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Abstract

We construct a pathwise integration theory, associated with a change of variable for-
mula, for smooth functionals of continuous paths with arbitrary regularity defined in
terms of the notion of p-th variation along a sequence of time partitions. For paths with
finite p-th variation along a sequence of time partitions, we derive a change of variable
formula for p times continuously differentiable functions and show pointwise convergence
of appropriately defined compensated Riemann sums.

Results for functions are extended to regular path-dependent functionals using the
concept of vertical derivative of a functional. We show that the pathwise integral satisfies
an ‘isometry’ formula in terms of p-th order variation and obtain a ‘signal plus noise’
decomposition for regular functionals of paths with strictly increasing p-th variation. For
less regular (Cp−1) functions we obtain a Tanaka-type change of variable formula using
an appropriately defined notion of local time.

These results extend to multidimensional paths and yield a natural higher-order ex-
tension of the concept of ‘reduced rough path’. We show that, while our integral coincides
with a rough-path integral for a certain rough path, its construction is canonical and does
not involve the specification of any rough-path superstructure.

Introduction

In his seminal paper Calcul d’Itô sans probabilités [14], Hans Föllmer provided a pathwise
proof of the Itô formula, using the concept of quadratic variation along a sequence of partitions,
defined as follows. A path S ∈ C([0, T ],R) is said to have finite quadratic variation along
the sequence of partitions πn = (0 = tn0 < tn1 < · · · < tnN(πn) = T ) if for any t ∈ [0, T ], the
sequence of measures

µn :=
∑

[tnj ,t
n
j+1]∈πn

δ(· − tj)|S(tnj+1)− S(tnj )|2

converges weakly to a measure µ without atoms. The continuous increasing function [S] : [0, T ]→
R+ defined by [S](t) = µ([0, t]) is then called the quadratic variation of S along π. Extending
this definition to vector-valued paths Föllmer [14] showed that, for integrands of the form
∇f(S(t)) with f ∈ C2(Rd), one may define a pathwise integral

∫
∇f(S(t))dS as a pointwise
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†Max-Planck-Institute for Mathematics in the Sciences, Leipzig & Humboldt–Universität zu Berlin

1



limit of Riemann sums along the sequence of partitions (πn) and he obtained an Itô (change
of variable) formula for f(S(t)) in terms of this pathwise integral: for f ∈ C2(Rd), t ∈ [0, T ],

f(S(t)) =

∫ t

0
〈∇f(S(s)),dS(s)〉+

1

2

∫ t

0
〈∇2f(S(s)), d[S](s)〉,

where

∫ t

0
〈∇f(S(s)), dS(s)〉 := lim

n→∞

∑
[tnj ,t

n
j+1]∈πn

〈∇f(S(t)), (S(tnj+1 ∧ t)− S(tnj ∧ t))〉.

This result has many interesting ramifications and applications in the pathwise approach to
stochastic analysis, and has been extended in different ways, to less regular functions using
the notion of pathwise local time [2, 10, 24], as well as to path-dependent functionals and
integrands [1, 7, 8, 25].

The central role played by the concept of quadratic variation has led to the assumption
that they do not extend to less regular paths with infinite quadratic variation. Integration
theory and change of variables formulas for processes with infinite quadratic variation, such
as fractional Brownian motion and other fractional processes, have relied on probabilistic,
rather than pathwise constructions [5, 9, 18]. Furthermore, the change of variable formulae
obtained using these methods are valid for a restricted range of Hurst exponents (see [23] for
an overview).

In this work, we show that Föllmer’s pathwise Itô calculus may be extended to paths
with arbitrary regularity, in a strictly pathwise setting, using the concept of p-th variation
along a sequence of time partitions. For paths with finite p-th variation along a sequence of
time partitions, we derive a change of variable formula for p times continuously differentiable
functions and show pointwise convergence of appropriately defined compensated Riemann
sums. This result may be seen as the natural extension of the results of Föllmer [14] to paths
of lower regularity. Our results apply in particular to paths of fractional Brownian motions
with arbitrary Hurst exponent, and yield pathwise proofs for results previously derived using
probabilistic methods, without any restrictions on the Hurst exponent.

Using the concept of the vertical derivative of a functional [8], we extend these results to
regular path-dependent functionals of such paths. We obtain an ‘isometry’ formula in terms
of p-th order variations for the pathwise integral and a ‘signal plus noise’ decomposition for
regular functionals of paths with strictly increasing p-th variation, extending the results of [1]
obtained for the case p = 2 to arbitrary even integers p ≥ 2.

The extension to less regular (i.e. not p times differentiable) functions is more delicate and
requires defining an appropriate higher-order analogue of semimartingale local time, which
we introduce through an appropriate spatial localization of the p-th order variation. Using
this higher-order concept of local time, we obtain a Tanaka-type change of variable formula
for less regular (i.e. p − 1 times differentiable) functions. We conjecture that these results
apply in particular to paths of fractional Brownian motion and other fractional processes.

Finally, we consider extensions of these results to multidimensional paths and link them
with rough path theory; the corresponding concepts yield a natural higher order extension to
the concept of ‘reduced rough path’ introduced by Friz and Hairer [17, Chapter 5].

Outline Section 1 introduces the notion of p-th variation along a sequence of partitions and
derives a change of variable formula for p times continuously differentiable functions of paths
with finite p-th variation (Theorem 1.5). An extension of these results to path-dependent
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functionals is discussed in Section 1.3: Theorem 1.10 gives a functional change of variable
formula for regular functionals of paths with finite p-th variation.

Section 2 studies the corresponding pathwise integral in more detail. We first show (The-
orem 2.1) that the integral exhibits an ‘isometry’ property in terms of the p-th order variation
and use this property to obtain a unique ‘signal plus noise’ decomposition where the compo-
nents are discriminated in terms of their p-th order variation (Theorem 2.3).

The extension of these concepts to multidimensional paths and the relation to the concept
of ‘reduced rough paths’ are discussed in Section 4.
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at UTS and for the generous financial support through the Bruti-Liberati Scholarship. N.P.
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1 Pathwise calculus for paths with finite p-th variation

1.1 p-th variation along a sequence of partitions

We introduce, in the spirit of Föllmer [14], the concept of p-th variation along a sequence
of partitions πn = {tn0 , . . . , tnN(πn)} with tn0 = 0 < ... < tnk < ... < tnN(πn) = T . Define the

oscillation of S ∈ C([0, T ],R) along πn as

osc(S, πn) := max
[tj ,tj+1]∈πn

max
r,s∈[tj ,tj+1]

|S(s)− S(r)|.

Here and in the following we write [tj , tj+1] ∈ πn to indicate that tj and tj+1 are both in πn
and are immediate successors (i.e. tj < tj+1 and πn ∩ (tj , tj+1) = ∅).

Definition 1.1 (p-th variation along a sequence of partitions). Let p > 0. A continuous path
S ∈ C([0, T ],R) is said to have a p-th variation along a sequence of partitions π = (πn)n≥1 if
osc(S, πn)→ 0 and the sequence of measures

µn :=
∑

[tj ,tj+1]∈πn

δ(· − tj)|S(tj+1)− S(tj)|p

converges weakly to a measure µ without atoms. In that case we write S ∈ Vp(π) and [S]p(t) :=
µ([0, t]) for t ∈ [0, T ], and we call [S]p the p-th variation of S.

Remark 1.2. 1. Functions in Vp(π) do not necessarily have finite p-variation in the usual
sense. Recall that the p-variation of a function f ∈ C([0, T ],R) is defined as [11]

‖f‖p-var :=
(

sup
π∈Π([0,T ])

∑
[tj ,tj+1]∈π

|f(tj+1)− f(tj)|p
)1/p

,

where the supremum is taken over the set Π([0, T ]) of all partitions π of [0, T ]. A
typical example is the Brownian motion B, which has quadratic variation [B]2(t) = t
along any refining sequence of partitions almost surely while at the same time having
infinite 2-variation almost surely [11, 29]:

P (‖B‖2-var =∞) = 1.
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2. If S ∈ Vp(π) and q > p, then S ∈ Vq(πn) with [S]q ≡ 0.

The following lemma gives a simple characterization of this property:

Lemma 1.3. Let S ∈ C([0, T ],R). S ∈ Vp(π) if and only if there exists a continuous function
[S]p such that

∀t ∈ [0, T ],
∑

[tj ,tj+1]∈πn:
tj≤t

|S(tj+1)− S(tj)|p
n→∞−→ [S]p(t). (1)

If this property holds, then the convergence in (1) is uniform.

