−1/2vnt + ρ′(λ0))](x)− cn∇vnt
}

dt

+ d∇(1)
n Wn

t (bxc), (t, x) ∈ R+ × R, (3)

where

∆nf(x) := n2(f(x+ 1/n) + f(x− 1/n)− 2f(x)), ∇(1)
n f(x) := n(f(x+ 1/n)− f(x)),

∇(2)
n f(x) :=

n

2
(f(x+ 1/n)− f(x− 1/n)),
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and Wn is a Brownian motion indexed by Z with quadratic covariation d[Wn(i),Wn(j)]t = nδi,jdt.
Therefore, the martingale contribution in (3) converges to the spatial derivative of a space-time
white noise. Concerning the symmetric contribution, a Taylor expansion gives

1

2
n1/2∆n[V ′(n−1/2vnt + ρ′(λ0))] =

1

2
n1/2∆n{V ′(ρ′(λ0)) + V ′′(ρ′(λ0))(n−1/2vnt ) +O(n−1)}

=
1

2
V ′′(ρ′(λ0))∆nv

n
t +O(n−1/2), (4)

so we might guess that in the limit only the Laplace operator survives. This is true, however
the diffusion constant will not be V ′′(ρ′(λ0)). The problem with this formal expansion is that
(n−1/2vnt ) converges to 0 in S ′, but not in any function space, and therefore the corrector terms
appearing in the Taylor expansion cannot be controlled uniformly in n. Similarly we expand the
asymmetric contribution on the right hand side of (3) and obtain formally

n∇(2)
n [V ′(n−1/2vnt + ρ′(λ0))]− cn∇vn

= n∇(2)
n

{
V ′(ρ′(λ0)) + V ′′(ρ′(λ0))n−1/2vnt +

1

2
V (3)(ρ′(λ0))(n−1/2vnt )2 +O(n−3/2)

}
− cn∇vnt

= n1/2V ′′(ρ′(λ0))∇(2)
n vnt − cn∇vnt +

1

2
V (3)(ρ′(λ0))∇(2)

n (vnt )2 +O(n−1/2). (5)

We see that the constants (cn) are needed to absorb the diverging linear transport term on the
right hand side and thus leave the quadratic term in the limit. The real picture is again more
complicated and from this formal expansion we did not get the right constants, but at least it gives
us an idea why in the limit we should be able to replace the complicated nonlinear term with a
quadratic contribution.

To prove the convergence we will not actually work with the piecewise constant extension of
the lattice function u to a function on R, but instead look at the unknown as a distribution in
continuous space obtained by considering linear combinations of Dirac delta function at each lattice
point. This makes the notation slightly more convenient. We are thus interested in the limit for
n→∞ of the generalized random field

vnt =
∑
k

n1/2(un2t(k)− ρ′(λ))n−1δn−1k+cnt. (6)

The main result of this paper is the following universality result, which states that the limiting
system solves the stochastic Burgers equation and only depends on the second and third centered
moments of the coordinates u(j) under µλ0 , but not on the detailed shape of the potential V . To
state it precisely, let us introduce the notations

mk,λ :=

∫
R

(u− ρ′(λ))kpλ(u)du, σ2
λ := m2,λ

for k ∈ N and λ ∈ R. We also need the following assumption on V .

Assumption (V). Assume V = ϕ+ψ, where ϕ ∈ C2 and there exists C > 0 with ϕ′′(x) ∈ [1/C,C]
for all x ∈ R, and where ψ ∈ C2

b .

Theorem 1.1. Let V satisfy Assumption (V) and let the rescaled stationary fluctuations of vn be
given by (6), where we set

cn := n1/2σ−2
λ0
.

Then (vn)n∈N converges weakly in C ([0, 1],S ′) to the unique stationary energy solution u of the
stochastic Burgers equation

∂tu =
1

2σ2
λ0

∆u−
m3,λ0

2σ6
λ0

∇u2 +∇ξ, (7)
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where ξ is a space-time white noise and the equation is interpreted in the sense of [GP15a]. For
all fixed times t ≥ 0, u(t) is a space white noise with variance σ2

λ0
.

The proof of this theorem will occupy the rest of the paper. We will follow the general approach
developed by Gonçalves and Jara in [GJ14]. Of course, the convergence also holds in C([0, T ],S ′)
for arbitrary T > 0 or more generally locally in time on C([0,∞),S ′).

Remark 1.2. We need the assumptions on the potential for two reasons: first, they guarantee
that V ′ is Lipschitz continuous and thus allow us to construct the dynamics of v by solving the
corresponding SDE. Second, we apply several results of Caputo [Cap03] who needs V to be a
perturbation of a uniformly convex function (but allows faster-than-linear growth). In principle it
should be possible to relax the Lipschitz continuity assumption and to obtain the same result for all
potentials that satisfy the assumptions of Caputo, or more generally of Menz and Otto [MO13].

Remark 1.3. At first sight the constants in front of the Laplacian and the nonlinearity in (7) look
very different from the ones that we derived in (4), (5). However, Lemma 4.2 below will show that

1

σ2
λ0

= ∂ρϕV ′(ρ
′(λ0)), −

m3,λ0

σ6
λ0

= ∂ρρϕV ′(ρ
′(λ0)),

where ϕV ′(ρ) =
∫
R V
′(u)ph′(ρ)(u)du and h′ is the inverse function of ρ′, that is ph′(ρ) has mean

ρ. So the correct diffusion constant ∂ρϕV ′(ρ
′(λ0)) can be interpreted as an averaged version of the

constant V ′′(ρ′(λ0)) appearing in (4).

The structure of the paper is as follows. Below we introduce some basic notation that we
will fix throughout the paper. In Section 2 we recall / rigorously show some basic features of the
dynamics that are in principle well known. Section 3 is devoted to the proof of the second order
Boltzmann-Gibbs principle, which is the main tool for establishing the convergence. Section 4
contains the convergence proof. Appendix A collects some results on infinite-dimensional SDEs
with additive noise and in Appendix B we give the proof of a second order equivalence of ensembles
result which is needed to derive the second order Boltzmann-Gibbs principle.

Acknowledgements We would like to thank Tadahisa Funaki and Herbert Spohn for suggesting
the problem studied in this paper.

Notation If µ is a probability measure on RZ we will always write Eµ for the expectation with
respect to the Markov process u started in the initial distribution µ. That is, Eµ is an expectation
on the path space C([0,∞),RZ). For λ ∈ R we write Eλ for the expectation under µλ on RZ and
〈·, ·〉λ for the inner product in L2(µλ), as well as varλ for the variance under µλ. We also define

ρ(λ) := logZλ = log

∫
R

exp(λu− V (u))du,

which is easily seen to be consistent with the previously introduced notation

ρ′(λ) =

∫
R
u pλ(u)du.

Furthermore, we have ρ′′(λ) = σ2
λ > 0 and therefore ρ is strictly convex. Let h be its Legendre

transform. Then ρ′(h′(x)) = x. That is, h′(ρ) tells us which parameter λ to choose so that pλ has
mean ρ.
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2 Derivation of the generator and the stationary measure

Throughout this section we fix N ∈ N and consider the periodic model v : [0, T ]×ZN → R (where
ZN = Z/(NZ)). We derive its stationary measures and the decomposition of its generator in the
symmetric and the antisymmetric part, which in particular allows us to deduce the structure of
the time reversed process. The results of Appendix A then allow us to extend this to the model
in infinite volume. Let

dvt(i) =
1

2

{
(1 + α)(V ′(vt(i+ 1))− V ′(vt(i)))− (1− α)(V ′(vt(i))− V ′(vt(i− 1)))

}
dt

+ dWt(i+ 1)− dWt(i), (t, i) ∈ R+ × ZN , (8)

where (W (i) : i ∈ ZN ) is a family of independent standard Brownian motions and α ∈ R. We will
consider the measures

µNλ (dv) =
∏
i∈ZN

pλ(v(i))dv(i)

on ZN and write EµNλ
for the expectation under µNλ , as well as 〈F,G〉µNλ := EµNλ

[FG]. Let

F : RZN → R be a C2 function. Applying Itô’s formula to F (vt), we get

F (vt)− F (v0) =

∫ t

0

∑
i∈ZN

∂iF (vs)dvs(i) +
1

2

∫ t

0

∑
i,j∈ZN

∂2
i,jF (vs)d〈v(i), v(j)〉s

=

∫ t

0

∑
i∈ZN

∂iF (vs)

{(
1

2
∆D[V ′(vs)](i) + α∇(2)

D [V ′(vs)](i)

)
ds+ d∇(1)

N ws(i)

}

+
1

2

∫ t

0

∑
i∈ZN

(2∂2
i,iF (vs)− ∂2

i,i−1F (vs)− ∂2
i,i+1F (vs))ds.

So on sufficiently nice functions, the generator G α of v acts as

G α =
1

2

∑
i∈ZN

{−(V ′(v(i+ 1))− V ′(v(i)))(∂i+1 − ∂i) + α(V ′(v(i+ 1))− V ′(v(i− 1)))∂i}

+
1

2

∑
i∈ZN

(∂i+1 − ∂i)2.

Lemma 2.1. Define the operators

GS =
1

2

∑
i∈ZN

{−(V ′(v(i+ 1))− V ′(v(i)))(∂i+1 − ∂i) + (∂i+1 − ∂i)2},

and

GA =
1

2

∑
i∈ZN

(V ′(v(i+ 1))− V ′(v(i− 1)))∂i.

Then we have G α = GS + αGA and for all F,G ∈ C2(RZN ,R) with polynomial growth of their
partial derivatives up to order 2 and for all λ ∈ R

〈F,GSG〉µNλ = 〈GSF,G〉µNλ , 〈F,GAG〉µNλ = −〈GAF,G〉µNλ .

In particular, EµNλ
[G αF ] = 0.
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Proof. The adjoint of ∂i in L2(µλ) is given by ∂∗i = −∂i − (λ− V ′(v(i))), and therefore

(∂i+1 − ∂i)∗ = −{(∂i+1 − ∂i)− (V ′(v(i+ 1))− V ′(v(i)))},

and

{−(V ′(v(i+ 1))− V ′(v(i)))(∂i+1 − ∂i) + (∂i+1 − ∂i)2}∗

= −(∂i+1 − ∂i)∗{V ′(v(i+ 1))− V ′(v(i))}
+ (∂i+1 − ∂i)∗{−((∂i+1 − ∂i)− (V ′(v(i+ 1))− V ′(v(i))))}

= −(∂i+1 − ∂i)∗(∂i+1 − ∂i)
= (∂i+1 − ∂i)2 − (V ′(v(i+ 1))− V ′(v(i)))(∂i+1 − ∂i),

from where we readily see that (GS)∗ = GS . For GA we obtain

((V ′(v(i+ 1))− V ′(v(i− 1)))∂i)
∗ = ∂∗i (V ′(v(i+ 1))− V ′(v(i− 1)))

= (−∂i − (λ− V ′(vi)))(V ′(v(i+ 1))− V ′(v(i− 1)))

= −(V ′(v(i+ 1))− V ′(v(i− 1)))∂i

− (λ− V ′(v(i)))(V ′(v(i+ 1))− V ′(v(i− 1))).

