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Abstract

This is a short introduction to the theory of Backward Stochastic Differ-
ential Equations (BSDEs). The main focus is on stochastic representations of
Partial Differential Equations (PDEs) or Stochastic Partial Differential Equa-
tions (SPDEs). Proofs are mostly only sketched, references to the literature are
given. I do not strive for the greatest generality, but rather attempt to give
heuristic explanations.
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1 Classical stochastic representations of PDEs
Say we want to find a stochastic representation for a certain class of PDEs. The
easiest representation of this kind, and in fact the starting point from which we will
motivate the generalizations, is the Kolmogorov backward equation: Let X be the
solution of the Stochastic Differential Equation (SDE)

dXt = b(Xt)dt+ σ(Xt)dWt (1)
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where Xt ∈ Rd, andW is an n-dimensional standard Brownian motion (and therefore
σ is a d × n-matrix). Define L as the action of the infinitesimal generator of X on
C2-functions:

Lϕ(x) =
d∑
i=1

bi(x)∂iϕ(x) +
d∑

i,j=1

aij(t, x)∂i,jϕ(x)

where aij = 1/2(σσ∗)ij, σ∗ is the transpose of σ. Denote by Px the probability
measure under which X satisfies equation (1) with X0 = x. If µ is a distribution on
Rd, then we can define a measure P under which X0 has distribution µ and X satisfies
the SDE (1) by setting

P(A) =

∫
Rd

Px(A)µ(dx)

An application of Itô’s formula implies the Kolmogorov forward equation:

d

dt
E(ϕ(Xt)) = E(Lϕ(Xt))

for ϕ ∈ C2
b , the space of twice continuously differentiable bounded functions with their

first and second derivative bounded. This equation is also known among physicists
and engineers as the Fokker-Planck equation. Assume that Xt has a density p(t, ·)
for any t ≥ 0. Then a formal calculation gives

d

dt

∫
Rd

ϕ(x)p(t, x)dx =

∫
Rd

Lϕ(x)p(t, x)dx =

∫
Rd

ϕ(x)L∗p(t, x)dx

where L∗ is the L2-adjoint of L. So at least formally we obtain the Fokker-Planck
equation for the density of Xt:

∂tp(t, x) = L∗p(t, x), p(0, x) = p0(x)

Note that this is a way to characterize the solution of an SDE by solving a
PDE.

To get the opposite direction, i.e. to characterize a PDE by solving an SDE,
we need to consider the backward equation. Let u(t, x) := Ex(ϕ(Xt)). Then under
certain regularity assumptions u solves a PDE:

u(t+ h, x) = Ex(Ex(ϕ(Xt+h)|Fh)) = Ex(u(t,Xh))

= Ex
(
u(t,X0) +

∫ h

0

Lu(t,Xs)ds

)
where in the second step we used the Markov property of X, and in the third step
we applied Itô’s formula to s 7→ u(t,Xs). Hence

∂tu(t, x) = Lu(t, x)

u(0, x) = ϕ(x) (2)
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This equation is called the Kolmogorov backward equation, and it does exactly
what we wanted: instead of solving the PDE (2), we can now (at least theoretically)
solve the SDE (1) and calculate Ex(ϕ(Xt)).

At this point a comment on the names of those two equations is appropriate: In
the forward equation, d/dtEx(ϕ(Xt)) = Ex(Lϕ(Xt)), we perturb the final position
Xt:

Lϕ(Xt) = lim
h→0

Ex(ϕ(Xt+h)− ϕ(Xt)|Ft)
h

whereas in the backward equation, d/dtEx(ϕ(Xt)) = LEx(ϕ(Xt)), we perturb the
starting position: in LEx(ϕ(Xt)), L acts on the initial condition x.

The Kolmogorov backward equation allows us to represent equations of the form
∂tu = Lu. But we can even find stochastic representations for more general equa-
tions via diffusion processes: The classical Feynman-Kac representation works
for linear equations of the type

∂tu(t, x) = Lu(t, x) + f(x)u(t, x) + g(x)

u(0, x) = ϕ(x) (3)

Let us consider only the case g = 0. Then under certain regularity assumptions, a
solution of the above equation is given by

u(t, x) = Ex
(
ϕ(Xt) exp

(∫ t

0

f(Xs)ds

))
Formally we show this exactly as for the backward equation:

u(t+ h, x) = Ex
(
Ex
(
ϕ(Xt+h)e

∫ t+h
0 f(Xs)ds|Fh

))
= Ex

(
u(t,Xh)e

∫ h
0 f(Xs)ds

)
= Ex

(
u(t,X0) +

∫ h

0

Lu(t,Xs)e
∫ s
0 f(Xr)drds+

∫ h

0

u(t,Xs)f(Xs)e
∫ s
0 f(Xr)drds

)
and therefore

∂tu(t, x) = Lu(t, x) + f(x)u(t, x)

However the equations of the type (3) are all linear. In the following chapter we will
see how to represent semilinear parabolic PDEs.