Indeed, the weak convergence of measures on [0, T ] is equivalent to the pointwise con-
vergence of their cumulative distribution functions at all continuity points of the limiting
cumulative distribution function, and if the limiting cumulative distribution function is con-
tinuous, the convergence is uniform.

Example 1.4. If B is a fractional Brownian motion with Hurst index H ∈ (0, 1) and πn =
{kT/n : k ∈ N0} ∩ [0, T ], then B ∈ V1/H(π) and [B]1/H(t) = tE[|B1|1/H ], see [26, 27].

1.2 Pathwise integral and change of variable formula

A key observation of Föllmer [14] was that, for p = 2, Definition 1.1 is sufficient to obtain a
pathwise Itô formula for (C2) functions of S ∈ V2(πn). We will show that in fact Föllmer’s
argument may be applied for any even integer p:

Theorem 1.5 (Change of variable formula for paths with finite p-th variation). Let p ∈ N
be even, let (πn) be a given sequence of partitions, and let S ∈ Vp(π). Then for every f ∈
Cp(R,R) the pathwise change of variable formula

f(S(t))− f(S(0)) =

∫ t

0
f ′(S(s))dS(s) +

1

p!

∫ t

0
f (p)(S(s))d[S]p(s),

holds, where the integral∫ t

0
f ′(S(s))dS(s) := lim

n→∞

∑
[tj ,tj+1]∈πn

p−1∑
k=1

f (k)(S(tj))

k!
(S(tj+1 ∧ t)− S(tj ∧ t))k

is defined as a (pointwise) limit of compensated Riemann sums.

Proof. Applying a Taylor expansion at order p to the increments of f(S) along the partition,
we obtain

f(S(t))− f(S(0)) =
∑

[tj ,tj+1]∈πn

(f(S(tj+1 ∧ t))− f(S(tj ∧ t))) (2)

=
∑

[tj ,tj+1]∈πn

p∑
k=1

f (k)(S(tj))

k!
(S(tj+1 ∧ t)− S(tj ∧ t))k

+
∑

[tj ,tj+1]∈πn

∫ 1

0
dλ

(1− λ)p−1

(p− 1)!
(S(tj+1 ∧ t)− S(tj ∧ t))p

×
(
f (p)(S(tj) + λ(S(tj+1 ∧ t)− S(tj ∧ t)))− f (p)(S(tj))

)
.
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Since the image of (S(t))t∈[0,T ] is compact, we may assume without loss of generality that f
is compactly supported; then the remainder on the right hand side is bounded by∣∣∣ ∑

[tj ,tj+1]∈πn

∫ 1

0
dλ

(1− λ)p−1

(p− 1)!
(S(tj+1 ∧ t)− S(tj ∧ t))p

×
(
f (p)(S(tj) + λ(S(tj+1 ∧ t)− S(tj ∧ t)))− f (p)(S(tj))

)∣∣∣
≤ C(f, S, πn, p)µn([0, t])

with a constant C(f, S, πn, p) > 0 that converges to zero for n → ∞, and therefore the
remainder vanishes for n→∞. Since S ∈ Vp(π) we know that

lim
n→∞

∑
[tj ,tj+1]∈πn

f (p)(S(tj))

p!
(S(tj+1 ∧ t)− S(tj ∧ t))p =

1

p!

∫ t

0
f (p)(S(s))d[S]p(s),

and therefore we obtain from (2)

lim
n→∞

∑
[tj ,tj+1]∈πn

p−1∑
k=1

f (k)(S(tj))

k!
(S(tj+1 ∧ t)− S(tj ∧ t))k

= f(S(t))− f(S(0))− 1

p!

∫ t

0
f (p)(S(s))d[S]p(s),

and we simply define
∫ t

0 f
′(S(s))dS(s) as the limit on the left hand side.

Remark 1.6 (Relation with Young integration and rough-path integration). The expression

∑
[tj ,tj+1]∈πn

p−1∑
k=1

f (k)(S(tj))

k!
(S(tj ∧ t)− S(tj ∧ t))k

is a ‘compensated Riemann sum’. Note however that, given the assumptions on S, the
pathwise integral appearing in the formula cannot be defined as a Young integral, even after
substracting the compensating terms. This relates to the observation in Remark 1.2 that
p-variation can be infinite for S ∈ Vp(π).

When p = 2 it reduces to an ordinary (left) Riemann sum. For p > 2 such compen-
sated Riemann sums appear in the construction of ‘rough path integrals’ [17, 19]. Let
X ∈ Cα([0, T ],R) be α-Hölder continuous for some α ∈ (0, 1), and write q = bα−1c. We can
enhance X uniquely into a (weakly) geometric rough path (X1

s,t,X2
s,t, . . . ,X

q
s,t)0≤s≤t≤T , where

Xks,t := (X(t)−X(s))k/k!. Moreover, for g ∈ Cq+1(R,R) the function g′(X) is controlled by
X with Gubinelli derivatives

g′(X(t))− g′(X(s)) =

q−1∑
k=1

g(k+1)(X(s))

k!
(X(t)−X(s))k +O(|t− s|qα)

=

q−1∑
k=1

g(k+1)(X(s))Xks,t +O(|t− s|qα),
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and therefore the controlled rough path integral
∫ t

0 g
′(X(s))dX(s) is given by

lim
|π|→0

∑
[tj ,tj+1]∈π

q∑
k=1

g(k)(X(s))Xks,t = lim
|π|→0

∑
[tj ,tj+1]∈π

q∑
k=1

g(k)(X(s))
(X(t)−X(s))k

k!
,

where |π| denotes the mesh size of the partition π, and which is exactly the type of compen-
sated Riemann sum that we used to define our integral. The link between our approach and
rough path integration is explained in more detail in Section 4.2 below.

Remark 1.7. In principle we could apply similar arguments for odd integers p if instead
of S ∈ Vp(π) we assumed that

∑
[tj ,tj+1]∈πn δ(· − tj)(S(tj+1) − S(tj))

p converges to a signed
measure. However, for odd p we typically expect the limit to be zero, see the Appendix for
a prototypical example. So to slightly simplify the presentation, we restrict our attention to
even p.

Remark 1.8. A notion similar to our definition of p-th variation was introduced by Errami
and Russo [13], in the (probabilistic and not pathwise) context of stochastic calculus via
regularization [28]. For p = 3, Errami and Russo prove an Itô type formula that is similar to
the one in Theorem 1.5. However, since they use a definition of the integral

∫ t
0 f
′(S(s))dS(s)

that does not take the higher order compensation terms into account, their approach is limited
to p = 3. Gradinaru, Russo, and Vallois [18] extended this approach to p = 4 for functions of
a fractional Brownian motion with Hurst index H ≥ 1/4, a result which relies heavily on the
Gaussian properties of fractional Brownian motion.

The key ingredient of our approach is to define the integral using compensated Riemann
sums which, compared with previous work, drastically simplifies the derivation of the change
of variable formula for arbitrary (even) p in a strictly pathwise setting without any use of
probabilistic notions of convergence.

1.3 Extension to path-dependent functionals

An important generalization of Föllmer’s pathwise Itô formula is to the case of path-dependent
functionals [8] of paths S ∈ V2(π) using Dupire’s functional derivative [12]; see [7] for an
overview. We extend here the functional change of variable formula of Cont and Fournié [8]
to functionals of paths S ∈ Vp(π), where p is any even integer.

Let D([0, T ],R) be the space of càdlàg paths from [0, T ] to R and write

ωt(s) = ω(s ∧ t),

for the path ω stopped at time t. Let

ΛT := {(t, ωt) : (t, ω) ∈ [0, T ]×D([0, T ],R)}

be the space of stopped paths. This is a complete metric space equipped with

d∞((t, ω), (t′, ω′)) := sup
s∈[0,T ]

|ω(s ∧ t)− ω′(s ∧ t′)|+ |t− t′| = ‖ωt − ωt′‖∞ + |t− t′|.

We will also need to stop paths “right before” a given time, and set for t > 0

ωt−(s) :=

{
ω(s), s < t,

limr↑t ω(r), s ≥ t,
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while ω0− := ω0. We first recall some concepts from the non-anticipative functional calculus
[8, 7].