But since it is a telescopic sum, we have∑
i∈ZN

{−(λ− V ′(v(i)))(V ′(v(i+ 1))− V ′(v(i− 1)))} = 0,

and therefore (GA)∗ = −GA.

Corollary 2.2. For all α, λ ∈ R the measure µλ is invariant under the evolution of

dut(i) =
(1

2
∆D[V ′(ut)](i) + α∇(2)

D [V ′(ut)](i)
)

dt+ d∇(1)
D Wt(i), (t, i) ∈ R+ × Z. (9)

Moreover, if u0 is distributed according to µλ and we fix T > 0 and set ût = uT−t, t ∈ [0, T ], then
û is a weak solution of the SDE

dût(i) =
(1

2
∆D[V ′(ût)](i)− α∇(2)

D [V ′(ût)](i)
)

dt+ d∇(1)
D Ŵt(i), (t, i) ∈ [0, T ]× Z,

where (Ŵ (i))i∈Z is a family of independent standard Brownian motions in the filtration generated
by û.

Proof. Let us restrict W and the initial condition u0 to [−N/2, N/2)∩Z and write WN and vN0 for
the periodic extension of the restriction. Then we can interpret WN and vN0 as functions defined
on ZN , and consider the solution vN to (8) started in vN0 and forced by WN . For vN we can
now apply Lemma 2.1 and Echeverria’s criterion [EK09, Theorem 4.9.17] to obtain that µNλ is a
stationary distribution. It is then a standard result that the stationary time reversed process v̂N

is a Markov process with infinitesimal generator GS − αGA. But since we are dealing with a finite
dimensional diffusion, this simply means that v̂N is a weak solution of the SDE

dv̂Nt (i) =
(1

2
∆D[V ′(v̂Nt )](i)− α∇(2)

D [V ′(v̂Nt )](i)
)

dt+ d∇(1)
D ŴN

t (i), i ∈ ZN .

Alternatively, the finite dimensional case is also treated in [MNS89, Theorem 2.3].
The result for u and û now follows by sending N →∞, see Theorem A.2, because if we interpret

vN as a periodic function on Z, then it agrees with the solution started in vN0 and forced by WN ,
and it is not hard to see that (vN0 ,W

N )→ (v0,W ) in the spaces considered in Appendix A.
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Let us introduce some suitable test functions to describe the generator of the dynamics in
infinite volume. We say that F : RZ → R is a local function if it only depends on a finite number
of coordinates, and we write F ∈ C∞c (RZ,R) if F is a local function that has continuous partial
derivatives of every order and that is compactly supported if we consider it as a map defined on
the finite-dimensional subspace of variables in which F is not constant. Then C∞c (RZ,R) is dense
in L2(µλ) for any λ ∈ R. Indeed, local functions can be identified with functions on Rd for some
d ∈ N, and of course C∞c (Rd,R) is dense in L2(Rd, µdλ). Furthermore, it follows from the martingale
convergence theorem that every function in L2(µλ) can be approximated by local functions; simply
consider the conditional expectations on σ(u(j) : |j| 6 m) for m ∈ N.

In the following we will always take α =
√
ε for ε = 1/n in (9). By Corollary 2.2, the maps

TtF (u) = Eu[F (ut)], t > 0,

define a strongly continuous contraction semigroup on L2(µλ) (to see the strong continuity first
approximate a general F ∈ L2(µλ) by functions in C∞c (RZ,R)). We will denote the infinitesimal
generator of (Tt) with L, while LS , LA, and L∗ denote its symmetric/antisymmetric part and
adjoint, respectively. It follows from Lemma 2.1 that for F ∈ C∞c (RZ,R) we have

LSF =
1

2

∑
i∈Z
{−(V ′(u(i+ 1))− V ′(u(i)))(∂i+1 − ∂i) + (∂i+1 − ∂i)2}F,

LAF =

√
ε

2

∑
i∈Z

(V ′(u(i+ 1))− V ′(u(i− 1)))∂iF.

The generator n2L of un := un2· will be denoted by L(n), and we also write L(n)
S = n2LS and

similarly for L(n)
A . Recall that L also depends on the non-symmetry parameter ε.

Lemma 2.3. The space C∞c (RZ,R) is a core for L and also for L∗, that is the closure of the
operator L|C∞c (RZ,R) is equal to L and similarly for L∗.
Proof. We concentrate on L, the arguments for L∗ are the same. According to [EK09, Proposi-
tion 1.3.1] it suffices to show that C∞c (RZ,R) is dense in L2(µλ) (which we already know) and
that there is some γ > 0 such that the range R(γ − L|C∞c (RZ,R)) is dense in L2(µλ). It suffices to

show that R(γ −L|C∞c (RZ,R)) is dense in C∞c (RZ,R) ⊂ L2(µλ). But if F ∈ C∞c (RZ,R) depends on

finitely many coordinates, say Rd, then we can find a solution G : Rd → R to the finite-dimensional
resolvent equation (γ − L)G = F (slightly abusing notation by also writing L for the diffusion
operator acting on Rd). Moreover, since the diffusion matrix of L is uniformly elliptic, we get that
G ∈ C∞b (Rd) although not necessarily G ∈ C∞c (Rd). But if now ϕ : Rd → R is a smooth compactly
supported function with ϕ(0) = 1 and ϕn(x) = ϕ(x/n), then

(γ − L) (ϕnG) = ϕnF − (Lϕn)G−AϕnAG,

where A is a first order differential operator, and since

‖∂iϕn‖∞ = ‖n−1(∂iϕ)(n−1·)‖∞ . n−1,

we get that (γ − L) (ϕnG) converges to F uniformly.

3 Second order Boltzmann-Gibbs principle

3.1 Kipnis-Varadhan lemma and spectral gap

Recall that we work throughout with the stationary measure µλ0 for a fixed λ0 ∈ R. Let us define
the space H 1 as the completion of C∞c (RZ,R) with respect to ‖·‖1, where

‖F‖21 := 〈F,−LSF 〉λ0
.
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Since we showed in Lemma 2.3 that C∞c (RZ,R) is a core for L and L∗ we are in the setting of
[KLO12, Section 2.2]. We also write

E (F ) :=
1

2

∑
i∈Z

(∂iF − ∂i+1F )2.

From a similar computation as in Lemma 2.1 it easily follows that ‖F‖21 = Eλ0 [E (F )] whenever
F ∈ C∞c (RZ,R). We then define for F ∈ L2(µλ0)

‖F‖2−1 := sup
G∈C∞c (RZ,R)

{2〈F,G〉λ0 − ‖G‖21},

and the space H −1 is defined as the completion of {F ∈ L2(µλ0) : ‖F‖2−1 <∞}, after identifying
all functions F and G that satisfy ‖F − G‖−1 = 0. Note that ‖F‖−1 = ∞, for all F ∈ L2(µλ0)
with Eλ0 [F ] 6= 0, since ‖c‖1 = 0 for all constants c, so in particular every F ∈ L2(µλ0) ∩H −1

satisfies Eλ0 [F ] = 0.
The following result can be shown in the same way as [GJ13, Lemma 2].

Lemma 3.1 (Itô trick). For any T > 0 and H ∈ L2([0, T ]; H 1) we have

Eµλ0

[
sup
t∈[0,T ]

(∫ t

0
L(n)
S H(s, uns )ds

)2]
. n2

∫ T

0
‖H(s, ·)‖21ds.

Using the Itô trick, it is not hard to obtain the Kipnis-Varadhan lemma in our context. The
proof is the same as for [GP15a, Lemma 2].

Lemma 3.2 (Kipnis-Varadhan lemma). For any T > 0 and F ∈ L2([0, T ]; H −1 ∩ L2) we have

Eµλ0

[
sup
t∈[0,T ]

(∫ t

0
F (s, uns )ds

)2]
. n−2

∫ T

0
‖F (s, ·)‖2−1ds.

Note that if F (s, ·) = L(n)
S H(s, ·) for all s ∈ [0, T ], then we do not lose anything by applying

the Kipnis-Varadhan lemma rather than the Itô trick: Since L(n)
S = n2LS , we get from Lemma 3.2

Eµλ0

[
sup
t∈[0,T ]

(∫ t

0
L(n)
S H(s, uns )ds

)2]
. n2

∫ T

0
‖LSH(s, ·)‖2−1ds.

But LS is an isometry between H 1 and H −1 (see [KLO12, Claim D on p.44]), so that

‖LSH(s, ·)‖2−1 = ‖H(s, ·)‖21,

which leads to the same bound that we get from the Itô trick, at least up to multiplication with
a constant. However, we should point out that the Itô trick allows in principle to control higher
order moments, while the Kipnis-Varadhan lemma is limited to L2 estimates.

To get a useful bound for the ‖·‖−1 norm, we will use a spectral gap estimate. But first let us
introduce more notation: For ` ∈ N and ν ∈ R we define the measure ν`ρ = µ`ρ(·|

∑`−1
i=0 u(i) = `ρ).

Note that ν`ρ does not depend on λ. Indeed, under ν`ρ the density of (u(0), . . . , u(`−2)) is given by

pλ(u(0)) . . . pλ(u(`− 2))pλ(`ρ−
∑`−2

i=0 u(i))

p∗`λ (`ρ)
,

and

p∗`λ (`ρ) =

∫
R`−1

du(1) . . . du(`−1)pλ(`ρ−u(0)−. . .−u(`−2))pλ(u(0)) . . . pλ(u(`−2)) = Z−`λ eλ`ρp∗`0 (`ν),
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and therefore

pλ(u(0)) . . . pλ(u(`− 2))pλ(`ρ−
∑`−2

i=0 u(i))

p∗`λ (`ρ)
=
p0(u(0)) . . . p0(u(`− 2))p0(`ρ−

∑`−2
i=0 u(i))

p∗`0 (`ρ)
(10)

for all λ ∈ R.
The following spectral gap estimate is due to Caputo. Recall that Assumption (V) is in force.

Lemma 3.3 (Caputo [Cap03, Corollary 5.2]). There exists a constant C > 0 for which

varν`ρ(F ) 6 C`2Eν`ρ

[1

2

`−2∑
i=0

(∂iF − ∂i+1F )2
]

for all smooth and bounded F : RZ → R that only depend on (u(0), . . . , u(` − 1)), all ` ∈ N, and
all ρ ∈ R.

Lemma 3.4. Let F ∈
⋂
λ∈R L

1(µλ) depend only on u(0), . . . , u(` − 1) with Eµλ [F ] = 0 for all

λ ∈ R. Then Eλ[Fϕ(
∑`−1

i=0 u(i))] = 0 for all ϕ for which the right hand side is well defined and for
all λ.