Bibliographic Notes The material treated here is classic. Good references for the
Kolmogorov forward and backward equations are e.g. Revuz and Yor (1999), Chapter
VII, or Karatzas and Shreve (1988), Chapter 5. The Feynman-Kac representation in
a very general form can be found in Karatzas and Shreve (1988), Theorem 5.7.6.
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2 Backward Stochastic Differential Equations

2.1 Motivation

We want to find a generalization of the Feynman-Kac formula, more precisely we
want to be able to represent semilinear parabolic PDEs of the type

∂tu(t, x) + Lu(t, x) + f(t, x, u(t, x), Dxu(t, x)) = 0

Let us assume for now that that this equation has a solution u (and we do not worry
about initial conditions yet). If we can describe the dynamics of Yt = u(t,Xt), then
we could for every (t, x) consider a version X t,x of X that starts at time t in x. This
would imply u(t, x) = u(t,X t,x

t ) = Y t,x
t . What would the dynamics of Y have to be?

By Itô’s formula

dYt = (∂tu(t,Xt) + Lu(t,Xt))dt+Dxu(t,Xt)σ(Xt)dWt

= −f(t,Xt, Yt, Dxu(t,Xt))dt+Dxu(t,Xt)σ(Xt)dWt

This suggests to consider equations of a slightly less general type than above:

∂tu(t, x) + Lu(t, x) + f(t, x, u(t, x), Dxu(t,Xt)σ(Xt)) = 0 (4)

If u solves this equation, we obtain for Yt = u(t,Xt) and Zt = Dxu(t,Xt)σ(Xt):

dYt = −f(t,Xt, Yt, Zt)dt+ ZtdWt (5)

A solution to this equation consists of a pair of processes (Y, Z). Note that this
equation does not make any sense if we consider it as a forward equation: For f = 0
we obtain dYt = ZtdWt. Of course then we can choose Z independently of the initial
condition, and therefore there would be infinitely many solutions. However, if we
consider it as a backward equation, then there is hope: We consider again the case
f = 0. If Y is adapted we get for any adapted and square integrable Z

Yt = E(Yt|Ft) = E
(
ξ −

∫ T

t

ZsdWs

∣∣∣∣Ft) = E(ξ|Ft)

Therefore Y is a martingale. If the filtration F is now generated by the Brownian
motionW , then by the martingale representation property (cf. Revuz and Yor (1999),
Theorem (3.9) of Chapter V) there exists a unique predictable process Z such that
Yt = Y0 +

∫ t
0
ZsdWs which yields

Yt = YT −
∫ T

t

ZsdWs = ξ −
∫ T

t

ZsdWs

We will show now that the equation (5) is well defined. For this we will consider
equations of a more general type. After showing existence and uniqueness for the more
general equations, we will return to (5) and show that under certain assumptions it
gives indeed a stochastic representation for PDEs of type (4).
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2.2 Existence and Uniqueness

Let (Ω, (Ft),F ,P) be a filtered probability space satisfying the usual conditions. Let
W be a n-dimensional standard Brownian motion on Ω, and assume (Ft) is the
filtration generated by W (as we have seen above, this will be important in what
follows; usually BSDEs cannot be solved with respect to general filtrations). We
borrow the following notation from El Karoui et al. (1997):

• L2
T (Rd) is the space of FT -measurable random variables ξ satisfying E(|ξ|2) <∞

• H2
T (Rd) is the space of predictable processes Y s.t. ||Y ||2 = E

(∫ T
0
|Yt|2dt

)
<∞

• H2
T,β(Rd) denotes H2

T (Rd) equipped with the equivalent norm

||Y ||2β = E
(∫ T

0
eβt|Yt|2dt

)
We are interested in equations of the type

−dYt = f(t, ω, Yt, Zt)dt− ZtdWt, YT = ξ (6)

or equivalently

Yt = ξ +

∫ T

t

f(s, ω, Ys, Zs)ds−
∫ T

t

ZsdWs

where Yt ∈ Rd, ξ is FT -measurable, and f is P ⊗ Bd ⊗ Bd×n-measurable. P is
the predictable σ-algebra, and Bd is the Borel σ-algebra on Rd. f will be called
the generator of the BSDE. Note that this has nothing to do with the infinitesimal
generator of a Markov process. A solution is a process (Y, Z) such that Y is continuous
and adapted, and Z is predictable and satisfies

∫ T
0
|Zs|2ds < ∞ a.s. That means

that unlike in the deterministic case, BSDEs can not be considered as time-reversed
SDEs. At time t, (Yt, Zt) is Ft-measurable, so the process does not “know” the terminal
condition yet (which is in FT )! Here we are only concerned with the “standard” case:
The parameters f and ξ are called standard parameters if

• ξ ∈ L2
T (Rd)

• f(·, ·, 0, 0) ∈ H2
T (Rd)

• f is uniformly Lipschitz: There exists L s.t. Lebesgue⊗ P-a.s.

|f(t, ω, y1, z1)− f(t, ω, y2, z2)| ≤ L(|y1 − y2|+ |z1 − z2|)

for any y1, y2, z1, z2.