Definition 1.9. A non-anticipative functional is a map F : ΛT → R. Let F be a non-
anticipative functional.

i. We write F ∈ C0,0
l (ΛT ) if for all t ∈ [0, T ] the map F (t, ·) : D([0, T ],R) → R is con-

tinuous and if for all (t, ω) ∈ ΛT and all ε > 0 there exists δ > 0 such that for all
(t′, ω′) ∈ ΛT with t′ < t and d∞((t, ω), (t′, ω′)) < δ we have |F (t, ω)− F (t′, ω′)| < ε.

ii. We write F ∈ B(ΛT ) if for every t0 ∈ [0, T ) and every K > 0 there exists CK,t0 > 0
such that for all t ∈ [0, t0] and all ω ∈ D([0, T ],R) with sups∈[0,t] |ω(s)| ≤ K we have
|F (t, ω)| ≤ CK,t0.

iii. F is horizontally differentiable at (t, ω) ∈ ΛT if its horizontal derivative

DF (t, ω) := lim
h↓0

F (t+ h, ωt)− F (t, ωt)

h

exists. If it exists for all (t, ω) ∈ ΛT , then DF is a non-anticipative functional.

iv. F is vertically differentiable at (t, ω) ∈ ΛT if its vertical derivative

∇ωF (t, ω) := lim
h↓0

F (t, ωt + h1[t,T ])− F (t, ωt)

h

exists. If it exists for all (t, ω) ∈ ΛT , then ∇ωF is a non-anticipative functional. In
particular, we define recursively ∇k+1

ω F := ∇ω∇kωF whenever this is well defined.

v. For p ∈ N0 we say that F ∈ C1,p
b (ΛT ) if F is horizontally differentiable and p times

vertically differentiable in every (t, ω) ∈ ΛT , and if F,DF,∇kωF ∈ C0,0
l (ΛT )∩B(ΛT ) for

k = 1, . . . , p.

Define the piecewise-constant approximation Sn to S along the partition πn:

Sn(t) =
∑

[tj ,tj+1]∈πn

S(tj+1)1[tj ,tj+1)(t) + S(T )1{T}(t). (3)

Then limn→∞ ‖Sn − S‖∞ = 0 whenever osc(S, πn)→ 0.

Theorem 1.10 (Functional change of variable formula for paths with finite p-th variation).
Let p be an even integer, let F ∈ C1,p

b (ΛT ), and let S ∈ Vp(π) for a sequence of partitions
(πn) with vanishing mesh size |πn| → 0. Then the functional change of variable formula

F (t, St) = F (0, S0) +

∫ t

0
DF (s, Ss)ds+

∫ t

0
< ∇F (s, Ss), dS(s) > +

1

p!

∫ t

0
∇pωF (s, Ss)d[S]p(s)

holds, where∫ t

0
< ∇F (s, Ss), dS(s) >:= lim

n→∞

∑
[tj ,tj+1]∈πn

p−1∑
k=1

1

k!
∇kωF (tj , S

n
tj−)(S(tj+1 ∧ t)− S(tj ∧ t))k,

with the piecewise constant approximation Sn as defined in (3).
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Proof. Since the right hand side is a telescoping sum, we have

F (t, Snt )− F (0, Sn0 ) =
∑

[tj ,tj+1]∈πn

(F (tj+1 ∧ t, Sn(tj+1∧t)−)− F (tj ∧ t, Sn(tj∧t)−))

+ F (t, Snt )− F (t, Snt−)

=
∑

[tj ,tj+1]∈πn

(F (tj+1 ∧ t, Sn(tj+1∧t)−)− F (tj ∧ t, Sn(tj∧t)−)) + o(1).

Consider j with tj+1 6 t and split up the difference as follows:

F (tj+1, S
n
tj+1−)− F (tj , S

n
tj−) = (F (tj+1, S

n
tj+1−)− F (tj , S

n
tj )) + (F (tj , S

n
tj )− F (tj , S

n
tj−)).

Now Sntj+1−(s) = Sntj (s) for all s ∈ [0, tj+1], and therefore the first term on the right hand side
is simply

F (tj+1, S
n
tj+1−)− F (tj , S

n
tj ) =

∫ tj+1

tj

DF (r, Sntj )dr,

from where we easily get (using that the mesh size of (πn) converges to zero)

lim
n→∞

∑
[tj ,tj+1]∈πn

(F (tj+1 ∧ t, Sn(tj+1∧t)−)− F (tj ∧ t, Sn(tj∧t))) =

∫ t

0
DF (r, Sr)dr.

It remains to consider the term

F (tj , S
n
tj )− F (tj , S

n
tj−) = F (tj , S

n,Stj ,tj+1

tj− )− F (tj , S
n
tj−),

where Stj ,tj+1 := S(tj+1)− S(tj) and Sn,xtj−(s) := Sntj (s) + 1[tj ,T ](s)x. By Taylor’s formula and
the definition of the vertical derivative, we have

F (tj , S
n,Stj ,tj+1

tj− )− F (tj , S
n
tj−) =

p∑
k=1

∇kωF (tj , S
n
tj−)

k!
(S(tj+1 ∧ t)− S(tj ∧ t))k

+
1

(p− 1)!

∫ 1

0
dλ(1− λ)p−1(S(tj+1 ∧ t)− S(tj ∧ t))p

×
(
∇pωF (tj , S

n,λStj ,tj+1

tj− )−∇pωF (tj , S
n
tj−)

)
.

Now we sum over [tj , tj+1] ∈ πn and see as in Theorem 1.5 that the correction term vanishes
for n→∞. Moreover, since S ∈ Vp(π) we have

lim
n→∞

∑
[tj ,tj+1]∈πn

∇pωF (tj , S
n
tj−)

p!
(S(tj+1 ∧ t)− S(tj ∧ t))p =

1

p!

∫ t

0
∇pωF (s, Ss)d[S]p(s),

see [7, Lemma 5.3.7]. Since F ∈ C0,0
l (ΛT ), we have

lim
n→∞

(F (t, Snt )− F (0, Sn0 )) = F (t, St)− F (0, S0),

which completes the proof.
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2 Isometry relation and rough-smooth decomposition

Given a path (or process) S ∈ Vp(π) with finite p-th variation along the sequence of partitions
(πn), the results above may be used to derive a decomposition of regular functionals of S into
a rough component with non-zero p-th variation along (πn) and a smooth component with
zero p-th variation along (πn). For p = 2 such a decomposition was obtained in [1] and is
a pathwise analog of the decomposition of a Dirichlet process into a local martingale and a
“zero energy” part [15].

For α ∈ (0, 1) we write Cα([0, T ],R) for the α-Hölder continuous paths from [0, T ] to R,
and ‖ · ‖α denotes the α-Hölder semi-norm.

2.1 An ‘isometry’ property of the pathwise integral

Theorem 2.1 (‘Isometry’ formula). Let p ∈ N be an even integer, let α > ((1+ 4
p)1/2−1)/2, let

(πn) be a sequence of partitions with mesh size going to zero, and let S ∈ Vp(π)∩Cα([0, T ],R).

Let F ∈ C1,2
b (ΛT ) such that ∇ωF ∈ C1,1

b (ΛT ). Assume furthermore that F is Lipschitz-
continuous with respect to d∞. Then F (·, S) ∈ Vp(π) and

[F (·, S)]p(t) =

∫ t

0
|∇ωF (s, Ss)|pd[S]p(s).

Proof. The proof is similar to the case p = 2 considered in [1]. Indeed, our assumptions allow
us to apply [1, Lemma 2.2], which shows that there exists C > 0, only depending on T , F ,
and ‖S‖α, such that for all 0 ≤ s ≤ t ≤ T

|RF (s, t)| := |F (t, St)− F (s, Ss)−∇ωF (s, Ss)(S(t)− S(s))| ≤ C|t− s|α+α2
. (4)

Writing also γF (s, t) := ∇ωF (s, Ss)(S(t)− S(s)), we obtain∑
[tj ,tj+1]∈πn:

tj+1≤t

|F (tj+1, Stj+1)− F (tj , Stj )|p =
∑

[tj ,tj+1]∈πn:
tj+1≤t

|RF (tj , tj+1) + γF (tj , tj+1)|p

=
∑

[tj ,tj+1]∈πn:
tj+1≤t

|γF (tj , tj+1)|p +

p∑
k=1

(
p

k

) ∑
[tj ,tj+1]∈πn:

tj+1≤t

RF (tj , tj+1)kγF (tj , tj+1)p−k. (5)

Since S ∈ Vp(π) we have

lim
n→∞

∑
[tj ,tj+1]∈πn:

tj+1≤t

|γF (tj , tj+1)|p =

∫ t

0
|∇ωF (s, S(s))|pd[S]p(s). (6)

Our result follows once we show that the double sum on the right hand side of (5) vanishes.
For that purpose let k ∈ {1, . . . , p} and write qk := p/(p− k) ∈ [1,∞] and let q′k = p/k be its

9



conjugate exponent. Hölder’s inequality yields∣∣∣ ∑
[tj ,tj+1]∈πn:

tj+1≤t

RF (tj , tj+1)kγF (tj , tj+1)p−k
∣∣∣

≤
( ∑

[tj ,tj+1]∈πn:
tj+1≤t

|RF (tj , tj+1)|kq′k
)1/q′k

( ∑
[tj ,tj+1]∈πn:

tj+1≤t

|γF (tj , tj+1)|(p−k)qk
)1/qk

=
( ∑

[tj ,tj+1]∈πn:
tj+1≤t

|RF (tj , tj+1)|p
)k/p( ∑

[tj ,tj+1]∈πn:
tj+1≤t

|γF (tj , tj+1)|p
)(p−k)/p

.