Proof. Fix λ and let λ′ ∈ R. We have

0 = Eλ+λ′ [F ] = Eλ[Feλ
′(
∑`−1
i=0 u(i))]

for all λ′. Thus, the Laplace transform of the signed measure

σ
( `−1∑
i=0

u(i)
)
3 A 7→ Eλ[F1A] ∈ R

is identically 0, which proves the claim.

As a simple consequence of Lemma 3.3 we obtain a bound for the H −1 norm. The proof is
similar to the one in [GJ14], but since we are in a different setting let us give some details.

Lemma 3.5. (see also [GJ14, Proposition 6]) Let C be the constant in Lemma 3.3. Then

‖F‖2−1 6 2C`2〈F, F 〉λ0

for all ` ∈ N and all F ∈
⋂
λ∈R L

1(µλ) ∩ L2(µλ0) that depend only on u(0), . . . , u(` − 1) and that
satisfy Eλ[F ] = 0 for all λ ∈ R.

Proof. Consider a test function G ∈ C∞(RZ,R) for the variational definition of the H −1 norm
and define G` = Eλ0 [G|u(0), . . . , u(`− 1)] and Ḡ` = G` −Eλ0 [G`|ū`] for ū` = `−1

∑`−1
i=0 u(i). Then

we have
2〈F,G〉λ0 − ‖G‖21 = 2〈F,G`〉λ0 − ‖G‖21 = 2〈F, Ḡ`〉λ0 − ‖G‖21,

using the previous lemma in the second step. Now observe that

‖G‖21 =
1

2

∑
i∈Z

Eλ0 [(∂iG− ∂i+1G)2] >
1

2

`−2∑
i=0

Eλ0 [(∂iG− ∂i+1G)2],

and that for i ∈ [0, `− 1] the derivative ∂i(Eλ0 [G`|ū`]) is independent of i by exchangeability while
∂iG` = Eλ0 [∂iG|u(0), . . . , u(`− 1)]. Therefore, Jensen’s inequality gives

‖G‖21 >
1

2

`−2∑
i=0

Eλ0 [(∂iḠ`−∂i+1Ḡ`)
2] =

1

2

`−2∑
i=0

Eλ0 [Eν`
ū`

[(∂iḠ`−∂i+1Ḡ`)
2]] >

1

2
C−1`−2Eλ0 [varν`

ū`
(Ḡ`)],
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where the last step follows from Lemma 3.3. The definition of Ḡ` implies that Eν`ρ [Ḡ`] = 0 for all
ρ, and therefore we end up with

2〈F,G〉λ0 − ‖G‖21 6 2(〈F, F 〉λ0)1/2(〈Ḡ`, Ḡ`〉λ0)1/2 − 1

2
C−1`−2〈Ḡ`, Ḡ`〉λ0 ,

from where we readily deduce the claimed bound for ‖F‖−1.

Now we obtain the following Corollary using exactly the same arguments as in [GJ14].

Corollary 3.6. (see also [GJ14, Corollary 1]) Let m ∈ N, 0 6 k0 < . . . < km and F1, . . . , Fm ∈
L2([0, T ];L2(µλ0)) be such Fi(t, ·) ∈

⋂
λ∈R L

1(µλ) depends only on u(j) for ki 6 j 6 ki+1 − 1 and
such that Eλ[Fi(t, ·)] = 0 for all λ ∈ R, i ∈ {1, . . . ,m}, t ∈ [0, T ]. Set `i = ki − ki−1. Then

Eλ0

[
sup
t∈[0,T ]

(∫ t

0
(F1 + · · ·+ Fm)(s, uns )ds

)2]
.

m∑
i=1

`2i
n2

∫ T

0
〈Fi(s, ·), Fi(s, ·)〉λ0ds.

3.2 Equivalence of ensembles

Here we present a second order equivalence of ensembles result for the stationary measure µλ0 .
Assumption (V) guarantees that the local limit theorem holds uniformly in the parameter λ.
To state this, we need some more notation. If (Ui)

N−1
0=1 is an i.i.d. family of random variables

distributed according to pλ, then we write fNλ for the density of

1√
Nρ′′(λ)

N−1∑
i=0

(Ui − ρ′(λ)).

We then have the following uniform local limit theorem:

Lemma 3.7 ([Cap03, Theorem 2.1]). The potential V is such that the local limit theorem holds
uniformly in λ. More precisely,

|fNλ (u)− rλ,N (u)| . N−3/2,

uniformly in u, λ, where rλ,N = r0 +N−1/2r1
λ +N−1r2

λ with

r0(u) =
1√
2π
e−u

2/2, r1
λ(u) = r0(u)

m3,λ

6σ3
λ

H3(u),

r2
λ(u) = r0(u)

(
m4,λ − 3σ4

λ

24σ4
λ

H4(u) +
m2

3,λ

72σ6
λ

H6(u)

)
,

and where Hk denotes the k-th Hermite polynomial.

Lemma 3.8 ([Cap03, Lemma 2.2 and Lemma 2.4]). For all k ∈ N we have

sup
λ∈R

(
|mk,λ|
σkλ

+ σ2
λ + σ−2

λ

)
<∞.

With the help of these two lemmas we can derive the following bound. The proof is elementary
but tedious and can be found in Appendix B.
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Proposition 3.9 (Second order equivalence of ensembles). Let ` 6 N/2 and let F ∈ L2(µh′(ρ))
depend only on u(0), . . . , u(`− 1). Write

ūN :=
1

N
uN :=

1

N

N−1∑
k=0

u(k), ψF (N, ρ) := Eλ0 [F |ūN = ρ], ϕF (ρ) := Eh′(ρ)[F ].

Then

Eλ0

[∣∣∣ψF (N, ūN )− ϕF (ρ′(λ0))− ∂ρϕF (ρ′(λ0))(ūN − ρ′(λ0))− 1

2
∂ρρϕF (ρ′(λ0))

(
(ūN − ρ′(λ0))2 −

σ2
λ0

N

)∣∣∣2]
.

(
`

N

)3

sup
λ

varλ(F ).

Remark 3.10. We will later apply this with F (u) = V ′(u(0)) for which an integration by parts
yields

Eλ[F ] =

∫
R
V ′(u)pλ(u)du =

∫
R

(V ′(u)− λ)pλ(u)du+ λ = −
∫
R
∂upλ(u)du+ λ = λ

and then

varλ(F ) =

∫
R

(V ′(u)− λ)2pλ(u)du =

∫
R

(V ′(u)− λ)(−∂upλ(u))du =

∫
R
V ′′(u)pλ(u)du.

We assumed that V ′ is Lipschitz-continuous, so the supremum in λ of the right hand side is finite.
If however V ′′ was unbounded, then the supremum in λ of the right hand side would certainly be
infinite: we know from Lemma 3.8 that the variance of u(0) stays uniformly bounded in λ while
by varying λ we can achieve any mean ρ′(λ) for u(0) and in particular we can send ρ′(λ) to those
regions where V ′′ is very large. So if we wanted to deal with non-Lipschitz continuous V ′, then we
would need to be more careful in the estimates leading to Proposition 3.9.

3.3 Derivation of the second order Boltzmann-Gibbs principle

We can now combine Corollary 3.6 and Proposition 3.9 to derive the second order Boltzmann-
Gibbs principle. As Gonçalves and Jara point out in [GJ14], these two corollaries are the only
ingredients needed to make their proof of the second order Boltzmann-Gibbs principle work. And
although we are in a different setting we can indeed proceed by building on the same lemmas as
they do, and prove those lemmas using the same arguments provided in [GJ14]. So we will omit
most of the proofs and simply include references to the corresponding results in that work. Let us
introduce the notation

(τku)(`) = u(k + `)

for all u ∈ RZ, k, ` ∈ Z. If F : RZ → R is a local function, we write τkF (u) = F (τku).

Lemma 3.11 (One block estimate, see also [GJ14, Lemma 1]). Let F ∈ L2(µλ) be a local function
that depends only on u(0), . . . , u(`0 − 1) and let g ∈ L2([0, T ]× Z). Then for all λ ∈ R

Eµλ
[( ∫ T

0

∑
k

τk(F (uns )− ψF (`0, (uns )
`0

))gs(k)ds
)2]

.
`30
n2
‖g‖2L2([0,T ]×Z) varλ(F ).

Remark 3.12. Here we will only apply this with `0 = 1 for which the left hand side simply
vanishes. However, the lemma will allow us to prove the second order Boltzmann-Gibbs principle
for general `0, which may be a useful result in itself.
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Lemma 3.13 (Renormalization step, see also [GJ14, Lemma 2]). Let F ∈
⋂
λ∈R L

2(µλ) be a local
function that depends only on u(0), . . . , u(`0 − 1) and let g ∈ L2([0, T ]× Z). Then for all ` > `0

Eµλ0

[( ∫ T

0

∑
k

τk
(
ψF (`, (uns )

`
)− ψF (2`, (uns )

2`
)
)
gs(k)ds

)2]
.`0

`β

n2
‖g‖2L2([0,T ]×Z) sup

λ
varλ(F ),

where

i. β = 2 if ∂ρϕF |ρ=h′(λ0) 6= 0,

ii. β = 1 if ∂ρϕF |ρ=h′(λ0) = 0,

iii. β = 0 if ∂ρϕF |ρ=h′(λ0) = ∂ρρϕF |ρ=h′(λ0) = 0.

Lemma 3.14 (Two blocks estimate, see also [GJ14, Lemma 3]). Let F ∈
⋂
λ∈R L

2(µλ) be a local
function that depends only on u(0), . . . , u(`0 − 1) and let g ∈ L2([0, T ]× Z). Then for any ` > `0

Eµλ0

[( ∫ T

0

∑
k

τk
(
ψF (`0, (u

n
s )
`0

)− ψF (`, (uns )
`
)
)
gs(k)ds

)2]
.`0

β`
n2
‖g‖2L2([0,T ]×Z) sup

λ
varλ(F ),

where

i. β` = `2 if ∂ρϕF |ρ=h′(λ0) 6= 0,

ii. β` = ` if ∂ρϕF |ρ=h′(λ0) = 0,

iii. β` = (log `)2 if ∂ρϕF |ρ=h′(λ0) = ∂ρρϕF |ρ=h′(λ0) = 0.

The next Lemma 3.15 has no equivalent result in [GJ14], but Lemma 3.16 does and is a second
order version of Lemma 3.15 which follows from the same proof.