Theorem 1. Given standard parameters, the BSDE (6) has a unique solution (Y, Z)
in H2

T (Rd)×H2
T (Rn×d)

We will only sketch the proof. It is based on the martingale representation property
used already above, and on a Picard iteration scheme.
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Proof. 1. For f = 0 we have already seen that for any terminal condition ξ ∈ L2
T ,

there is a unique solution (Y, Z). This solution actually is inH2
T (Rd)×H2

T (Rd×n).

2. For general f and given processes (y, z) ∈ H2
T (Rd)×H2

T (Rd×n) we consider the
following equation:

−dYt = f(t, yt, zt)dt− ZtdWt, YT = ξ (7)

The ω-dependence of f will no longer be explicitly noted. Let (Y 0, Z0) solve the
equation with generator 0 and terminal condition ξ +

∫ T
0
f(s, ys, zs)ds. Then

(Y, Z) = (Y 0 −
∫ ·
0
f(s, ys, zs)ds, Z

0) is a solution to equation (7):

Yt = Y 0
t −

∫ t

0

f(s, ys, zs)ds

= Y 0
T −

∫ T

t

(Z0
s )dWs −

∫ t

0

f(s, ys, zs)ds

= ξ +

∫ T

t

f(s, ys, zs)ds−
∫ T

t

(Z0
s )dWs

It is also in H2
T (Rd)×H2

T (Rd×n).

3. One can check that the map Φ(y, z) = (Y, Z), where (Y, Z) is the solution of
(7), is a contraction on H2

T,β(Rd) × H2
T,β(Rd×n) for a suitable β. Hence there

exists a unique fixed point (Y, Z) such that

Yt = ξ +

∫ T

t

f(s, Ys, Zs)ds−
∫ T

t

ZsdWs

Further if we define (Y 0, Z0) as the solution of

−dY 0
t = f(t, 0, 0)dt− (Z0

t )dWt, Y 0
T = ξ

and then (Y k+1, Zk+1) = Φ(Y k, Zk), then (Y k, Zk) will converge to (Y, Z) in
H2
T,β(Rd)×H2

T,β(Rd×n). But H2
T,β(Rd)×H2

T,β(Rd×n) is just H2
T (Rd)×H2

T (Rd×n)

with an equivalent norm. Thus (Y, Z) is the unique solution of (6) in H2
T (Rd)×

H2
T (Rd×n).

The technical difficulty of this proof consists in actually showing that Φ is a
contraction. A proof of this fact can be found in El Karoui et al. (1997) (“a-priori-
estimates”).

2.3 BSDEs and PDEs: Forward-Backward SDEs

We now return to equation (5): Let for (t, x) ∈ R+ × Rd X t,x be the solution of

dX t,x
s = b(s,X t,x

s )ds+ σ(s,X t,x
s )dWs, s ≥ t

X t,x
s = x, s ≤ t (8)
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with X t,x
s ∈ Rd, Borel measurable b : R+ × Rd → Rd and σ : R+ × Rd 7→ Rd×n, and

an n-dimensional standard Brownian motion W . Associate a BSDE to this SDE:

−dY t,x
s = f(s,X t,x

s , Y t,x
s , Zt,x

s )ds− Zt,x
s dWs, 0 ≤ s ≤ T

YT = Ψ(X t,x
T ) (9)

With Y t,x
s ∈ Rm, Zt,x

s ∈ Rm×n and Borel measurable f : R+ × Rd × Rm × Rm×n →
Rm and Ψ : Rd → Rm. This system is called a Forward-Backward Stochastic
Differential Equation (FBSDE). It is called uncoupled because the solution
(Y t,x, Zt,x) of (9) does not interfere with the dynamics of the forward SDE (8).

In the following we will show that (Y t,x, Zt,x) can be expressed in terms of a
deterministic function of time and state process (X t,x). Under some regularity as-
sumptions this function will solve a PDE. Conversely, the solution of the FBSDE will
be a solution of the associated PDE.

We need the following Lipschitz conditions and growth constraints on the coeffi-
cient functions: Assume there is C > 0 and p ≥ 1/2 s.t.

|σ(t, x)− σ(t, y)|+ |b(t, x)− b(t, y)| ≤ C|x− y|
|σ(t, x)|+ |b(t, x)| ≤ C(1 + |x|)
|f(t, x, y1, z1)− f(t, x, y2, z2)| ≤ C(|y1 − y2|+ |z1 − z2|)
|f(t, x, 0, 0)|+ |Ψ(x)| ≤ C(1 + |x|p)

In this case the SDE (8) has a unique strong solution X t,x satisfying for all p ≥ 1/2:

sup
s≤T

E(|X t,x
s |2p) ≤ K(1 + |x|2p)

for some K > 0 (cf. Karatzas and Shreve (1988), Thm. 5.2.9, for the statement with
p = 1, for general p it follows easily with the Burkholder-Davis-Gundy inequality and
Gronwall). This means that we obtain standard parameters for the BSDE (9) which
therefore has a unique solution as well.

Let us show that (Y t,x
s ) can be expressed as u(s,X t,x

s ) for some deterministic func-
tion u. In a first step we will show that (Y t,x, Zt,x) inherits measurability properties
of X t,x.

Proposition 2. Let (Ft,s)s∈[t,T ] denote the completed right-continuous future σ-algebra
of W after t, i.e.