By (4) the first sum on the right hand side is bounded by( ∑
[tj ,tj+1]∈πn:

tj+1≤t

|RF (tj , tj+1)|p
)k/p

.
( ∑

[tj ,tj+1]∈πn:
tj+1≤t

|tj+1 − tj |p(α+α2)
)k/p

≤ (t×max{|tj+1 − tj |p(α+α2)−1 : [tj , tj+1] ∈ πn, tj+1 ≤ t})k/p,

which converges to zero for n→∞ because p(α+α2) > 1 (which is equivalent to our assump-

tion α > (
√

1 + 4
p − 1)/2) and because k > 0. Moreover, by (6) the sum over |γF (tj , tj+1)|p

is bounded and this concludes the proof.

Remark 2.2. 1. Keeping the example of the (fractional) Brownian motion in mind, we
would typically expect paths in Vp(π) to be (1/p− κ)-Hölder continuous for any κ > 0.
Since for f(x) = (1 + x)1/2 we have

f ′′(x) = −1

4
(1 + x)−3/2 < 0,

we have f(x) < f(0) + f ′(0)x for all x > 0, and therefore

(1 + 4
p)1/2 − 1

2
<

1
2

4
p

2
=

1

p
,

which means that in Theorem 2.1 we can take α < 1/p and our constraint on the Hölder
regularity is not unreasonable.

2. In fact the constraint on α comes from inequality (4), which only gives us a control of
order |t− s|α+α2

for RF (s, t), while |t− s|2α might seem more natural (after all RF (s, t)
is something like the remainder in a first order Taylor expansion). The difficulty is that
horizontal differentiability is a very weak notion and gives us no control on RF (s, t). To
obtain any bounds at all we first need to approximate our path by piecewise linear or
piecewise constant paths, and through this approximation procedure we lose a little bit
of regularity, see [1, Lemma 2.2] for details. One can improve the estimate on RF (s, t)
by taking a higher order Taylor expansion (which would require more regularity from
F ), but we do not need this here.

10



2.2 Pathwise rough-smooth decomposition

Using the above result we may derive, as in [1], a pathwise ‘signal plus noise’ decomposition
for regular functionals of paths with strictly increasing p-th variation. Let

C1,p
b (S) = {F (·, S), F ∈ C1,p

b (ΛT )} ⊂ Vp(π).

The following result extends the pathwise rough-smooth decomposition of paths in C1,p
b (S),

obtained in [1] for p = 2, to higher values of p.

Theorem 2.3 (Rough-smooth decomposition). Let p ∈ N be an even integer, let α > ((1 +
4
p)1/2 − 1)/2, let (πn) be a sequence of partitions with vanishing mesh size |πn| → 0 and let
S ∈ Vp(π) ∩ Cα([0, T ],R) be a path with strictly increasing p-th variation [S]p along (πn).

Then any X ∈ C1,p
b (S) admits a unique decomposition

X = X(0) +A+M where [A]p = 0 and M(t) =

∫ t

0
φ(s)dS(s)

is a pathwise integral defined as in Theorem 1.10.

Proof. Existence of the decomposition is a consequence of Theorem 1.10. Consider two such
decompositions X −X0 = A+M = Ã+ M̃ . Since [A]p = [Ã]p = 0 and

|(A− Ã)(t)− (A− Ã)(s)|p . |A(t)−A(s)|p + |Ã(t)− Ã(s)|p,

we get A− Ã ∈ Vp(π) and [A− Ã]p ≡ 0. But then also [M − M̃ ]p = [A− Ã]p ≡ 0. Now

M(t) =

∫ t

0
∇ωF (s, Ss)dS(s), M̃(t) =

∫ t

0
∇ωF̃ (s, Ss)dS(s)

for some F, F̃ ∈ C1,p
b (ΛT ), and by Theorem 2.1 we have

0 = [M − M̃ ]p(T ) =

∫ T

0
|∇ω(F − F̃ )(s, Ss)|pd[S]p(s).

Since (F−F̃ )(s, Ss) is continuous in s and [S]p is strictly increasing we have∇ω(F−F̃ )(·, S) ≡
0. This means that M − M̃ ≡ 0, and then also A− Ã ≡ 0.

Remark 2.4. If t 7→ [S]p(t) is not strictly increasing, uniqueness of the decomposition still
holds d[S]p−almost everywhere.

3 Local times and higher order Wuermli formula

An extension of Föllmer’s pathwise Itô formula to less regular functions was given by Wuermli [30]
in her (unpublished) thesis. Wuermli considered paths with finite quadratic variation which
further admit a local time along a sequence of partitions, and derive a pathwise change of
variable formula for more general functions that need not be C2. Depending on the notion of
convergence used to define the local time, one then obtains Tanaka-type change of variable
formulas for various classes of functions; convergence in stronger topologies leads to a formula
valid for a larger class of functions. Wuermli [30] assumed weak convergence in L2 in the space
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variable (see also [2]) and some recent works have extended the approach to other topologies,
for example uniform convergence or weak convergence in Lq [24, 10]. To a certain extent
Wuermli’s approach can be generalized to our higher order setting, but as we will discuss
below in the higher order case we do not expect to have convergence of the pathwise local
times in strong topologies.

To derive the generalization of Wuermli’s formula, we consider f ∈ Cp−2 with absolutely
continuous f (p−2) and apply the Taylor expansion of order p − 2 with integral remainder to
obtain

f(b)− f(a) =

p−2∑
k=1

f (k)(a)

k!
(b− a)k +

∫ b

a

f (p−1)(x)

(p− 2)!
(b− x)p−2dx.

Assume now that f (p−1) is of bounded variation. Since every bounded variation function
f (p−1) is regulated (làdlàg) and therefore has only countably many jumps, its càdlàg version
is also a weak derivative of f (p−2), and from now on we only work with this version. Since
(b−·)p−2 is continuous, the integration by parts rule for the Lebesgue-Stieltjes integral applies
in the case b ≥ a and we obtain∫ b

a

f (p−1)(x)

(p− 2)!
(b− x)p−2dx = f (p−1)(b)

−(b− b)p−1

(p− 1)!
− f (p−1)(a)

−(b− a)p−1

(p− 1)!

−
∫

(a,b]

−(b− x)p−1

(p− 1)!
df (p−1)(x)

= f (p−1)(a)
(b− a)p−1

(p− 1)!
+

∫
(a,b]

(b− x)p−1

(p− 1)!
df (p−1)(x).

Similarly we get for b < a∫ b

a

f (p−1)(x)

(p− 2)!
(b− x)p−2dx = −

∫ a

b

f (p−1)(x)

(p− 2)!
(b− x)p−2dx

= f (p−1)(a)
(b− a)p−1

(p− 1)!
−
∫

(b,a]

(b− x)p−1

(p− 1)!
df (p−1)(x),

and therefore

f(b)− f(a) =

p−1∑
k=1

f (k)(a)

k!
(b− a)k + sign(b− a)

∫
La,bK

(b− x)p−1

(p− 1)!
df (p−1)(x)

=

p−1∑
k=1

f (k)(a)

k!
(b− a)k + sign(b− a)p

∫
La,bK

|b− x|p−1

(p− 1)!
df (p−1)(x)

=

p−1∑
k=1

f (k)(a)

k!
(b− a)k +

∫
R

1La,bK(x)
sign(b− a)p|b− x|p−1

(p− 1)!
df (p−1)(x),

with the notation

La, bK =

{
(a, b], b ≥ a,
(b, a], a ≤ b.

For any partition σ of [0, T ], we define

Lσ,p−1
t (x) :=

∑
tj∈σ

sign(Stj+1∧t − S(tj ∧ t))p1LS(tj∧t),Stj+1∧tK
(x)|S(tj+1 ∧ t)− x|p−1.
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To extend Theorem 1.5 to S ∈ Vp(π), we first note that the following identity holds for any
partition πn:

f(St)− f(S0) =
∑

[tj ,tj+1]∈πn

p−1∑
k=1

f (k)(Stj )

k!
(S(tj+1 ∧ t)− S(tj ∧ t))k

+
1

(p− 1)!