Lemma 3.15. Let F ∈
⋂
λ∈R L

2(µλ) be a local function that depends only on u(0), . . . , u(`0 − 1)
and assume that ϕF (ρ′(λ0)) = 0. Let g ∈ L2([0, T ]× Z). Then

Eµλ0

[( ∫ T

0

∑
k

τk
(
ψF (`, (uns )

`
)− ∂ρϕF (ρ′(λ0))((uns )

` − ρ′(λ0))
)
gs(k)ds

)2]
.`0

T

`
‖g‖2L2([0,T ]×Z) sup

λ
varλ(F )

Proof. We apply twice the Cauchy-Schwarz inequality to obtain

Eµλ0

[( ∫ T

0

∑
k

τk
(
ψF (`, (uns )

`
)− ∂ρϕF (ρ′(λ0))((uns )

` − ρ′(λ0))
)
gs(k)ds

)2]
6 T

∫ T

0
Eµλ0

[( `−1∑
j=0

∑
i

τi`+j
(
ψF (`, (uns )

`
)− ∂ρϕF (ρ′(λ0))((uns )

` − ρ′(λ0))
)
gs(i`+ j)

)2]
ds

6 T`

∫ T

0

`−1∑
j=0

Eµλ0

[(∑
i

τi`+j
(
ψF (`, (uns )

`
)− ∂ρϕF (ρ′(λ0))((uns )

` − ρ′(λ0))
)
vs(i`+ j)

)2]
ds.
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Now obserge that Eµλ0
[ψF (`, (uns )

`
)] = Eµλ0

[∂ρϕF (ρ′(λ0))((uns )
` − ρ′(λ0))] = 0, and therefore

T`

∫ T

0

`−1∑
j=0

Eµλ0

[(∑
i

τi`+j
(
ψF (`, (uns )

`
)− ∂ρϕF (ρ′(λ0))((uns )

` − ρ′(λ0))
)
gs(i`+ j)

)2]
ds

= T`

∫ T

0

`−1∑
j=0

∑
i

Eµλ0

[(
τi`+j

(
ψF (`, (uns )

`
)− ∂ρϕF (ρ′(λ0))((uns )

` − ρ′(λ0))
)
gs(i`+ j)

)2]
ds

= T`

∫ T

0

∑
k

Eµλ0

[(
ψF (`, (uns )

`
)− ∂ρϕF (ρ′(λ0))((uns )

` − ρ′(λ0))
)2]

g2
s(k)ds

= T`‖g‖2L2([0,T ]×Z)Eλ0 [(ψF (`, ū`)− ∂ρϕF (ρ′(λ0))(ū` − ρ′(λ0)))2],

and by Proposition 3.9 the expectation on the right hand side is bounded by

Eλ0 [((ψF (`, ū`)− ∂ρϕF (ρ′(λ0))(ū` − ρ′(λ0))))2] .
`30
`2

sup
λ

varλ(F ),

from where our claim follows. Actually we could even obtain `20 on the right hand side, but we do
not care about the dependence on `0.

Lemma 3.16. (see also [GJ14, Lemma 4]) Let F ∈
⋂
λ∈R L

2(µλ) be a local function that depends
only on u(0), . . . , u(`0 − 1) and assume that ϕF (ρ′(λ0)) = (∂ρϕF )(ρ′(λ0)) = 0. Define for ` ∈ N
and ρ ∈ R

Qλ0(`;u) = (ū` − ρ′(λ0))2 −
σ2
λ0

`
.

Then we have for any g ∈ L2([0, T ]× Z)

Eµλ0

[( ∫ T

0

∑
k

τk
(
ψF (`, (uns )

`
)− (∂ρρϕF )(ρ′(λ0))

2
Qλ0(`;uns )

)
gs(k)ds

)2]
.`0

T

`2
‖g‖2L2([0,T ]×Z) sup

λ
varλ(F ).

The next theorem is not contained in [GJ14], but it is an easy consequence of the lemmas that
we established so far.

Theorem 3.17 (Boltzmann-Gibbs principle). Let F ∈
⋂
λ∈R L

2(µλ) be a local function that de-
pends only on u(0), . . . , u(`0 − 1) and let g ∈ L2([0, T ]× Z). Then for all ` > `0

Eµλ0

[( ∫ T

0

∑
k

τk
(
F (uns )− ϕF (ρ′(λ0))− ∂ρϕF (ρ′(λ0)

)
(uns (0)− ρ′(λ0)))gs(k)ds

)2]
.`0

(
`

n2
+
T

`

)
‖g‖2L2([0,T ]×Z) sup

λ
varλ(F ).
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Proof. Let F̂ (u) := F (u)− ϕF (ρ′(λ0))− ∂ρϕF (ρ′(λ0))(u(0)− ρ′(λ0)), so that for any ` ∈ N

Eµλ0

(∫ T

0

∑
k

τk
(
F (uns )− ϕF (ρ′(λ0))− ∂ρϕF

(
ρ′(λ0)

)
(uns (0)− ρ′(λ0))

)
gs(k)ds

)2


= Eµλ0

(∫ T

0

∑
k

τkF̂ (uns )gs(k)ds

)2


= Eµλ0

(∫ T

0

∑
k

τk(F̂ (uns )− ∂ρϕF̂ (ρ′(λ0))((uns )
` − ρ′(λ0)))gs(k)ds

)2
 .

Now we combine Lemma 3.11 with Lemma 3.14 and Lemma 3.15 to get for ` > `0

Eµλ0

(∫ T

0

∑
k

τk(F̂ (uns )− ∂ρϕF̂ (ρ′(λ0))((uns )
` − ρ′(λ0)))gs(k)ds

)2


. Eµλ0

(∫ T

0

∑
k

τk(F̂ (uns )− ψF̂ (`0, (uns )
`0

))gs(k)ds

)2


+ Eµλ0

(∫ T

0

∑
k

τk
(
ψF̂ (`0, (uns )

`0
)− ψF̂ (`, (uns )

`
)
)
gs(k)ds

)2


+ Eµλ0

(∫ T

0

∑
k

τk
(
ψF̂ (`, (uns )

`
)− ∂ρϕF̂ (ρ′(λ0))((uns )

` − ρ′(λ0))
)
gs(k)ds

)2


.`0

1

n2
‖g‖2L2([0,T ]×Z) varλ0(F̂ ) +

`

n2
‖g‖2L2([0,T ]×Z) sup

λ
varλ(F̂ ) +

T

`
‖g‖2L2([0,T ]×Z) sup

λ
varλ(F̂ ).

It now suffices to note that

varλ(F̂ ) . varλ(F ) + varλ(∂ρϕF (ρ′(λ0))(u(0)− ρ′(λ0))) = varλ(F ) + (∂ρϕF (ρ′(λ0)))2σ2
λ

and finally

|∂ρϕF (ρ′(λ0))| = |Eλ0 [(u`0 − `0ρ′(λ0))F ]h′′(ρ′(λ0))| = σ−2
λ0
|Eλ[(u`0 − `0ρ′(λ0))F ]|

.`0 σ
−2
λ0

(varλ0(F ))1/2σ2
λ0
,

from where an application of Lemma 3.8 proves our claim.

Theorem 3.18 (Second order Boltzmann-Gibbs principle, see also [GJ14, Theorem 7]). Let
F be a local function that depends only on u(0), . . . , u(`0 − 1) and assume that ϕF (ρ′(λ0)) =
(∂ρϕF )(ρ′(λ0)) = 0. Let g ∈ L2([0, T ]× Z). Then, for any ` > `0,

Eµλ0

(∫ T

0

∑
k

τk

(
F (uns )− (∂ρρϕF )(ρ′(λ0))

2
Qλ0(`;uns )

)
gs(k)ds

)2


.`0

(
`

n2
+
T

`2

)
‖g‖2L2([0,T ]×Z) sup

λ
varλ(F ).

The proof is similar to the one of Theorem 3.17 but easier, because here we subtract a quadratic

term that depends on the local average (uns )
`
, whereas in Theorem 3.17 we still had to replace the

linear term ∂ρϕF (ρ′(λ))((uns )
` − ρ′(λ)) of Lemma 3.15 by ∂ρϕF (ρ′(λ))(uns (0)− ρ′(λ)).

16



4 Proof of convergence

We now have all the tools needed to prove that the rescaled fluctuations of u converge to the
solution of the stochastic Burgers equation. We start by showing tightness, which as usual with
the martingale problem approach is the hardest part.

4.1 Tightness

Recall that we defined
vnt =

∑
k

n1/2(un2t(k)− ρ′(λ0))n−1δn−1k+cnt

with cn = n1/2∂ρϕV ′(ρ
′(λ0)). Thus, for any test function η ∈ S

vnt (η) =
∑
k

n−1/2(un2t(k)− ρ′(λ0))η(n−1k + cnt) =
∑
k

n−1/2(unt (k)− ρ′(λ0))η(n−1k + cnt),

where we recall that unt = un2t, and then

dvnt (η) =
∑
k

n−1/2η(n−1k + cnt)du
n
t (k) +

∑
k

n−1/2(unt (k)− ρ′(λ0))dη(n−1k + cnt)

=
∑
k

n−1/2η(n−1k + cnt)
(
L(n)unt (k)dt+ n−1/2d∇(1)

n Wn
t (k)

)
+ cnv

n
t (∇η)dt,

with d[Wn(i),Wn(j)]t = nδi,jdt. We can further decompose the drift term into two parts,∑
k

n−1/2η(n−1k + cnt)L(n)unt (k)dt+ cnv
n
t (∇η)dt

=
∑
k

n−1/2η(n−1k + cnt)L(n)
S unt (k)dt+

(∑
k

n−1/2η(n−1k + cnt)L(n)
A unt (k) + cnv

n
t (∇η)

)
dt

=: dSnt (η) + dAnt (η).

So overall we obtain a decomposition into symmetric part, asymmetric part, and martingale part,

vnt (η)− vn0 (η) = Snt (η) +Ant (η) +Mn
t (η),

with

Mn
t (η) :=

∫ t

0

∑
k

n−1η(n−1k + cnr)d∇(1)
n Wn

r (k).

We will show the joint tightness of all the different contributions, which will then make it easy to
identify the limit of vn.

Lemma 4.1. The family (vn0 , S
n, An,Mn)n∈N is tight in S ′ × C ([0, 1],S ′)3, and for all fixed

times t > 0 the random variables (vnt )n∈N converges in distribution in S ′ to a spatial white noise
with variance σ2

λ0
. In particular, (vn)n∈N is tight in C ([0, 1],S ′).

Before we get to the proof, let us link the constants ∂ρϕV ′(ρ) that appear in the formulation
of the second order Boltzmann-Gibbs principle to the centered moments of u(t, i) under µλ0 .

Lemma 4.2. We have ϕV ′(ρ) = h′(ρ), and therefore in particular

∂ρϕV ′(ρ) = σ−2
h′(ρ), ∂ρρϕV ′(ρ) = −

m3,h′(ρ)

σ6
h′(ρ)

.

17



Proof. It suffices to integrate by parts:

ϕV ′(ρ) =

∫
R
V ′(u)ph′(ρ)(u)du =

∫
R

(V ′(u)− h′(ρ))ph′(ρ)(u)du+ h′(ρ)

= −
∫
R
∂uph′(ρ)(u)du+ h′(ρ) = h′(ρ).