F0
t,s = ∩r>sσ(Wu −Wt : t ≤ u ≤ r)

and Ft,s is the completion of F0
t,s. Then the solution (Y t,x, Zt,x)s∈[t,T ] of (9) is (Ft,·)-

adapted. In particular, Y t,x
t is deterministic as well as Y t,x

s for 0 ≤ s ≤ t.

Sketch of Proof. • Consider the translated Brownian Motion W ′
s := Wt+s −Wt

and its completed right-continuous filtration F ′s.
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• Consider the FBSDE

dX ′s = b(s+ t,X ′s)ds+ σ(s+ t,X ′s)dW
′
s, X ′0 = x

−dY ′s = f(s+ t,X ′s, Y
′
s , Z

′
s)ds− Z ′sdW ′

s, Y ′T−t = Ψ(X ′T−t)

• (X ′, Y ′, Z ′) is (F ′)-adapted and (X ′s+t, Y
′
s+t, Z

′
s+t) solves the original FBSDE.

• Uniqueness of solution: (Y t,x
s , Zt,x

s ) is (F ′s−t) = (Ft,s)-adapted.

• To see that Y t,x
s is deterministic for s ≤ t, considerW ′

u := Wu+s−Ws and repeat
the above proof.

Proposition 3. There exist two deterministic measurable functions u and v s.t. the
solution (Y t,x, Zt,x) of (9) satisfies

Y t,x
s = u(s,X t,x

s )

Zt,x
s = v(s,X t,x

s )σ(s,X t,x
s )

Sketch of Proof. 1. If f does not depend on (y, z):

Y t,x
s = E

(∫ T

s

f(r,X t,x
r )dr + Ψ(X t,x

T )

∣∣∣∣Fs) = u(s,X t,x
s )

where u(s, y) := E
(∫ T

s
f(r,Xs,y

r )dr + Ψ(Xs,y
T )
)
. This is true by Theorem 6.27

in Cinlar et al. (1980) which also implies the existence of v : R+ × Rd → Rm×d

s.t. Zt,x
s = v(s,X t,x

s )σ(s,X t,x
s )

2. For general f use the iterative procedure from the proof of Theorem 1

• define Y 0 := Z0 := 0

• define Y k+1, Zk+1 as solution of

−dY k+1
s = f(s,X t,x

s , Y k
s , Z

k
s )ds− Zk+1

s dWs, Y
k+1
T = Ψ(X t,x

T )

• recursively Y k
s = uk(s,X t,x

s )

• set ui(s, x) := lim supk→∞(uk(s, x))i

• ui(s,X t,x
s ) = lim supk→∞(uk(s,X t,x

s ))i = limk→∞(Y k
s )i = (Y t,x

s )i

• same for v and Z

Consider the semilinear parabolic PDE associated to our problem:

∂tu(t, x) + Ltu(t, x) + f (t, x, u(t, x), Dxu(t, x)σ(t, x)) = 0

u(T, x) = Ψ(x) (10)
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where Lt is again the differential operator associated to X:

Ltϕ(x) =
d∑
i=1

bi(t, x)∂iϕ(x) +
d∑

i,j=1

aij(t, x)∂i,jϕ(x)

for ϕ ∈ C2(Rd,R). For multidimensional ϕ, (Ltϕ)i = Ltϕi. Again aij = 1/2
(σ(t, x)σ(t, x)∗)ij.

Theorem 4 (Generalization of the Feynman-Kac formula). Assume u ∈ C1,2([0, T ]×
Rd,Rm) is a solution of (10) s.t. for some C > 0 and some k ∈ N

|u(s, x)|+ |Dxu(s, x)σ(s, x)| ≤ C(1 + |x|k) ∀(s, x) ∈ [0, T ]× Rd

Then
Y t,x
s = u(s,X t,x

s ), Zt,x
s = Dxu(s,X t,x

s )σ(s,X t,x
s ) ∀s ∈ [0, T ]

where (X t,x, Y t,x, Zt,x) is the unique solution of the associated FBSDE (8), (9). In
particular, u has the representation u(t, x) = Y t,x

t , and therefore such a solution
u is unique.

Proof. We simply apply Itô’s formula and use the fact that u solves (10):

du(s,X t,x
s ) =

(
∂su(s,X t,x

s ) + Lsu(s,X t,x
s )
)
ds+Dxu(s,X t,x

s )σ(s,X t,x
s )dWs

= −f
(
s,X t,x

s , u(s,X t,x
s ), Dxu(s,X t,x

s )σ(s,X t,x
s )
)
ds

+Dxu(s,X t,x
s )σ(s,X t,x

s )dWs

Furthermore we have u(T,X t,x
T ) = Ψ(X t,x

T ) and therefore (u(s,X t,x
s ), Dxu(s, X t,x

s )
σ(s,X t,x

s )) is the unique solution of BSDE (9).

This result is exactly what we set out to find: a stochastic representation of
solutions of semilinear PDEs. In fact we can do even better than that: under strong
regularity assumptions on the coefficients, one can show that u(t, x) = Y t,x

t is a
solution of the associated PDE (not assuming a priori that a solution exists). In
dimension d = 1, one only needs Lipschitz assumptions and growth constraints on
the coefficients to show that Y t,x

t is a “viscosity solution” of the PDE. These results
can be for example found in El Karoui et al. (1997), Theorem 4.2, or Pardoux and
Peng (1992), Theorem 3.2 and Theorem 4.3. We will not go into detail here.