∫
R
Lπn,p−1
t (x)df (p−1)(x). (7)

To obtain a change of variable formula for less regular functions, we need the last term to
converge as the partition is refined. This motivates the following definition:

Definition 3.1 (Local time of order p). Let p ∈ N be an even integer and let q ∈ [1,∞].
A continuous path S ∈ C([0, T ],R) has an Lq-local time of order p − 1 along a sequence of
partitions π = (πn)n≥1 if osc(S, πn)→ 0 and

Lπn,p−1
t (·) =

∑
tj∈π

1LS(tj∧t),Stj+1∧tK
(·)|S(tj+1 ∧ t)− ·|p−1

converges weakly in Lq(R) to a weakly continuous map L : [0, T ] → Lq(R) which we call the
order p local time of S. We denote Lqp(π) the set of continuous paths S with this property.

Intuitively, the limit Lt(x) then measures the rate at which the path S accumulates p-th
order variation near x. This definition is further justified by the following result, which is a
‘pathwise Tanaka formula’ [30] for paths of arbitrary regularity:

Theorem 3.2 (Pathwise ‘Tanaka’ formula for paths with finite p-th order variation). Let
p ∈ 2N be an even integer, q ∈ [1,∞] with conjugate exponent q′ = q/(q − 1). Let f ∈
Cp−1(R,R) and assume that f (p−1) is weakly differentiable with derivative in Lq

′
(R). Then

for any S ∈ Lqp(π) the pointwise limit of compensated Riemann sums∫ t

0
f ′(S(s))dS(s) := lim

n→∞

∑
[tj ,tj+1]∈πn

p−1∑
k=1

f (k)(S(tj))

k!
(S(tj+1 ∧ t)− S(tj ∧ t))k

exists and the following change of variable formula holds:

f(S(t))− f(S(0)) =

∫ t

0
f ′(S(s))dS(s) +

1

(p− 1)!

∫
R
f (p)(x)Lt(x)dx.

Proof. The formula (7) is exact and does not involve any error terms. Noting that Lq
′
(R) ⊂

(Lq)∗(R) also for q =∞, our assumptions imply that the second term on the right hand side
of (7) converges, so the result follows.

To justify the name “local time” for L, we illustrate how L is related to classical definitions
of local times by restricting our attention to a particular sequence of partitions [6, 20]:

Definition 3.3. Let S ∈ C([0, T ],R). The dyadic Lebesgue partition generated by S is
defined via τn0 := 0 and

τnj+1 := inf{t ≥ τnj : St ∈ 2−nZ \ {Sτnj }},

and then πn = ({τnj : j ∈ N0} ∩ [0, T ]) ∪ {T}.
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Lemma 3.4. Let p ∈ N be even, let S ∈ C([0, T ],R) and let (πn) be the dyadic Lebesgue par-
tition generated by S. Given an interval [a, b] we write Ut([a, b]) for the number of upcrossings
of [a, b] that S performs until time t. Let x ∈ R and let Ink = (k2−n, (k+ 1)2−n] be the unique
dyadic interval of generation n with x ∈ Ink . Then

Lπnt (x) = (|(k + 1)2−n − x|p−1 + |x− k2−n|p−1)Ut(I
n
k ) +O(2−n(p−1)).

Proof. We have 1LSτn
j
,Sτn

j+1
K(x) 6= 0 if either Sτnj = k2−n and Sτnj+1

= (k + 1)2−n (i.e. S

performs an upcrossing of Ink ), or Sτnj = (k + 1)2−n and Sτnj+1
= k2−n (i.e. S performs a

downcrossing of Ink ). In the first case we have to add |(k + 1)2−n − x|p−1 to Lπnt (x), and in
the second case we add (−1)p|x− k2−n|p−1 = |x− k2−n|p−1. Therefore, we obtain

Lπnt (x) = |(k + 1)2−n − x|p−1Ut(I
n
k ) + |x− k2−n|p−1Dt(I

n
k ) +O(2−n(p−1)),

and since up- and downcrossings of Ink differ by at most one, our claim follows.

Note that the expression for Lπnt strongly fluctuates on Ink . For x ' k2−n and x '
(k + 1)2−n the factor in front of Ut(I

n
k ) is ' 2−n(p−1), while for x = (2k + 1)2−n−1 we get

the factor 2−n(p−1)2p−2. Therefore, we do not expect Lπnt (x) to converge uniformly or even
pointwise in x as n→∞ (unless if p = 2).

Lemma 3.5. In the setting of Lemma 3.4 set

L̃πnt (x) :=
∑
k∈Z

2−n(p−1)Ut(I
n
k )1Ink (x).

Let q ∈ (1,∞). If L̃πnt converges weakly in Lq(R) to a limit L̃t, then Lπnt converges weakly in
Lq(R) to (2/p)L̃t.

Proof. Let us introduce an averaging operator,

(Anf)(x) :=
∑
k∈Z

2n
∫
Ink

f(y)dy 1Ink (x).

Since ∫
Ink

(|(k + 1)2−n − x|p−1 + |x− k2−n|p−1)dx = 2

∫ 2−n

0
xp−1dx =

2

p
2−np,

we have L̃πnt = p
2AnL

πn
t + O(2−n(p−1)), with a compactly supported remainder O(2−n(p−1)).

We claim that if (fn) is a sequence of functions for which Anfn converges weakly in Lq(R)
and for which |fn| ≤ C|Anfn|, then also (fn) converges weakly in Lq(R) to the same limit,
which will imply our claim. To show this, let f be the limit of An and let g ∈ Lq′(R). We
have 〈Anϕ,ψ〉 = 〈Anϕ,Anψ〉 = 〈ϕ,Anψ〉 for all ϕ,ψ, and therefore

|〈fn − f, g〉| ≤ |〈fn −Anfn, g〉|+ |〈Anfn − f, g〉|
= |〈fn, g −Ang〉|+ |〈Anfn − f, g〉|
≤ ‖fn‖Lq‖g −Ang‖Lq′ + |〈Anfn − f, g〉|.

The second term on the right hand side converges to zero by assumption. For the first
term we note that by assumption ‖fn‖Lq ≤ ‖Anfn‖Lq , which is uniformly bounded in n
because (Anfn) converges weakly in Lq. The proof is therefore complete once we show that
limn→∞ ‖g − Ang‖Lq′ = 0 for all g ∈ Lq

′
. But this easily follows from the fact that the

continuous and compactly supported functions are dense in Lq
′
.
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In fact, we conjecture that, for fractional Brownian motion, this notion of local time
defined along the dyadic Lebesge partition coincides, up to a constant, with the usual concept
of local time defined as the density of the occupation measure:

Conjecture. Let B be the fractional Brownian motion with Hurst parameter H ∈ (0, 1), and
let (πn) be the dyadic Lebesgue partition generated by B. Let Ink and Ut be as in Lemma 3.4
(where now we count the upcrossings of B instead of S). We conjecture that

L̃πnt (x) :=
∑
k∈Z

2−n(1/H−1)Ut(I
n
k )1Ink (x)

almost-surely converges uniformly in (t, x) ∈ [0, T ]×R to `t(x)E[|B1|1/H ]/2, where ` is the local
time of B, i.e. the Radon-Nikodym derivative of the occupation measure A 7→

∫ t
0 1A(B(s))ds

with respect to the Lebesgue measure, see e.g. [3]. In particular, for any even integer p ∈ 2N,
B ∈ Lp−1

q (πn) for any q ∈ (1,∞).

This result is well known for H = 1/2, see e.g. [6, 24]. In the general case H ∈ (0, 1), it is
natural to expect that

µn([0, t]) :=
∞∑
j=0

2−n/H1τnj+1≤t
n→∞−−−→ [B]

1/H
t = E[|B1|1/H ]t,

which would be an extension of the convergence result of [27] from deterministic partitions
to the Lebesgue partition generated by B. Moreover, we know that the local time ` of the
fractional Brownian motion satisfies

`t(x) = lim
n→∞

∑
k∈Z

2n
∫ t

0
1Ink (Bs)ds1Ink (x).