4.1.1 Convergence at fixed times

First we have to check that vn0 is tight in S ′ which turns out to be quite simple. Indeed, we
even show that for all fixed times vnt is tight. By Mitoma’s criterion [Mit83] (which also holds for
S ′-valued processes; a form in which we shall use it later on) it is enough to verify that vnt (η) is
tight, for every η ∈ S . We show that vnt (η) converges in law to σλ0ξ(η) for all t > 0, where ξ is a
spatial white noise. Start by noting that

vnt (η) =
∑
k

n−1/2(unt (k)− ρ′(λ0))η(n−1k + cnt).

We split this sum into two parts, depending on n. One part is shown to go to zero and the other
one is shown to converge to σλ0ξ(η) using the Lyapunov criterion for the central limit theorem.
We recall:

Lemma 4.3 ([Bil13, Theorem 27.3]). For each n assume we have a sequence of independent
random variables Xn1, . . . , Xnrn with zero mean and σ2

nk := E[X2
nk] <∞. Let s2

n :=
∑rn

k=1 σ
2
nk and

assume there is δ > 0 such that

lim
n→∞

1

s2+δ
n

rn∑
k=1

E[|Xnk|2+δ] = 0.

Then 1
sn

∑rn
k=1Xnk converges in law to a standard normal distribution.

We apply this to Xnk := n−1/2(unt (k)− ρ′(λ0))η(n−1k + cnt) and rn := 2n2 + 1 (but summing
from −n2 to n2 around −cnt). Then

s2
n = n−1

∑
|k+ncnt|6n2

|η(n−1(k + ncnt))|2Eλ0 [(u(k)− ρ′(λ0))2]

= n−1
∑

|k+ncnt|6n2

|η(n−1(k + ncnt))|2σ2
λ0

n→∞−−−→
∫
R
|η(x)2|dxσ2

λ0
.

The Lyapunov condition is satisfied with δ = 1, since s3
n is bounded below and∑

|k+ncnt|6n2

E[|Xnk|3] = n−3/2
∑

|k+ncnt|6n2

|η(n−1(k + ncnt))|3Eλ0 [(u(k)− ρ′(λ0))3].

Now n1/2 times the last expression converges to a constant times
∫
R |η(x)|3dx, so that the expression

in fact converges to 0 and the Lyapunov condition is satisfied. We are left with the remainder∑
|k+ncnt|>n2

n−1/2(unt (k)− ρ′(λ0))η(n−1(k + ncnt))

.
∑

|k+cnt|>n2

n−1/2(unt (k)− ρ′(λ0))
1

1 + |n−1(k + ncnt)|
,

18



and then E[b. . . |2] is bounded by a constant times

1

n

∑
k:|k+ncnt|>n2

1

1 + |n−1(k + ncnt)|2
.

1

n

∑
`:|`|>n2

1

1 + |n−1`|2
. n

∑
`:|`|>n2

1

1 + |`|2
.

1

n
,

which goes to 0 as n→∞.

4.1.2 The martingale term

Next, let us show tightness and convergence of the martingale term, which has quadratic variation[∫ ·
0

∑
k

n−1η(n−1k + cnr)d∇(1)
n Wn

r (k)

]
t

=

[∫ ·
0

∑
k

n−1∇(1)
n η(n−1k + cnr)dW

n
r (k)

]
t

= n−2
∑
k

∫ t

0
|∇(1)

n η(n−1k + cnr)|2ndr,

where we used that d[Wn(i),Wn(j)]t = nδi,jdt. It is not hard to see that for fixed r ∈ [0, t]

n−1
∑
k

|∇(1)
n η(n−1k + cnr)|2 . ‖∇η‖2H1 ,

where ‖ϕ‖Hk =
∑

`6k ‖ϕ(`)‖L2(R). So an application of the Burkholder-Davis-Gundy inequality
yields for all p > 1 and s < t

Eµλ0
[|Mn

t (η)−Mn
s (η)|p] .

(
n−1

∑
k

∫ t

s
|∇(1)

n η(n−1k + cnr)|2dr

)p/2
. |t− s|p/2‖∇η‖p

H1 6 |t− s|p/2‖η‖p
H2 .

Now we apply the Kolmogorov-Chentsov criterion [Che56] to obtain the tightness of Mn(η) in
C ([0, 1],R). By Mitoma’s criterion [Mit83] (Mn) is hence tight in C ([0, 1],S ′). In fact, by the
dominated convergence theorem we also get that the quadratic variation converges to t‖∇η‖2L2 ,
which together with [Ald81, Proposition 5.1] shows that (Mn) converges to a space-time white
noise. But of course we still need to verify that the limit is also a martingale in the filtration
generated by v, the limit of (vn).

4.1.3 The symmetric term

Next, we have to deal with the symmetric contribution

dSnt (η) =
∑
k

n−1/2η(n−1k + cnt)L(n)
S unt (k)dt =

∑
k

n3/2η(n−1k + cnt)LSunt (k)dt,

where

LS =
∑
j

1

2
∆D[V ′(u)](j)∂j +

∑
j

(∂2
j,j − ∂2

j,j+1),

so that LSunt (k) = (1/2)∆D[V ′(unt )](k), which gives

dSnt (η) =
1

2

∑
k

n−1/2(∆nη)(n−1k + cnt)V
′(unt (k))dt

=
1

2

∑
k

n−1/2∆nη(n−1k + cnt)(V
′(unt (k))− ϕV ′(ρ′(λ0)))dt,
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where we recall that ϕV ′(ρ
′(λ0)) = Eµλ0

[V ′(unt (0))] is independent of n and t because un is sta-
tionary. Thus, we get for p ∈ N

Eµλ0
[|Snt (η)− Sns (η)|2p]

6 |t− s|2p−1

∫ t

s
Eµλ0

∣∣∣∣∣12 ∑
k

n−1/2∆nη(n−1k + cnr)(V
′(unr (k))− ϕV ′(ρ′(λ0)))

∣∣∣∣∣
2p
dr

. |t− s|2p−1

∫ t

s
Eµλ0

[(∑
k

n−1|∆nη(n−1k + cnr)|2|V ′(unr (k))− ϕV ′(ρ′(λ0))|2
)p]

dr,

where we used the Burkholder-Davis-Gundy inequality for discrete time martingales in the second
step. Further, Minkowski’s inequality yields

Eµλ0

[(∑
k

n−1|∆nη(n−1k + cnr)|2|V ′(u(k))− ϕV ′(ρ′(λ0))|2
)p]

6

(∑
k

n−1|∆nη(n−1k + cnr)|2
)p

Eλ0 [(V ′(u(0))− ϕV ′(ρ′(λ0)))2p],

and as for the martingale contribution we get∑
k

n−1|∆nη(n−1k + cnr)|2 . ‖∆η‖2H1 ,

so that overall

Eµλ0
[|Snt (η)− Sns (η)|2p] . |t− s|2pEµλ0

[(V ′(u(0))− ϕV ′(ρ′(λ0)))2p]‖η‖2p
H3 .

As before, it now suffices to apply Mitoma’s criterion and the Kolmogorov-Chentsov theorem to
obtain the tightness of (Sn) in C([0, 1],S ′).

4.1.4 The antisymmetric term

It remains to control

dAnt (η) =

(
n3/2

∑
k

η(n−1k + cnt)LAunt (k) + 〈vn(t), n−1cn∇η〉

)
dt,

where LA =
∑

j n
−1/2∇(2)

D [V ′(x)](j)∂j , and therefore LAunt (k) = n−1/2∇(2)
D [V ′(unt )](k) and then

dAnt (η) =

(
−
∑
k

∇(2)
n η(n−1k + cnt)V

′(unt (k)) + 〈vn(t), cn∇η〉

)
dt.

We start by dealing with the second term on the right hand side, for which we would like to replace

the continuous gradient ∇η by ∇(2)
n η in order to cancel the diverging transport contribution in the

first term. We have∫ t

s
〈vn(r), cn(∇η −∇(2)

n η)〉dr =

∫ t

s
cnn
−1/2

∑
k

(unr (k)− ρ′(λ0))(∇η −∇(2)
n η)(n−1k + cnr)dr
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and

Eµλ0

∣∣∣∣∣
∫ t

s
cnn
−1/2

∑
k

(unr (k)− ρ′(λ0))(∇η −∇(2)
n η)(n−1k + cnr)dr

∣∣∣∣∣
2


6 |t− s|
∫ t

s
n−1

∑
k

c2
nσ

2
λ0
|(∇η −∇(2)

n η)(n−1k + cnr)|2dr

. |t− s|
∫ t

s
c2
nσ

2
λ0
n−2‖∇η‖2H1dr . |t− s|2n−1‖∇η‖2H1 ,

(11)

where in the last step we used that cn = n1/2∂ρϕV ′(ρ
′(λ0)). It remains to bound

Eµλ0

(∫ t

s

∑
k

(∇(2)
n η)(n−1k + cnr)

(
V ′ (unr (k))− n−1/2cn(unr (k)− ρ′(λ0))

)
dr

)2


= Eµλ0

(∫ t

s

∑
k

(∇(2)
n η)(n−1k + cnr)

(
V ′(unr (k))− ϕV ′

(
ρ′ (λ0)

)
− ∂ρϕV ′(ρ′(λ0))(unr (k)− ρ′(λ0))

)
dr

)2


.

(
`

n2
+
|t− s|
`

)
‖(r, k) 7→ (∇(2)

n η)(n−1k + cnr)‖2L2([0,T ]×Z) sup
λ

varλ(V ′),

where in the last step we used the first order Boltzmann-Gibbs principle, Theorem 3.17, and ` > 1
can be chosen arbitrarily. Now

‖(r, k) 7→ (∇(2)
n η)(n−1k + cnr)‖2L2([0,T ]×Z) . |t− s|n‖∇η‖

2
H1 ,

and since V ′ is Lipschitz continuous we get varλ(V ′) . σ2
λ. If n−2 6 |t−s|, we take ` = bn|t−s|1/2c

and obtain(
`

n2
+
|t− s|
`

)
‖(r, k) 7→ (∇(2)

n η)(n−1k + cnr)‖2L2([0,T ]×Z) sup
λ

varλ(V ′)

. |t− s|3/2‖∇η‖H1 sup
λ
σ2
λ . |t− s|3/2‖∇η‖H1 .

On the other side if |t− s| < n−2, we simply estimate

Eµλ0

(∫ t

s

∑
k

(∇(2)
n η)(n−1k + cnr)2

(
V ′(unr (k))− ϕV ′

(
ρ′(λ0)

)
− ∂ρϕV ′(ρ′(λ0))(unr (k)− ρ′(λ0))

)
dr

)2


6 (t− s)
∫ t

s

∑
k

|(∇(2)
n η)(n−1k + cnr)|2

× Eµλ0

[((
V ′(unr (k))− ϕV ′(ρ′(λ0))− ∂ρϕV ′(ρ′(λ0))(unr (k)− ρ′(λ0))

))2]
dr

. ‖∇η‖2H1 |t− s|2n . ‖∇η‖2H1 |t− s|3/2.