2.4 BSDEs and Stochastic Control

To see how BSDEs arise naturally in the stochastic version of Pontryagin’s Maximum
Principle, let us briefly recall the deterministic version: Let the dynamics of x be
governed by a controlled ordinary differential equation:

·
x(t) = f(x(t), u(t)), x(0) = x0
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and consider a payoff function

J(u) =

∫ T

0

r(t, x(t), u(t))dt+ g(x(T ))

which we want to maximize over the set of admissible controls. Let u0(t), t ∈ [0, T ]
be an optimal control, i.e. J(u0) ≥ J(u′) for all admissible u′. Introduce a perturbed
version of u, uε = u0 + εu for some u (it is not clear that there exists an admissi-
ble uε defined like this, but we are only arguing formally.) Denote x0 the solution
corresponding to u0, and xε the one corresponding to uε. Write

y(t) =
d

dε
xε(t)

∣∣∣∣
ε=0

Then we obtain

y(t) = lim
ε→0

xε(t)− x0(t)
ε

= lim
ε→0

1

ε

∫ t

0

d

ds
(xε(s)− x0(s))ds

=

∫ t

0

lim
ε→0

f(xε(s), uε(s))− f(x0(s), u0(s))

ε
ds

=

∫ t

0

(Dxf(x0(s), u0(s))y(s) +Duf(x0(s), u0(s))u(s)) ds

so that
·
y(t) = Dxf(x0(t), u0(t))y(t) +Duf(x0(t), u0(t))u(t), y(0) = 0

Let us vary the control and see how the payoff changes:

d

dε
J(uε)

∣∣∣∣
ε=0

=

∫ T

0

(Dxr(t, x0(t), u0(t))y(t) +Dur(t, x0(t), u0(t))u(t))dt

+Dxg(x0(T ))y(T ) = 0 (11)

because ε 7→ J(uε) has a local maximum in 0. We would like to have only terms of
the form

∫
(. . . )u(t)dt, because if this is zero for all admissible controls u, and there

are “enough” admissible controls, then (. . . ) must already be zero. Let us introduce
an adjoint variable p0 that will take care of the “bad” terms:

·
p0(t) = −Dxf(t, x0(t), u0(t))

∗p0(t)−Dxr(t, x0(t), u0(t))
∗

p0(T ) = Dxg(x0(T ))∗

We obtain with this choice of p0 and because y(0) = 0:

Dxg(x0(T ))y(T ) = p0(T )∗y(T )− p0(0)∗y(0)

=

∫ T

0

(
·
p0(t)

∗y(t) + p0(t)
∗ ·y(t))dt

=

∫ T

0

((−p∗0Dxf −Dxr)y + p∗0(Dxfy +Dufu))dt

=

∫ T

0

(p∗0Dufu−Dxry)dt (12)
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Combining (11) and (12) gives

d

dε
J(uε)

∣∣∣∣
ε=0

=

∫ T

0

(p∗0Duf +Dur)udt

so that heuristically p∗0Duf −Dur = 0. But if we define the Hamiltonian

H(t, u, x, p) = p∗f(t, x, u) + r(t, x, u)

this is just DuH. This implies heuristically that for any t, u 7→ H(t, u, x0(t), p0(t))
has a local extremum in u0(t). To see that this should actually be a maximum, note
that for ε > 0:

0 ≥ J(uε)− J(u0) ' ε

∫ T

0

(p0Duf −Dur)udt =

∫ T

0

DuH(uε − u0)dt

We obtain the Pontryagin Maximum Principle:

Theorem. Let u0 be an optimal control, and let x0 be the associated trajectory. Then
under suitable assumptions there exists p0 such that

d

dt
x0(t) = DpH(t, u0(t), x0(t), p0(t)), x0(0) = x0

d

dt
p0(t) = −DxH(t, u0(t), x0(t), p0(t)), p0(T ) = Dxg(x0(T ))∗

and for all t ∈ [0, T ]:

H(t, u0(t), x0(t), p0(t)) = max
u

H(t, u, x0(t), p0(t))

The map t 7→ H(t, u0(t), x0(t), p0(t)) is constant.

How do we find a candidate for an optimal control? Well, solve for all t, x, p

u(t, x, p) = max
u

H(t, u, x, p)

and then solve

d

dt

(
x(t)
p(t)

)
=

(
DpH(t, u(t, x(t), p(t)), x(t), p(t))
−DxH(t, u(t, x(t), p(t)), x(t), p(t))

)
x(0) = x0 p(T ) = Dxg(x(T ))

Finally set u0(t) = u(t, x(t), p(t)).
In the stochastic case we consider the following control problem:

dXt = b(Xt, ut)dt+ σ(Xt, ut)dWt

X0 = x0

11



where Xt ∈ Rd, W is an n-dimensional standard Brownian motion, and u is a pre-
dictable control process that takes its values in some set U. We want to maximize

J(u) = E
(∫ T

0

r(s,Xs, us)ds+ g(XT )

)
for some measurable r : R+ × Rd × U → R and concave g : Rd → R. It is possible
to derive the maximum principle along the same lines as in the deterministic case.
This is done in Yong and Zhou (1999), but it is very technical, its core argument
being a stochastic Taylor expansion. Here we start with the right Hamiltonian and
show the maximum principle under some concavity condition, using only integration
by parts. This proof is less intuitive, that is why I included the deterministic case, to
give the right intuition as to where the Hamiltonian and the adjoint equation come
from. Assume there exists C > 0 s.t.