If we formally replace the Lebesgue measure in the integral by E[|B1|1/H ]−1µn, then we get

`t(x) = E[|B1|1/H ]−1 lim
n→∞

∑
k∈Z

2n
∫ t

0
1Ink (Bs)µ

n(ds)1Ink (x)

= E[|B1|1/H ]−1 lim
n→∞

∑
k∈Z

2n−n/H
∑

j:τnj+1≤t
1Ink (Bτnj )1Ink (x)

= E[|B1|1/H ]−1 lim
n→∞

∑
k∈Z

2n−n/H(Dt(I
n
k ) + Ut(I

n
k+1))1Ink (x),

and if we further assume that 2n−n/H |Ut(Ink+1) − Ut(Ink )| → 0 then our conjecture formally
follows.

If the conjecture holds, then for any p ∈ 2N and B a typical sample path of the fractional
Brownian motion with Hurst index 1/p and f ∈ Cp−1 with weak p-th derivative f (p) ∈ Lq for
any q ∈ (1,∞):

f(B(t))− f(B(0)) =

∫ t

0
f ′(B(s))dB(s) +

E[|B1|p]
p!

∫
R
f (p)(x)`t(x)dx, (8)

where ` is the local time of B and∫ t

0
f ′(B(s))dB(s) := lim

n→∞

∑
[tj ,tj+1]∈πn

p−1∑
k=1

f (k)(B(tj))

k!
(B(tj+1 ∧ t)−B(tj ∧ t))k.
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By Theorem 1.5 the formula holds for f ∈ Cp, because then

E[|B1|p]
p!

∫
R
f (p)(x)`t(x)dx =

E[|B1|p]
p!

∫ t

0
f (p)(S(s))ds =

1

p!

∫ t

0
f (p)(S(s))d[S]ps,

which adds further credibility to our conjecture.

4 Extension to multidimensional paths

As in the case p = 2, the set Vp(π) is not stable under linear combinations: for S1, S2 ∈ Vp(π),
expanding ((S1(tj+1)−S1(tj)+S2(tj+1)−S2(tj))

p yields many cross terms whose sum cannot
be controlled in general as the partition is refined. The extension of Definition 1.1 to vector-
valued functions S = (S1, ..., Sd) therefore requires some care. The original approach of
Föllmer [14] was to require that Si, Si + Sj ∈ Vp(π). We propose here a slightly different
formulation, which is equivalent to Föllmer’s construction for p = 2 but easier to relate to
other approaches, such as rough path integration.

4.1 Tensor formulation

Define Tp(Rd) = Rd ⊗ ... ⊗ Rd as the space of p-tensors on Rd. A symmetric p-tensor is a
tensor T ∈ Tp(Rd) that is invariant under any permutation σ of its arguments:

∀(v1, v2, . . . , vp) ∈ (Rd)p, T (v1, v2, . . . , vp) = T (vσ1, vσ2, . . . , vσp).

The coordinates (Ti1i2···ip) of a symmetric tensor of order p satisfy

Ti1i2···ip = Tiσ1iσ2···iσp .

The space Symp(Rd) of symmetric tensors of order p on Rd is naturally isomorphic to the

dual of the space Hp[X1, ..., Xd] of symmetric homogeneous polynomials of degree p on Rd.
We set Sym0(Rd) := R.

An important example of a symmetric p-tensor on Rd is given by the p-th order derivative
of a smooth function:

∀f ∈ Cp(Rd,R),∀x ∈ Rd : ∇pf(x) ∈ Symp(Rd).

The symmetry property is obtained by repeated application of Schwarz’s lemma.
We define Sp(Rd) as the direct sum of Symk(Rd) for k = 0, 1, 2, ..., p:

Sp(Rd) =

p⊕
k=0

Symk(Rd).

The space Sp(Rd) is naturally isomorphic to the dual of the space Rp[X1, ..., Xd] of polynomials
of degree ≤ p in d variables, which defines a bilinear product

〈·, ·〉 : Sp(Rd)× Rp[X1, ..., Xd]→ R.
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Slightly abusing notation, we also write 〈·, ·〉 for the canonical inner product on Tp(Rd).
Consider now a continuous Rd-valued path S ∈ C([0, T ],Rd) and a sequence of partitions
πn = {tn0 , . . . , tnN(πn)} with tn0 = 0 < ... < tnk < ... < tnN(πn) = T . Then

µn :=
∑

[tj ,tj+1]∈πn

δ(· − tj) (S(tj+1)− S(tj))⊗ · · · ⊗ (S(tj+1)− S(tj))︸ ︷︷ ︸
p times

defines a tensor-valued measure on [0, T ] with values in Symp(Rd). This space of measures
is in duality with the space C([0, T ],Hp[X1, ..., Xd]) of continuous functions taking values
in homogeneous polynomials of degree p, i.e. homogeneous polynomials of degree p with
continuous time-dependent coefficients.

Definition 4.1 (p-th variation of a multidimensional function). Let p ∈ N be even, let S ∈
C([0, T ],Rd) be a continuous path and let π = (πn)n≥1 be a sequence of partitions of [0, T ].
Consider the sequence of tensor-valued measures

µn :=
∑

[tj ,tj+1]∈πn

δ(· − tj)(S(tj+1)− S(tj))
⊗p.

We say that S has a p-th variation along π = (πn)n≥1 if osc(S, πn) → 0 and there exists a
Symp(Rd)–valued measure µS without atoms such that for all f ∈ C([0, T ],Hp[X1, ..., Xd])

lim
n→∞

∫ T

0
〈f,dµn〉 = lim

n→∞

∑
[tj ,tj+1]∈πn

〈f(tj), (S(tj+1)− S(tj))
⊗p〉 =

∫ T

0
〈f, dµS〉.

In that case we write S ∈ Vp(π) and we call [S]p : [0, T ]→ Symp(Rd) defined by

[S]p(t) := µ([0, t])

the p-th variation of S.

By analogy with the positivity property of symmetric matrices, we say that a symmetric
p-tensor T ∈ Symp(Rd) is positive if

〈T, v ⊗ ...⊗ v〉 ≥ 0, ∀v ∈ Rd.

We denote the set of positive symmetric p-tensors by Sym+
p (Rd). For T, T̃ ∈ Symp(Rd) we

write T ≥ T̃ if T − T̃ ∈ Sym+
p (Rd). This defines a partial order on Symp(Rd).

Property 4.2. Let S ∈ Vp(π) ∩ C([0, T ],Rd). Then

(i) [S]p has finite variation and is increasing in the sense of the partial order on Symp(Rd):

[S]p(t+ h)− [S]p(t) ∈ Sym+
p (Rd), ∀ 0 ≤ t ≤ t+ h ≤ T.

(ii) ∀t ∈ [0, T ],
∑
πn

(S(tj+1 ∧ t)− S(tj ∧ t))⊗p
n→∞→ [S]p(t).
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Proof. Let v ∈ Rd. Before passing to the limit, the function∑
[tj ,tj+1]∈πn:

tj≤t

〈v⊗p, (S(tj+1)− S(tj))
⊗p〉 =

∑
[tj ,tj+1]∈πn:

tj≤t

|v · (S(tj+1)− S(tj))|p

is increasing in t, and therefore it defines a finite (positive) measure. By assumption, this

measure converges weakly to the measure defined by (a, b] 7→
∫ T

0 〈1(a,b]v
⊗p, dµS〉. In particular,

we have

〈v⊗p, [S]p(t+ h)− [S]p(t)〉 =

∫ T

0
〈1(t,t+h]v

⊗p, dµS〉 ≥ 0.

Thus, 〈v⊗p, [S]p〉 is increasing for all v ∈ Rd, and from here it is easy to see that [S]p has
finite variation (apply e.g. polarization to go from v⊗p to v1 ⊗ · · · ⊗ vp).

Theorem 4.3 (Change of variable formula for paths with finite p-th variation). Let p ∈ N
be even, let (πn) be a sequence of partitions of [0, T ] and let S ∈ Vp(π) ∩ C([0, T ],Rd). Then
for all f ∈ Cp(Rd,R) the limit of compensated Riemann sums∫ t

0
〈∇f(S(s)),dS(s)〉 := lim

n→∞

∑
[tj ,tj+1]∈πn

p−1∑
k=1

1

k!
〈∇kf(S(tj)), (S(tj+1 ∧ t)− S(tj ∧ t))⊗k〉

exists for every t ∈ [0, T ] and satisfies the pathwise change of variable formula:

f(S(t))− f(S(0)) =

∫ t

0
〈∇f(S(s)), dS(s)〉+

1

p!

∫ t

0
〈∇pf(S(s)),d[S]p(s)〉.