In conclusion, we have shown that

Eµλ0
[|Ant (η)−Ans (η)|2] . |t− s|3/2‖∇η‖2H1 . |t− s|3/2‖η‖2H2 , (12)

from where we get the tightness of (An) in C([0, 1],S ′) by applying once more Mitoma’s criterion
and the Kolmogorov-Chentsov theorem.

Since all our tightness results are based on moment bounds, we also get the joint tightness that
we stated in Lemma 4.1.
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4.2 Identification of the limit

Here we show that every limit point of the sequence (vn) is an energy solution of the stochastic
Burgers equation. Since the uniqueness in law of energy solutions was established in [GP15a], this
concludes the proof of convergence. Let us first give the definition of energy solutions that was
introduced in [GJ13]. Before we state it recall that the quadratic variation in the sense of Russo
and Vallois [RV07] of a stochastic process X with trajectories in C([0, 1],R) is defined as

[X]t = lim
δ→0

∫ t

0

1

δ
(Xs+δ −Xs)

2ds,

where the convergence is uniformly on compacts in probability (we write ucp-convergence). If X
is a continuous semimartingale, then [X] is nothing but its semimartingale quadratic variation.

Definition 4.4 (Controlled process). Denote with Q the space of pairs (u,A)06t6T of generalized
stochastic processes with paths in C ([0, 1],S ′) such that

i. for all t ∈ [0, 1] the law of ut is that of a spatial white noise with variance σ2
λ0

;

ii. for any test function η ∈ S , the process t 7→ At(η) is almost surely of zero quadratic variation
in the sense of Russo and Vallois, A0(η) = 0, and the pair (u(η),A(η)) satisfies the equation

ut(η) = u0(η) +
∂ρϕV ′(ρ

′(λ0))

2

∫ t

0
us(∆η) ds +At(η) +Mt(η),

where M(η) is a martingale with respect to the filtration generated by (u,A) with quadratic
variation [M(η)]t = t‖∇η‖2L2(R);

iii. for T > 0 the reversed processes ût = uT−t, Ât = −(AT −AT−t) satisfies for all η ∈ S

ût(η) = û0(η) +
∂ρϕV ′(ρ

′(λ0))

2

∫ t

0
ûs(∆η) ds +Ât(η) + M̂t(η),

where M̂(η) is a martingale with respect to the filtration generated by (û, Â) with quadratic
variation [M̂(η)]t = t‖∇η‖2L2(R).

Remark 4.5. Recall from Lemma 4.2 that ∂ρϕV ′(ρ) = σ−2
h′(ρ), which shows that the factor in front

of the Laplacian is always strictly positive.

We will need the following results that both will be included in the revised version of [GP15a].

Lemma 4.6 (see [GP15a]). Let (u,A) ∈ Q, and χ ∈ L1(R) ∩ L2(R) with
∫
R χ(x)dx = 1. Define

for δ > 0, x ∈ R the rescaled function χδx(·) = δ−1χ(δ(x− ·)). Then for all η ∈ S the ucp-limit∫ ·
0
∇u2

s(η)ds := lim
δ→0

∫ ·
0

∫
R
∇[us(χ

δ
x)2]η(x)dxds

exists and does not depend on χ.

Definition 4.7 (Energy solution). A controlled process (u,A) ∈ Q is an energy solution to the
stochastic Burgers equation if for all η ∈ S almost surely

A(η) =
(∂ρρϕV ′)(ρ

′(λ0))

2

∫ ·
0
∇u2

s(η) ds .

Theorem 4.8 (see [GP15a]). There is a unique energy solution to the stochastic Burgers equation.
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In Lemma 4.1 it was shown that

dvnt = dSnt + dAnt + dMn
t ,

where Sn is the symmetric part, An the antisymmetric part, and Mn a martingale, with each one
of them being tight in C ([0, 1],S ′). If now T > 0 and ûnt = unT−t and

v̂nt = vnT−t =
∑
k

n1/2(unT−t(k)− ρ′(λ0))n−1δn−1(k+cn(T−t))

then by Corollary 2.2 we get
dv̂nt = dŜnt + dÂnt + dM̂n

t ,

where M̂n is a martingale with quadratic variation

[M̂n(η)]t = n−2
∑
k

∫ t

0
|∇(1)

n η(n−1k + cn(T − r))|2ndr,

and Ŝn and Ân satisfy

dŜnt (η) =
∑
k

n−1/2η(n−1k + cn(T − t))L(n)
S ûnt (k)dt

and
dÂnt (η) =

(∑
k

n−1/2η(n−1k + cn(T − t))(−L(n)
A )ûnt (k)− 〈v̂nt , n−1cn∇η〉

)
dt,

respectively. Thus, the same arguments as in Section 4.1 give the joint tightness of

(vn0 , S
n, An,Mn, Ŝn, Ân, M̂n)n∈N

in S ′×C ([0, T ],S ′)6. From now on we fix a converging subsequence, which by abuse of notation we
index again by n ∈ N. Obviously the following theorem then implies our main result, Theorem 1.1.

Theorem 4.9. For v = limn v
n and A = limnA

n we have (v,A) ∈ Q and the pair is an energy
solution to the stochastic Burgers equation.

Proof. Let us write also X = limnX
n for X = S, Ŝ,M, M̂ , and Â = limn Â

n. We have to show
that

i. for all t ∈ [0, T ] the law of vt is that of a space white noise with variance σ2
λ0

;

ii. M is a martingale in the filtration of (v,A), with quadratic variation [M(η)]t = t||∇η||L2 ;

iii. A has zero quadratic variation;

iv. St(η) =
∂ρϕV ′ (ρ

′(λ0))
2

∫ t
0 vs(∆η) ds;

v. the same conditions hold for the reversed process and Â = −(AT −AT−t);

vi. for every η ∈ S we have At(η) =
(∂ρρϕV ′ )(ρ

′(λ0))
2

∫ t
0 ∇u

2
s(η)ds.
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Point i. was already shown in Section 4.1.1. As for ii., let Φ : R2N → R be a bounded measurable
function, let 0 6 t1 < . . . < tN+1 6 T , and let η1, . . . , ηN+1 ∈ S . Then the uniform moment
bounds for Mn that we derived in Section 4.1.2 show that

E[Φ(vt1(η1),At1(η1), . . . , vtN (ηN ),AtN (ηN ))(MtN+1(ηN+1)−MtN (ηN ))]

= lim
n→∞

E[Φ(vnt1(η1),Ant1(η1), . . . , vtN (ηN ),AntN (ηN ))(Mn
tN+1

(ηN+1)−Mn
tN

(ηN ))] = 0.

Now we obtain from the monotone class theorem (see e.g. [EK09, Corollary 4.4]) that M is a
martingale in the filtration generated by (v,A). The same argument also shows that for η ∈ S
the process (M2

t (η) − t‖∇η‖2L2(R))t∈[0,T ] is a martingale, and therefore [M(η)]t = t‖∇η‖2L2(R).

Moreover, the same line of reasoning also works for the backward martingale M̂ .
Next let us show iii., that is [A(η)] ≡ 0, where the quadratic variation is in the sense of Russo

and Vallois. We showed in (12) that Eµλ0
[|Ant (η)−Ans (η)|2] . |t−s|3/2, uniformly in n. By Fatou’s

lemma we then get

Eµλ0

[∫ t

0

1

δ
|As+δ(η)−As(η)|2 ds

]
6 lim inf

n
Eµλ0

[∫ t

0

1

δ
|Ans+δ(η)−Ans (η)|2 ds

]
.

∫ t

0

1

δ
δ3/2 ds

δ→0−−−→ 0.

For iv. it suffies to show that for all η ∈ S and t ∈ [0, T ] we have

lim
n→∞

Eµλ0

[(
Snt (η)− ∂ρϕV ′(ρ

′(λ0))

2

∫ t

0
vns (4η) ds

)2]
= 0.

As we have seen in Section 4.1.3, Snt (η) =
∫ t

0
1
2

∑
k n
−1/2∆nη(n−1k+cns)(V

′(uns (k))−ϕV ′(ρ′(λ0)))ds,
and therefore

E
[(
Snt (η)− ∂ρϕV ′(ρ′(λ0))

∫ t

0
vns (4η) ds

)2]
. X + Y

with

X = E
[( ∫ t

0

1

2

∑
k

n−1/2∆nη(n−1k + cns)×

×(V ′(uns (k))− ϕV ′(ρ′(λ0))− ∂ρϕV ′(ρ′(λ0))(uns (k)− ρ′(λ0)))ds
)2]

.
1

n2
‖(r, k) 7→ 4nη(n−1k + cnr)‖2L2([0,T ]×Z) sup

λ
varλ(V ′)

by the first order Boltzmann-Gibbs principle, Theorem 3.17, with ` = n. Now we have

‖(r, k) 7→ 4nη(n−1k + cnr)‖2L2([0,T ]×Z) . n‖η‖2H3 ,

so that X . n−1 goes to zero. The remaining contribution is

Y = E
[( ∫ t

0

1

2

∑
k

n−1/2[∆nη(n−1k + cns)−4η(n−1k + cns)]×

× ∂ρϕV ′(ρ′(λ0))(uns (k)− ρ′(λ0)))ds
)2]

6 t

∫ t

0
n−1

∑
k

E
[(

[∆nη(n−1k + cns)−4η(n−1k + cns)] ∂ρϕV ′(ρ
′(λ0))(uns (k)− ρ′(λ0))

)
ds
)2]

. n−3‖η‖2H3 ,
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which also vanishes for n→∞. The same arguments show that also

Ŝt(η) =
∂ρϕV ′(ρ

′(λ0))

2

∫ t

0
v̂s(∆η) ds .

To see that Â = −(AT −AT−t) it suffices to note that for fixed n ∈ N we have Ânt (η) = −(AnT (η)−
AnT−t(η)) by definition, and the equality carries over to the limit n → ∞. Thus, v. is established
as well and in particular (v,A) ∈ Q.

It remains to show point vi. about A being equal to the Burgers nonlinearity. For δ > 0 define

Aδt (η) :=
(∂ρρϕV ′)(ρ

′(λ0))

2

∫ t

0
dr

∫
R

dxvs(iδ(x))2∇η(x),

where iδ(x)(y) = δ−11[x,x+δ)(y) which by Lemma 4.6 is allowed as a test function. The proof is

complete once we show that Aδ(η) converges in probability to A(η) as δ → 0. Now we have seen
in Section 4.1.4 that

Ant (η) =

∫ t

0

∑
k

(∇(2)
n η)(n−1k+cnr)(V

′(unr (k))+∂ρϕV ′(ρ
′(λ0))(ρ′(λ0))(unr (k)−ρ′(λ0)))dr+O(n−1),

so that the second order Boltzmann-Gibbs principle, Theorem 3.18, applied with ` = δn gives

lim
n→∞

Eµλ0

[(
Ant (η)−

∫ t

0

∑
k

(∇(2)
n η)(n−1k + cnr)τk

(∂ρρϕV ′)(ρ
′(λ0))

2
Qλ0(δn;unr )

)2]
.η lim

n→∞

(δn
n2

+
t

δ2n2

)
tn sup

λ
varλ(V ′) . δt.