• |b(x, u)− b(y, u)|+ |σ(x, u)− σ(y, u)| ≤ L|x− y|

• r(·, ·, u) is a continuous function of (t, x) for all u

• g is concave and C1

• |r(t, x, u)|+ |g(x)| ≤ C(1 + |x|2) for all t, x, u

• b, σ and r are all differentiable in x

Define the generalized Hamiltonian

H : R+ × Rd × U× Rd × Rd×n → R
H(t, x, u, y, z) = b(x, u)∗y + tr(σ(x, u)∗z) + r(t, x, u)

and let the adjoint (Y, Z) be the solution of

−dYt = DxH(t,Xt, ut, Yt, Zt)
∗dt− ZtdWt

YT = Dxg(XT )∗ (13)

for a given control process u.

Theorem 5. Let û be a control process. Suppose (Ŷ , Ẑ) solves the adjoint BSDE
(13). Suppose for all t ∈ [0, T ]

H(t, X̂t, ût, Ŷt, Ẑt) = max
u∈U

H(t, X̂t, u, Ŷt, Ẑt)

and that a.s.

(x, u) 7→ H(t, x, u, Ŷt, Ẑt) (14)

is a concave function for all t ∈ [0, T ]. Then û is optimal, i.e. J(û) = maxu J(u).

12



Sketch of Proof. Let u be another control process, and denote X, Y, Z the associated
processes. It suffices to show J(û) ≥ J(u).

J(û)− J(u) = E
(∫ T

0

r(t, ût, X̂t)− r(t, ut, Xt)dt+ g(X̂T )− g(XT )

)
(15)

Let us rewrite this expression:

r(t, ût, X̂t)− r(t, ut, Xt) = H(t, X̂t, ût, Ŷt, Ẑt)−H(t,Xt, ut, Ŷt, Ẑt)

− [b(X̂t, ût)− b(Xt, ut)]
∗Ŷt

− tr[(σ(X̂t, ût)− σ(Xt, ut))
∗Ẑt] (16)

on the other hand because g is concave and differentiable:

E(g(X̂T )− g(XT )) ≥ E(Dxg(X̂T )(X̂T −XT )) = E(Ŷ ∗T (X̂T −XT ))

= E
(∫ T

0

−DxH(t, X̂t, ût, Ŷt, Ẑt)(X̂t −Xt)dt+

∫ T

0

Ŷ ∗t [b(X̂t, ût)− b(Xt, ut)]dt

+

∫ T

0

tr[Ẑ∗t (σ(X̂t, ût)− σ(Xt, ut))]dt

)
(17)

where we used integration by parts, the fact that X0 = X̂0, and that the expectation
of the stochastic integrals should be zero. Combining (15), (16) and (17) we obtain

J(û)− J(u) ≥ E
(∫ T

0

[H(t, X̂t, ût, Ŷt, Ẑt)−H(t,Xt, ut, Ŷt, Ẑt)

−DxH(t, X̂t, ût, Ŷt, Ẑt)(X̂t −Xt)]dt
)

because of the concavity condition (14),

H(t, X̂t, ût, Ŷt, Ẑt)−H(t,Xt, ut, Ŷt, Ẑt) ≥ DxH(t, X̂t, ût, Ŷt, Ẑt)(X̂t −Xt)

+DuH(t, X̂t, ût, Ŷt, Ẑt)(ût − ut)

which implies

J(û)− J(u) ≥ E
(∫ T

0

−DuH(t, X̂t, ût, Ŷt, Ẑt)(ut − ût)dt
)

but because u 7→ H(t, X̂t, u, Ŷt, Ẑt) takes its maximum in ût, this is always nonnega-
tive.

Note however that to obtain a candidate for an optimal control, in general we
need to solve a coupled FBSDE, where the backward components (Y, Z) influence
the dynamics of the forward component X:

1. solve u(t, x, y, z) = maxuH(t, x, u, y, z) for all t, x, y, z

13



2. solve the coupled FBSDE

dXt = b(Xt, u(t,Xt, Yt, Zt))dt+ σ(Xt, u(t,Xt, Yt, Zt))dWt, X0 = x0

−dYt = H(t,Xt, u(t,Xt, Yt, Zt), Yt, Zt)dt− ZtdWt, YT = Dxg(XT )∗

3. set ût = u(t,Xt, Yt, Zt)

Morally, it is not surprising that we do not end up with an uncoupled FBSDE: Those
represent semilinear PDEs, whereas the HJB equation from the dynamic program-
ming principle for optimal diffusion control is fully nonlinear. Therefore also the
FBSDE from the maximum principle should be more difficult than an uncoupled
FBSDE.