Proof. The proof follows similar ideas to the case p = 2. By applying a Taylor expansion at
order p to the increments of f(S) along the partition, we obtain

f(S(t))− f(S(0)) =
∑

[tj ,tj+1]∈πn

(f(S(tj+1 ∧ t))− f(S(tj ∧ t))) (9)

=
∑

[tj ,tj+1]∈πn

p∑
k=1

1

k!
〈∇kf(S(tj)), (S(tj+1 ∧ t)− S(tj ∧ t))⊗k〉

+
∑

[tj ,tj+1]∈πn

∫ 1

0
dλ

(1− λ)p−1

(p− 1)!

×
〈(
∇pf(S(tj) + λ(S(tj+1 ∧ t)− S(tj ∧ t)))−∇pf(S(tj))

)
,

(S(tj+1 ∧ t)− S(tj ∧ t))⊗p
〉
.

As in the proof of Theorem 1.5 we assume that f is compactly supported and use this to show
that the remainder on the right hand side vanishes as n→∞. Since S ∈ Vp(π) we know that

lim
n→∞

∑
[tj ,tj+1]∈πn

1

p!
〈∇kf(S(tj)), (S(tj+1 ∧ t)− S(tj ∧ t))⊗p〉 =

1

p!

∫ t

0
〈∇pf(S(s)),d[S]p(s)〉,
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and therefore we obtain from (9)

lim
n→∞

∑
[tj ,tj+1]∈πn

p−1∑
k=1

1

k!
〈∇kf(S(tj)), (S(tj+1 ∧ t)− S(tj ∧ t))⊗k〉

= f(S(t))− f(S(0))− 1

p!

∫ t

0
f (p)(S(s))d[S]p(s),

and we simply define
∫ t

0 〈∇f(S(s)),dS(s)〉 as the limit on the left hand side.

4.2 Relation with rough path integration

To explain the link between Föllmer’s pathwise Itô integral and rough path integration [21],
Friz and Hairer [17, Chapter 5.3] introduced the notion of (second order) reduced rough paths:

Definition 4.4. Let α ∈ (1/3, 1/2). We set ∆T := {(s, t) : 0 ≤ s ≤ t ≤ T}. A reduced rough
path of regularity α is a pair (X,X) : ∆T → Rd ⊕ Sym2(Rd), such that

(i) there exists C > 0 with

|Xs,t|+
√
|Xs,t| ≤ C|t− s|α, (s, t) ∈ ∆T ;

(ii) the reduced Chen relation holds

Xs,t − Xs,u − Xu,t = Sym(Xs,u ⊗Xu,t), (s, u), (u, t) ∈ ∆T ,

where Sym(·) denotes the symmetric part.

Friz and Hairer [17] also show that, for any S ∈ V2(π) there is a canonical candidate for
a reduced rough path. Indeed, the pair

Xs,t := S(t)− S(s), Xs,t :=
1

2
Xs,t ⊗Xs,t −

1

2
([S]2(t)− [S]2(s))

satisfies the reduced Chen relation. But in general we do not know anything about the Hölder
regularity of S ∈ V2(π), because for any continuous path S there exists a sequence of partitions
(πn) with S ∈ V2(π) and [S]2 ≡ 0, see [16]. If however we take the dyadic Lebesgue partition
(πn) generated by S as in Definition 3.3 and if S ∈ V2(π), then it follows from [4, Lemme 1]1

that S has finite q-variation for any q > 2. So in that case every S ∈ V2(π) corresponds to
a reduced rough path with p-variation regularity. Rather than adapting Definition 4.4 from
Hölder to p-variation regularity, we directly introduce a concept of higher-order reduced rough
paths. For that purpose we first define the concept of control function:

Definition 4.5. A control function is a continuous map c : ∆T → R+ such that c(t, t) = 0
for all t ∈ [0, T ] and such that c(s, u) + c(u, t) ≤ c(s, t) for all 0 ≤ s ≤ u ≤ t ≤ T .

A function f : [0, T ]→ Rd has finite p-variation if and only if there exists a control function
c with |f(t)− f(s)|p ≤ c(s, t), and in that case ‖f‖p-var ≤ c(0, T )1/p.

1Note that for λ > 0 the path S has finite q-variation if and only if λ−1S has finite q-variation, and therefore
we can assume that λ = 1 in [4, Lemme 1].
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Definition 4.6. Let p ≥ 1. A reduced rough path of finite p-variation is a tuple

X = (1,X1, . . . ,Xbpc) : ∆T −→ Sbpc(Rd),

such that

(i) there exists a control function c with

bpc∑
k=1

|Xks,t|p/k ≤ c(s, t), (s, t) ∈ ∆T ;

(ii) the reduced Chen relation holds

Xs,t = Sym(Xs,u ⊗ Xu,t), (s, u), (u, t) ∈ ∆T ,

where the symmetric part of T ∈ Tk(Rd) is defined as

Sym(T ) :=
1

k!

∑
σ∈Sk

σT, σT (v1, . . . , vk) := T (vσ1, . . . , vσk),

with the group of permutations Sk of {1, . . . , k}.

Lemma 4.7. Let S ∈ C([0, T ],Rd) and let (πn) be the dyadic Lebesgue partition generated
by S. Let p ≥ 1 and assume that S ∈ Vp(π). Then for any q > p with bqc = bpc we obtain a
reduced rough path of finite q-variation by setting X0

s,t := 1,

Xks,t :=
1

k!
(S(t)− S(s))⊗k, k = 1, . . . , bpc − 1,

Xbpcs,t :=
1

bpc!
(S(t)− S(s))⊗bpc − 1

bpc!
([S]p(t)− [S]p(s)).

Proof. Let q > p. As discussed above we know that S has finite q-variation, so let us start
by setting

c̃(s, t) := ‖S‖qq-var,[s,t] := sup
π∈Π([s,t])

∑
[tj ,tj+1]∈π

|S(tj+1)− S(tj)|q, (s, t) ∈ ∆T ,

which is a control function such that

bpc∑
k=1

|Xks,t|q/k ≤ Cd,p
(
c̃(s, t) + |[S]p(t)− [S]p(s)|q/bpc

)
,

with a constant Cd,p > 0 that only depends on the dimension d and on p. By Property 4.2
the path [S]p has finite variation and therefore it also has finite q/bpc-variation, so

˜̃c(s, t) := ‖[S]p‖q/bpcq/bpc-var,[s,t]

defines another control function. Therefore, c(s, t) := Cd,p(c̃(s, t)+˜̃c(s, t)) is a control function
for which the analytic property (i) in Definition 4.6 holds.
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To show the reduced Chen relation let us write S`,k for 0 ≤ `, k for the shuffles of words
of length `, k, i.e. for those permutations σ ∈ S`+k which satisfy σi < σj for all 1 ≤ i < j ≤ `
respectively `+1 ≤ i < j ≤ k. Note that there are

(
`+k
`

)
shuffles in S`,k. We have for k < bpc

Xks,t =
1

k!
(S(t)− S(s))⊗k =

1

k!
(S(t)− S(u) + S(u)− S(s))⊗k

=
1

k!

k∑
`=0

∑
σ∈S`,k−`

σ
(
(S(u)− S(s))⊗` ⊗ (S(t)− S(u))⊗(k−`)),

where we set v⊗0 := 1 for all v ∈ Rd. On the other hand, if Pk denotes the projection onto
Tk(Rd), then for k < bpc

Pk(Sym(Xs,u ⊗ Xu,t)) =

k∑
`=0

Sym(X`s,u ⊗ Xk−`u,t )

=

k∑
`=0

1

`!(k − `)!
Sym

(
(S(u)− S(s))⊗` ⊗ (S(t)− S(u))⊗(k−`))

=
k∑
`=0

1

`!(k − `)!

(
k

`

)−1 ∑
σ∈S`,k−`

σ((S(u)− S(s))⊗` ⊗ (S(t)− S(u))⊗(k−`))
= Xks,t,

which proves the reduced Chen relation for k < bpc. For k = bpc we get the same relation
by noting that [S]p is already symmetric and therefore Sym([S]p(t) − [S]p(s)) = [S]p(t) −
[S]p(s).

The following space of (higher order) controlled paths in the sense of Gubinelli [19] is
defined for example in [17, Chapter 4.5]. We adapt the definition to paths that are controlled
in the p-variation sense by a reduced rough path. If ` < k and T ∈ T`, T̃ ∈ Tk, then we
interpret

〈T, T̃ 〉 ∈ Tk−`, 〈T, T̃ 〉(v1, . . . , vk−`) := 〈T ⊗ (v1 ⊗ · · · ⊗ vk−`), T̃ 〉,

and similarly for 〈T̃ , T 〉.