So since (Ant (η))n converges to At(η), it suffices to show that((∂ρρϕV ′)(ρ
′(λ0))

2

)−1
Aδt = lim

n→∞

∫ t

0
dr
∑
k

τkQλ0(δn;unr )(∇(2)
n ϕ)(n−1k + cnr)

to complete the proof. Now recall that Qλ0(`;u) = (ū` − ρ′(λ0))2 −
σ2
λ0
` with ū` = `−1

∑`−1
i=0 u(i)

and that vnt =
∑

k n
−1/2(unt (k)− ρ′(λ0))δn−1(k+cnt). Hence,

nτkQλ0(δn;unt ) = vnt (iδ(n
−1k + cnt))

2 −
σ2
λ0

δ
,

and then ∫ t

0

∑
k

τkQ(δn;unr )(∇(2)
n ϕ)(n−1k + cnr)dr

=

∫ t

0

∑
k

n−1vnr (iδ(n
−1k + cnr))

2(∇(2)
n ϕ)(n−1k + cnr)dr

→
∫ t

0
dr

∫
R

dxvs(iδ(x))2∇ϕ(x), (13)

where the last convergence is in L2 and can be proven as follows. For simplicity we only treat the
case δ = 1, x = 0. Let im(0) be a smooth approximation to i(0) := i1(0), to be specified below.
Since vs is a multiple of the white noise we have

Eµλ0
[{vs(i(0))− vs(im(0))}2] . ‖i(0)− im(0)‖2L2(R).
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Assume now that im(0)(y) = i(0)(y) = 1 on [0, 1], and that im(0) is zero outside [−1/m, 1 + 1/m]
and im(0)(y) ∈ [0, 1] for all y ∈ R. Then

Eµλ0
[{vns (i(0))− vns (im(0))}2] = Eµλ0

[(∑
k

1√
n

[u(n2t, k)− ρ′(λ0)][i(0)− im(0)](n−1{k + cnt})
)2]

=
∑
k

1

n
Eµλ0

[u(n2t, k)− ρ′(λ0)]2[i(0)− im(0)]2(n−1{k + cnt}) .
1

m
,

since the support of {i(0)− im(0)}(n−1(·+ cnt)) has size of order n/m. These two bounds give the
convergence in (13).

A Infinite-dimensional SDEs

Define for r > 0

χ̃r :=
{
u ∈ RZ : ‖u‖r :=

(∑
j

|u(j)|2|j|−r
)1/2

<∞
}
,

where we simplify the notation by setting |0|−r = 1, and then χr as the closure of all u ∈ χ̃r that
only have finitely many non-zero entries. Clearly χ̃r is a Banach space, and therefore χr as well,
and by definition χr is also separable. We have an intrinsic description of χr as

χr =
{
u ∈ χ̃r : lim

N→∞

∑
|j|>N

|u(j)|2|j|−r = 0
}
.

We then define

Ur =
{
u : [0, T ]× Ω→ χr, u is almost surely continuous and E[sup

t6T
‖ut‖2r ] <∞

}
,

which is also a Banach spaces if we identify processes that are indistinguishable.

Lemma A.1. Let r ∈ R, let (vt)t∈[0,T ] be a stochastic process with continuous trajectories in RZ

(equipped with the product topology), and assume that E[
∫ T

0 ‖vt‖
2
rdr] < ∞. Let γ ∈ Ur and let u0

be a random variable with values in RZ such that E[‖u0‖2r ] < ∞. Let V ′ be Lipschitz-continuous
and define

Γ(v)t(j) := u0(j) +

∫ t

0

(1

2
∆D[V ′(vt)](j) + 2

√
ε∇(2)

D [V ′(vt)](j)
)

dt+ γt(j).

Then

E[sup
t6T
‖Γ(v)t‖2r ] . E[‖u0‖2r ] + TE

[ ∫ T

0
‖vt‖2rdr

]
+ E[sup

t6T
‖γt‖2r ].

Proof. Simply estimate

E[sup
t6T
|Γ(v)t(j)|2] . E[|u0(j)|2] + T

∫ T

0
E
[∣∣∣1

2
∆D[V ′(vt)](j) + 2

√
ε∇(2)

D [V ′(vt)](j)
∣∣∣2]dt

+ E[sup
t6T
|γt(j)|2]

. E[|u0(j)|2] + T

∫ T

0

∑
|k−j|61

E[|vt(k)|2]dt+ E[sup
t6T
|γt(j)|2],
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and therefore

E[ sup
t∈6T

‖Γ(v)t‖2r ] . E[‖u0‖2r ] + TE
[ ∫ T

0
‖vt‖2rdt

]
+ E[sup

t6T
‖γt‖2r ].

Theorem A.2. Let γ ∈ Ur, let u0 be a random variable with values in χr such that E[‖u0‖2r ] <∞,
and let V ′ be Lipschitz-continuous. Then there exists a unique solution u ∈ Ur to the equation

ut(j) = u0(j) +

∫ t

0

(1

2
∆D[V ′(ut)](j) +

√
ε∇(2)

D [V ′(ut)](j)
)

dt+ γt(j), j ∈ Z.

Moreover, if γ̃ ∈ Ur and ũ0 ∈ χr with E[‖ũ0‖2r ] < ∞ is another set of data and ũ denotes the
corresponding solution, then

E[sup
t6T
‖ut − ũt‖2r ] . E[‖u0 − ũ0‖2r ] + E[sup

t6T
‖γt − γ̃t‖2r ].

In particular, if uN0 is the periodic extension of u0|[−N/2,N/2) to Z and similarly for γN , and uN is
the corresponding solution, then

lim
N→∞

E[sup
t6T
‖ut − uNt ‖2r′ ] = 0

for all r′ > r.

Proof. The existence and uniqueness of the solution u ∈ Ur follows from a Picard iteration and
Gronwall’s lemma. If u and ũ are the solutions for different data, then we get as in Lemma A.1

E[sup
t6T
‖ut − ũt‖2r ] . E[‖u0 − ũ0‖2r ] + TE

[ ∫ T

0
‖ut − ũt‖2rdr

]
+ E[sup

t6T
‖γt − γ̃t‖2r ],

and thus the claim follows from Gronwall’s lemma.

Remark A.3. In our setting we have γ(j) = W (j + 1) −W (j) for an independent. family of
standard Brownian motions (W (j))j∈Z, and therefore

E[sup
t6T
‖γt‖2r ] 6

∑
j

E[sup
t6T
|Wt(j + 1)−Wt(j)|2]|j|−r <∞

for all r > 1. Similarly, since the coordinates under the measure µλ have finite second moments,

E[‖u0‖2r ] =
∑
j

E[|u0(j)|2]|j|−r <∞

for r > 1. Therefore, our solution takes values in χr whenever r > 1.

Remark A.4. Our polynomial choice of weights is different from the exponential choice of [FS97,
GOS01]. The reason why we prefer it is that the polynomial weights give us a more accurate
description of the growth of the solution (which will be at most logarithmic because under the
stationary measure the coordinates are identically distributed with finite exponential moments),
and more importantly we know that if u ∈ χr, then∑

j

u(j)δj

defines a tempered distribution and not just a distribution, which is not obvious when working with
exponential weights.
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B Proof of the equivalence of ensembles

Here we provide the proof of Proposition 3.9. Throughout this appendix we will not deal with any
temporal dependencies and therefore we will denote spatial coordinates by subscripts, writing uk
instead of u(k). Let us start by deriving some auxiliary lemmas.

Lemma B.1. With the notation of Lemma 3.7, we can estimate uniformly in λ ∈ R∣∣∣∣∣rλ,N (u)− rλ,N (0) +
N−1/2

2
√

2π

m3,λ

σ3
λ

x+
x2

2
√

2π

∣∣∣∣∣ . |u|3 +N−1/2|u|2 +N−1|u|.

Proof. We perform a Taylor expansion. Clearly∣∣∣∣r0(u)− r0(0) +
1

2
√

2π
u2

∣∣∣∣ =

∣∣∣∣r0(x)− r0(0)− (r0)′(0)u− 1

2
(r0)′′(0)u2

∣∣∣∣ . |u|3
and

N−1/2

∣∣∣∣r1
λ(u)− r1

λ(0) +
1

2
√

2π

m3,λ

σ3
λ

u

∣∣∣∣ = N−1/2|r1
λ(u)− r1

λ(0)− (r1
λ)′(0)u| . N−1/2‖(r1

λ)′′‖∞u2,

and it easily follows from Lemma 3.8 that ‖(r1
λ)′′‖∞ is uniformly bounded in λ. Finally,

N−1|(r2
λ(u)− r2

λ(0))| 6 N−1‖(r2
λ)′‖∞|u|,

and again by Lemma 3.8 the term ‖(r2
λ)′‖∞ is uniformly bounded in λ.

Lemma B.2. Let ` 6 N/2 and let F ∈ L2(µh′(ρ)) depend only on u0, . . . , u`−1. Write

ψF (N, ρ) = Eλ0 [F |ūN = ρ], ϕF (ρ) = Eh′(ρ)[F ]

(recall that ūN = N−1uN = N−1
∑N−1

k=0 uk). Then∣∣∣∣∣ψF (N, ρ)−
(

1 +
`

2N

)
ϕF (ρ)− 1

2N

m3,h′(ρ)

σ4
h′(ρ)

Eh′(ρ)[F (u` − `ρ)] +
1

2Nσ2
h′(ρ)

Eh′(ρ)[F (u` − `ρ)2]

∣∣∣∣∣
.

(
`

N

)3/2

(varh′(ρ)(F ))1/2. (14)

Proof. Note that neither the left hand side nor the right hand side of (14) change if we add a
constant to F , so we can suppose without loss of generality that Eh′(ρ)[F ] = 0. By (10) above we
have

ψF (N, ρ) =

∫
F (u0, . . . , u`−1)

ph′(ρ)(u0) . . . ph′(ρ)(u`−1)p
∗(N−`)
h′(ρ) (Nρ− u`)

p∗Nh′(ρ)(Nρ)
du0 . . . du`−1,

and therefore with c1 = 1
2N

m3,h′(ρ)
σ4
h′(ρ)

and c2 = − 1
2Nσ2

h′(ρ)

ψF (N, ρ)−
(

1 +
`

2N

)
ϕF (ρ)− c1Eh′(ρ)[F (u` − `ρ)]− c2Eh′(ρ)[F (u` − `ρ)2]

=

∫
du0 . . . du`−1F (u0, . . . , u`−1)ph′(ρ)(u0) . . . ph′(ρ)(u`−1)

×

p∗(N−`)h′(ρ) (Nρ− u`)
p∗Nh′(ρ)(Nρ)

−
(

1 +
`

2N

)
− c1(u` − `ρ)− c2(u` − `ρ)2

 .
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Since p
∗(N−`)
h′(ρ) is the density of

∑N−1
k=` Uk, we get

p
∗(N−`)
h′(ρ) (Nρ− u`) = (N − `)−1/2σ−1

h′(ρ)f
N−`
h′(ρ)(y),

for y = (`ρ− u`)/
(
σh′(ρ)

√
N − `

)
, and similarly

p∗Nh′(ρ)(Nρ) = N−1/2σ−1
h′(ρ)f

N
h′(ρ)(0).