Bibliographic Notes The material on Feynman-Kac representations and on exis-
tence and uniqueness of solutions is essentially taken from El Karoui et al. (1997),
which is a good introduction to BSDEs. An updated version of that article is El
Karoui et al. (2008). BSDEs also arise naturally in mathematical finance. They were
introduced by Bismut in 1973, but their systematic study began with Pardoux and
Peng (1990). It is also possible to give stochastic representations for fully nonlinear
parabolic PDEs in terms of so-called second order BSDEs. This was done in Cheridito
et al. (2007), and it allows e.g. to find stochastic representations for the HJB equa-
tions arising in stochastic control. The material on deterministic optimal control is
from Evans, while the material on stochastic control is taken pretty much one-to-one
from Pham (2009).

3 BDSDEs

3.1 Motivation

In the previous sections we were concerned with PDEs and their stochastic represen-
tations. In this section we will find stochastic representations for SPDEs. This may
sound odd, since SPDEs are themselves stochastic equations. But what we will do is
in fact find a finite-dimensional stochastic (ordinary) differential equation that repre-
sents the SPDE. Heuristically, we will need one “stochasticity” to represent the partial
differential operator, and another “stochasticity” to represent the random noise in the
SPDE. Hence this will be a “doubly” stochastic differential equation.

Just as in the deterministic case, we will find representations for backward equa-
tions. They will be of the type

u(t, x) = Ψ(x) +

∫ T

t

(Lsu(s, x) + f(s, x, u(s, x), Dxu(s, x)σ(s, x)))ds

+

∫ T

t

g(s, x, u(s, x), Dxu(s, x)σ(s, x))d
←
Bs (18)

We have to specify what we mean by backward equation: This has not much to do
with the BSDEs from the last section. There, the solution (Y, Z) was adapted to the
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past, i.e. Ft, and the stochastic integral was just Itô’s integral. Here we are looking
for solutions adapted to the future of B: Define

F0,B
t,s = ∩r<tσ(Bu −Br : r ≤ u ≤ s)

and FBt,s is the completion of F0,B
t,s . A solution u will have to satisfy u(t, x) ∈ FBt,T for

all (t, x). Under this assumption we can interpret d
←
B as backward Itô integral: The

backward integral of a simple function Hs =
∑n

i=1Hi1[Ti−1,Ti)(s) with Hi ∈ FTi,T is
defined as ∫

Hsd
←
Bs =

n∑
i=1

Hi(BTi −BTi−1
)

and for general locally square integrable H, predictable w.r.t. (F·,T ), it is extended
via the Itô isometry, just like the forward integral. So in fact for H ′t = HT−t and for
the Brownian motion B′t = BT −BT−t∫ t

0

Hsd
←
Bs =

∫ T

T−t
H ′sdB

′
s

where on the right hand side we just have Itô’s forward integral. This allows us to
reverse time in (18) to obtain a forward equation: Let u be a solution and define
u′(t, x) = u(T − t, x) and B′ as above. Then u′ solves

u′(t, x) = Ψ(x) +

∫ t

0

(LT−su′(s, x) + f(T − s, x, u′(s, x), Dxu
′(s, x)σ(T − s, x)))ds

+

∫ t

0

g(T − s, x, u′(s, x), Dxu
′(s, x)σ(T − s, x))dB′s (19)

in the classical sense. This means that we do not need any new theory for backward
SPDEs of the above type, and we can just solve (19) and then reverse time. It also
means that we can always reverse time for forward equations like (19) and end up
with a backward equation of type (18). Note however that we do not allow the noise
dB′ to depend on the space variable. That is, we only allow for finite dimensional
noise. Luckily the SPDEs that arise in nonlinear filtering are of this type.

Just like in the previous chapter we will find an Rm-valued process Y s.t. Ys =
u(s,Xs) where X is the diffusion associated to Ls, driven by a Brownian motion W
that is independent of B. Let us again derive heuristically what the dynamics of Y
should be:

Yt+h − Yt = u(t+ h,Xt+h)− u(t,Xt+h) + u(t,Xt+h)− u(t,Xt)

= −
∫ t+h

t

(Lsu(s,Xt+h) + f(s,Xt+h, u(s,Xt+h), Dxu(s,Xt+h)σ(s,Xt+h)))ds

−
∫ t+h

t

g(s,Xt+h, u(s,Xt+h), Dxu(s,Xt+h)σ(s,Xt+h))d
←
Bs

+

∫ t+h

t

Lsu(t,Xs)ds+

∫ t+h

t

Dxu(t,Xs)σ(s,Xs)dWs
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We see that in the limit the differential operator terms will vanish, and if we set again
Zt = Dxu(t,Xt)σ(t,Xt), we obtain

dYt = −f(s,Xs, Ys, Zs)ds− g(s,Xs, Ys, Zs)d
←
Bs + ZsdWs

3.2 Existence and Uniqueness

The basic ideas to prove existence and uniqueness are the same as for normal BSDEs:
in the proofs, the martingale representation property of Brownian motion and a Picard
iteration scheme are used. The actual proofs however are more involved. For this
reason we only cite the results.