Definition 4.8. Let p ≥ 1 and let X be a reduced rough path of finite p-variation. A path

Y = (Y 1, . . . , Y bpc) ∈ C([0, T ],Sbpc(Rd))

is controlled by X if there exists a control function c such that

bpc∑
`=1

∣∣∣Y `(t)−
bpc∑
k=`

〈Y k(s),Xk−`s,t 〉
∣∣∣ p
bpc−`+1 ≤ c(s, t), (s, t) ∈ ∆T .

In that case we write Y ∈ Dbpc/pX ([0, T ]).
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Example 4.9. Let p ≥ 1, let S, X and q be as in Lemma 4.7, and let f ∈ Cbqc(Rd,R). Then
Y 0 := 1,

Y k(s) := ∇kf(S(s)), k = 1, . . . , bqc

defines a controlled path in Dbqc/qX ([0, T ]). Indeed, as we discussed above ∇kf(S(s)) ∈ Symk(Rd)
for all k = 1, . . . , bqc, and by Taylor’s formula we have for ` ∈ {1, . . . , bqc}

Y `(t) = ∇`f(S(t)) =

bqc∑
k=`

1

(k − `)!
〈∇kf(S(s)), (S(t)− S(s))⊗(k−`)〉+O(c(s, t)(bqc−`+1)/q)

=

bqc∑
k=`

〈Y k(s),Xk−`s,t 〉+O(c(s, t)(bqc−`+1)/q).

Proposition 4.10. Let p ≥ 1, let X be a reduced rough path of finite p-variation and let

Y ∈ Dbpc/pX ([0, T ]). Then the rough path integral

IX(Y )(t) =

∫ t

0
〈Y (s),dX(s)〉 = lim

π∈Π([0,t])
|π|→0

∑
[tj ,tj+1]∈π

bpc∑
k=1

〈Y k(tj),Xktj ,tj+1
〉, t ∈ [0, T ],

defines a function in C([0, T ],R), and it is the unique function with IX(Y )(0) = 0 for which
there exists a control function c with

∣∣∣ ∫ t

s
〈Y (r), dX(r)〉 −

bpc∑
k=1

〈Y k(s),Xks,t〉
∣∣∣ . c(s, t)

bpc+1
p , (s, t) ∈ ∆T .

Proof. This follows from classical arguments (Theorem 4.3 in [22], see also [19]) once we show
that for 0 ≤ s ≤ u ≤ t ≤ T

bpc∑
k=1

〈Y k(s),Xks,t〉 −
bpc∑
k=1

〈Y k(s),Xks,u〉 −
bpc∑
k=1

〈Y k(u),Xku,t〉 = O(c(s, t)
bpc+1
p ),

where c is a control function such that the estimates in Definition 4.6 and in Definition 4.8
hold. But

bpc∑
k=1

〈Y k(u),Xku,t〉 =

bpc∑
k=1

( bpc∑
`=k

〈Y `(s),X`−ks,u ⊗ Xku,t〉+O
(
c(s, u)

bpc−k+1
p c(u, t)

k
p
))

=

bpc∑
k=1

k∑
`=1

〈Y k(s),Xk−`s,u ⊗ X`u,t〉+O
(
c(s, t)

bpc+1
p
)

=

bpc∑
k=1

〈Y k(s),Pk(Sym(Xs,u ⊗ Xu,t))− Xks,u〉+O
(
c(s, t)

bpc+1
p
)
,

where in the last step we used that Y k(s) is symmetric. Therefore, the reduced Chen relation
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gives

bpc∑
k=1

〈Y k(s),Xks,t〉 −
bpc∑
k=1

〈Y k(s),Xks,u〉 −
bpc∑
k=1

〈Y k(u),Xku,t〉

=

bpc∑
k=1

〈Y k(s),Xks,t − Xks,u − Pk(Sym(Xs,u ⊗ Xu,t)) + Xks,u〉+O
(
c(s, t)

bpc+1
p
)

=

bpc∑
k=1

〈Y k(s),Xks,t − Xks,t〉+O
(
c(s, t)

bpc+1
p
)

= O
(
c(s, t)

bpc+1
p
)
,

which concludes the proof.

Corollary 4.11. Let p ∈ N be an even integer and let q, S,X, f be as in Example 4.9. Then∫ t

0
〈∇f(S(s)),dX(s)〉 =

∫ t

0
〈∇f(S(s)), dS(s)〉, t ∈ [0, T ],

where the left hand side denotes the rough path integral of Proposition 4.10 and the right hand
side is the integral of Theorem 4.3.

Proof. It suffices to show that∫ t

0
〈∇f(S(s)),dX(s)〉 = f(S(t))− f(S(0))− 1

p!

∫ t

0
〈∇pf(S(s)), d[S]p(s)〉,

and since

lim
π∈Π([0,t])
|π|→0

∑
[tj ,tj+1]∈π

〈∇pf(S(tj)), [S]p(tj+1)− [S]p(tj)〉 =

∫ t

0
〈∇pf(S(s)), d[S]p(s)〉,

this is equivalent to

lim
π∈Π([0,t])
|π|→0

∑
[tj ,tj+1]∈π

p∑
k=1

〈∇kf(S(tj)),
1

k!
(S(tj+1)− S(tj))

⊗k〉 = f(S(t))− f(S(0)).

The last identity can be shown by writing f(S(t)) − f(S(0)) as a telescoping sum and by
performing a Taylor expansion up to order p and controlling the remainder term as in the
proof of Theorem 4.3.
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[2] J. Bertoin, Temps locaux et intégration stochastique pour les processus de Dirichlet, in
Séminaire de Probabilités, XXI, vol. 1247 of Lecture Notes in Math., Springer, Berlin,
1987, pp. 191–205.

23



[3] F. Biagini, Y. Hu, B. Øksendal, and T. Zhang, Stochastic calculus for fractional
Brownian motion and applications, Springer Science & Business Media, 2008.

[4] M. Bruneau, Sur la p-variation d’une surmartingale continue, Séminaire de probabilités
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Appendix: p-th variation for odd integer values of p

Lemma .12. Let p > 1 be an odd integer and let πn be the dyadic Lebesgue partition generated
by S ∈ C([0, T ],R). Assume that νn :=

∑
[tj ,tj+1]∈πn δ(·−tj)|S(tj+1)−S(tj)|p converges weakly

to a signed measure ν without atoms. Then we have for all f ∈ C(R,R)

lim
n→∞

∑
[tj ,tj+1]∈πn

f(S(tj))(S(tj+1 ∧ t)− S(tj ∧ t))p = 0, t ∈ [0, T ].

Proof. We can assume without loss of generality that f has compact support, since the image
of S on [0, T ] is compact. Let k ∈ Z and note that whenever S completes an upcrossing of
Ink = [k2−n, (k + 1)2−n] we have to add f(k2−n)2−np to the sum. On the other hand, if S
completes a downcrossing of Ink before t, then we have to add −f((k+1)2−n)2−np to the sum.
Let Ut(I

n
k ) (resp. Dt(I

n
k )) denote the number of up- (resp. down-) crossings of Ink by S on

[0, t]. Since Ut(I
n
k ) and Dt(I

n
k ) differ by at most 1, we get∣∣∣∣∣∣

∑
[tj ,tj+1]∈πn:tj+16t

f(S(tj))(S(tj+1)− S(tj))
p

∣∣∣∣∣∣
=

∣∣∣∣∣∑
k∈Z

2−np(f(k2−n)Ut(I
n
k )− f((k + 1)2−n)Dt(I

n
k ))

∣∣∣∣∣
6

∣∣∣∣∣∑
k∈Z

2−npf(k2−n)(Ut(I
n
k )−Dt(I

n
k ))

∣∣∣∣∣+

∣∣∣∣∣∑
k∈Z

2−np(f(k2−n)− f((k + 1)2−n))Dt(I
n
k )

∣∣∣∣∣
6
∑
k∈Z

2−np|f(k2−n)|+
∑
k∈Z

2−np|(f(k2−n)− f((k + 1)2−n))|Nt(I
n
k )

6
∑
k∈Z

2−np|f(k2−n)|+ ωf (2−n)
∑
k∈Z

2−npNt(I
n
k ),

where we wrote Nt(I
n
k ) = Ut(I

n
k )+Dt(I

n
k ) for the total number of interval crossings and where

ωf is the modulus of continuity of f , i.e. limn→∞ ωf (2−n) = 0. By assumption,

lim
n→∞

∑
k∈Z

2−npNt(I
n
k ) = ν([0, t]) ∈ R,

and since f(k2−n) 6= 0 for at most O(2n) values of k and p > 1 the claim follows.
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