Thus we need to bound∣∣∣∣∣(N − `)
−1/2fN−`h′(ρ)(y)

N−1/2fNh′(ρ)(0)
−
(

1 +
`

2N

)
− c1(u` − `ρ)− c2(u` − `ρ)2

∣∣∣∣∣
=

1

fNh′(ρ)(0)

∣∣∣∣∣
(

1− `

N

)−1/2

fN−`h′(ρ)(y)−
((

1 +
`

2N

)
+ c1(u` − `ρ) + c2(u` − `ρ)2

)
fNh′(ρ)(0)

∣∣∣∣∣ .
The first factor can be simply estimated by fNh′(ρ)(0)−1 . 1, and using Lemma 3.7 we get∣∣∣∣∣
(

1− `

N

)−1/2

fN−`h′(ρ)(y)−
((

1 +
`

2N

)
+ c1(u` − `ρ) + c2(u` − `ρ)2

)
fNh′(ρ)(0)

∣∣∣∣∣
. (1 + c1|u` − `ρ|+ c2|u` − `ρ|2)N−3/2

+

∣∣∣∣∣
(

1− `

N

)−1/2

rh′(ρ),N (y)−
((

1 +
`

2N

)
+ c1(u` − `ρ) + c2(u` − `ρ)2

)
rh′(ρ),N (0)

∣∣∣∣∣ .
The second term on the right hand side is bounded by∣∣∣∣∣

(
1− `

N

)−1/2

rh′(ρ),N (y)−
((

1 +
`

2N

)
+ c1(u` − `ρ) + c2(u` − `ρ)2

)
rh′(ρ),N (0)

∣∣∣∣∣
6

∣∣∣∣∣
((

1− `

N

)−1/2

− 1− 1

2

`

N

)
rh′(ρ),N (y)

∣∣∣∣∣
+

∣∣∣∣(1 +
`

2N

)
rh′(ρ),N (y)−

((
1 +

`

2N

)
+ c1(u` − `ρ) + c2(u` − `ρ)2

)
rh′(ρ),N (0)

∣∣∣∣ .
The first term on the right hand side is (g(`/N)−g(0)−g′(0)`/N)rh′(ρ),N (y) for g(u) = (1−u)−1/2,
so since ` 6 N/2 and rh′(ρ),N is uniformly bounded in y and ρ (recall Lemma 3.8), we get∣∣∣∣∣

((
1− `

N

)−1/2

− 1− 1

2

`

N

)
rh′(ρ),N (y)

∣∣∣∣∣ .
(
`

N

)2

.

For the remaining term, we first choose

c̃1 =

(
1 +

`

2N

)
rh′(ρ),N (0)−1

σh′(ρ)

√
N − `

N−1/2

2
√

2π

m3,h′(ρ)

σ3
h′(ρ)

, c̃2 = −
(

1 +
`

2N

)
rh′(ρ),N (0)−1

σ2
h′(ρ)(N − `)

1

2
√

2π
,
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for which we get from Lemma B.1∣∣∣∣(1 +
`

2N

)
rh′(ρ),N (y)−

((
1 +

`

2N

)
+ c̃1(u` − `ρ) + c̃2(u` − `ρ)2

)
rh′(ρ),N (0)

∣∣∣∣
=

(
1 +

`

2N

) ∣∣∣∣∣rh′(ρ),N (y)− rh′(ρ),N (0) +
N−1/2

2
√

2π

m3,h′(ρ)

σ3
h′(ρ)

y +
1

2
√

2π
y2

∣∣∣∣∣
. |y|3 +N−1/2|y|2 +N−1|y|

. N−3/2

(
1 +
|`ρ− u`|3

σ3
h′(ρ)

)
,

where in the last step we used that y = (`ρ − u`)/
(
σh′(ρ)

√
N − `

)
. It remains to control the

difference between c1, c̃1 and c2, c̃2. First note that

rh′(ρ),N (0) = r0(0) +N−1r2
h′(ρ)(0),

so that we make an error of order N−2 when replacing rh′(ρ),N (0) by r0(0) = (2π)−1/2 in c̃1 and c̃2.
Similarly we can replace the factor (1− `/2N) by 1 while making an error of order `/N2. Finally
we can replace (N − `)−1/2 and (N − `)−1 by N−1/2 and N−1 respectively, while making an error
of order `/N2, which proves that

|c1 − c̃1|+ |c2 − c̃2| .
`

N2
,

and this concludes the proof.

Corollary B.3. In the setting of Lemma B.2 we have∣∣∣∣∣ψF (N, ρ)− ϕF (ρ) +
σ2
h′(ρ)

2N
∂ρρϕF (ρ)

∣∣∣∣∣ .
(
`

N

)3/2

(varh′(ρ)(F ))1/2.

Proof. Start by noting that

∂λ(pλ(u0) . . . pλ(u`−1)) = (u` − `ρ′(λ))pλ(u0) . . . pλ(u`−1),

and therefore

∂2
λλ(pλ(u0) . . . pλ(u`−1)) = ((u` − `ρ′(λ))2 − `ρ′′(λ))pλ(u0) . . . pλ(u`−1).

So using that ϕF (ρ) = Eh′(ρ)[F ], we get

∂ρϕF (ρ) = Eh′(ρ)[(u
` − `ρ)F ]h′′(ρ),

∂2
ρρϕF (ρ) = Eh′(ρ)[(u

` − `ρ)2F ](h′′(ρ))2 − `Eh′(ρ)[F ]h′′(ρ) + Eh′(ρ)[(u
` − `ρ)F ]h′′′(ρ). (15)

Since h′ is the inverse function of ρ′, the derivatives of h′ are given by

h′′(u) =
1

ρ′′(h′(u))
, h′′′(u) = − 1

ρ′′(h′(u))2
ρ′′′(h′(u))h′′(u) = − ρ

′′′(h′(u))

ρ′′(h′(u))3
= −

m3,h′(u)

σ6
h′(u)

,

where in the last step we used that

ρ(λ) = log

∫
eλu−V (u)du = logEλ0 [e(λ−λ0)u0 ] + ρ(λ0)
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for any λ0 and thus
ρ(m)(λ) = ∂mγ Eλ0 [eγu0 ]|γ=0 = κm,λ,

where κm(λ) is the m-th cumulant, and that κ3,λ = m3,λ. Plugging this into (15) (and using
ρ′′(λ) = σ2

λ) we get

∂ρϕF (ρ) =
Eh′(ρ)[(u

` − `ρ)F ]

σ2
h′(ρ)

,

∂ρρϕF (ρ) =
1

σ2
h′(ρ)

(
Eh′(ρ)[(u

` − `ρ)2F ]

σ2
h′(ρ)

− `Eh′(ρ)[F ]−
m3,h′(u)

σ4
h′(u)

Eh′(ρ)[(u
` − `ρ)F ]

)
,

which shows that
σ2
h′(ρ)
2N ∂ρρϕF (ρ)− ϕF (ρ) is equal to

−
(

1 +
`

2N

)
ϕF (ρ)− 1

2N

m3,h′(ρ)

σ4
h′(ρ)

Eh′(ρ)[F (u` − `ρ)] +
1

2Nσ2
h′(ρ)

Eh′(ρ)[F (u` − `ρ)2],

so that the claim follows from Lemma B.2.

Finally we are ready to prove Proposition 3.9.

Proof of Proposition 3.9. Corollary B.3 gives∣∣∣∣∣ψF (N, ūN )− ϕF (ūN ) +
σ2
h′(ūN )

2N
(∂ρρϕF )(ūN )

∣∣∣∣∣
2

.

(
`

N

)3

sup
λ

varλ(F ).

On the other hand, we obtain from a Taylor expansion

ϕF (ūN ) = ϕF (ρ) + ∂ρϕF (ρ)(ūN − ρ) +
1

2
∂ρρϕF (ρ)(ūN − ρ)2

+
1

2

∫ 1

0
(1− τ)2∂ρρρϕF (ρ+ τ(ūN − ρ))dτ(ūN − ρ)3.

It is easy to see inductively that the k-th derivative of ϕF is given by linear combinations of
Eh′(ρ)[(u

` − `ρ)jF ] for j 6 k multiplied with polynomials in h(j) for 1 6 j 6 k + 1. Arguing as in
Corollary B.3, we see that all derivatives of h are bounded in ρ. Moreover,

|Eh′(ρ)[(u
` − `ρ)jF ]| 6 Eh′(ρ)[(u

` − `ρ)2j ]1/2 varh′(ρ)(F )1/2,

and

Eh′(ρ)[(u
` − `ρ)2j ] =

`−1∑
i1,...,i2j=0

Eh′(ρ)[(ui1 − ρ) . . . (ui2j − ρ)] .j `
jm2j,h′(ρ),

where in the last step we used that ui − ρ and ui′ − ρ are centered and independent, so that the
expectation vanishes unless all variables appear at least in pairs, and therefore up to a combinatorial
factor depending on j the number of addends in the sum is of order `j . In conclusion,

Eh′(ρ)

[∣∣∣∣ϕF (ūN )− ϕF (ρ)− ∂ρϕF (ρ)(ūN − ρ)− 1

2
∂ρρϕF (ρ)(ūN − ρ)2

∣∣∣∣2
]

= Eh′(ρ)

[∣∣∣∣12
∫ 1

0
(1− τ)2∂ρρρϕF (ρ+ τ(ūN − ρ))dτ(ūN − ρ)3

∣∣∣∣2
]

. `3 sup
λ

varλ(F )Eh′(ρ)[(ū
N − ρ)6] .

(
`

N

)3

sup
λ

varλ(F ).
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Finally, we would like to replace
σ2
h′(ūN )

2N (∂ρρϕF )(ūN ) by
σ2
h′(ρ)
2N ∂ρρϕF (ρ). For the second factor we

use the bound on ∂ρρρϕF that we just derived. The first factor can be estimated as follows:

|∂ρσ2
h′(ρ)| = |∂ρ(ρ

′′(h′(ρ)))| =
∣∣∣∣ρ′′′(h′(ρ))

ρ′′(h′(ρ))

∣∣∣∣ 6 sup
λ

∣∣∣∣ρ′′′(λ)

σ3
λ

∣∣∣∣σλ = sup
λ

∣∣∣∣m3,λ

σ3
λ

∣∣∣∣σλ <∞
by Lemma 3.8.
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