Let (Ω,F ,P) be a probability space carrying two independent standard Brownian
motions (Wt : t ≥ 0) with values in Rn and (Bt : t ≥ 0) with values in Rk. Let FBt,s
be as above, and define F0,W

t = ∩s>tσ(Wr : 0 ≤ r ≤ s) and FWt as its completion.
Fix T > 0 and define for t ≤ T :

Ft = FBt,T ∨ FWt

Note that this is not a filtration, it is neither decreasing nor increasing in t. Analo-
gously to the BSDE section, we introduce the following notation

• L2
T (Rm) is the space of Rm-valued FT -measurable random variables ξ satisfying

E(|ξ|2) <∞

• H2
T (Rm) is the space of Rm-valued processes Y s.t. Yt is Ft-measurable and

E
(∫ T

0
|Yt|2dt

)
<∞

• S2
T (Rm) is the space of continuous Rm-valued processes Y s.t. Yt is Ft-

measurable and E
(
sup0≤t≤T |Yt|2

)
<∞

The type of equation we want to solve is

−dYt = f(t, Yt, Zt)dt+ g(t, Yt, Zt)d
←
Bt − ZtdWt

YT = ξ (20)

where Yt is Rm-valued, Zt is Rm×n-valued, and f : R+ × Ω× Rm × Rm×n → Rm and
g : R+ × Ω × Rm × Rm×n → Rm×k are measurable. (Y, Z) will be called solution of
equation (20) if (Y, Z) ∈ S2

T (Rm)×H2
T (Rm×n) and it solves the integral equation. We

will equip all matrix spaces with the Frobenius norm: ||A||2 = tr(AA∗).
f , g and ξ will be called standard parameters if

• ξ ∈ L2
T (Rm)

• for any (y, z) ∈ Rm × Rm×n: f(·, ·, y, z) ∈ H2
T (Rm) and g(·, ·, y, z) ∈ H2

T (Rm×k)
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• f and g satisfy Lipschitz conditions and g is a contraction in z: there exist
L > 0 and 0 < α < 1 s.t. for any (ω, t) and y1, y2, z1, z2:

|f(t, ω, y1, z1)− f(t, ω, y2, z2)|2 ≤ L(|y1 − y2|2 + ||z1 − z2||2)
||g(t, ω, y1, z1)− g(t, ω, y2, z2)||2 ≤ L|y1 − y2|2 + α||z1 − z2||2

Theorem 6. Given standard parameters, the BDSDE (20) has a unique solution
(Y, Z) in S2

T (Rm)×H2
T (Rm×n).

The proof can be found in Pardoux and Peng (1994), Theorem 1.1.

3.3 BDSDEs and SPDEs

Now we show that solutions of backward SPDEs can be represented as solutions of
BDSDEs. Recall equation (18):

u(t, x) = Ψ(x) +

∫ T

t

(Lsu(s, x) + f(s, x, u(s, x), Dxu(s, x)σ(s, x)))ds

+

∫ T

t

g(s, x, u(s, x), Dxu(s, x)σ(s, x))d
←
Bs

with u : R+ × Ω × Rd → Rm, and measurable f : R+ × Rd × Rm × Rm×n → Rm,
g : R+ × Rd × Rm × Rm×n → Rm×k, and Ψ : Rd → Rm. Ls is again a differential
operator corresponding to a diffusion process (cf. (8)):

dX t,x
s = b(s,X t,x

s )ds+ σ(s,X t,x
s )dWs, s > t

X t,x
s = x, s ≤ t

with Xt ∈ Rd. Associate a BDSDE to (18) and (8):

−dY t,x
s = f(s,X t,x

s , Y t,x
s , Zt,x

s )ds+ g(s,X t,x
s , Y t,x

s , Zt,x
s )d

←
Bs − Zt,x

s dWs

Y t,x
T = Ψ(X t,x

T ) (21)

Assume there exists p ≥ 1, C > 0, 0 < α < 1 s.t.

|σ(t, x)− σ(t, y)|+ |b(t, x)− b(t, y)| ≤ C|x− y|
|σ(t, x)|+ |b(t, x)| ≤ C(1 + |x|)
|f(t, x, y1, z1)− f(t, x, y2, z2)|2 ≤ L(|y1 − y2|2 + ||z1 − z2||2)
||g(t, x, y1, z1)− g(t, x, y2, z2)||2 ≤ L|y1 − y2|2 + α||z1 − z2||2

|f(t, x, y, z)|2 + |Ψ(x)|2 ≤ C(1 + |x|p)
gg∗(t, x, y, z) ≤ zz∗ + C(||g(t, x, 0, 0)||2 + |y|2)I
Ψ ∈ C2(Rd,Rm)

where A ≤ B for symmetric positive semi-definite matrices A and B means that B−A
is symmetric and positive semi-definite. Define f ′(s, ω, y, z) = f(s,X t,x

s (ω), y, z),
analogously for g. Under the above assumptions, f ′, g′ and Ψ(X t,x

T ) are standard
parameters, and therefore (21) has a unique solution.
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Theorem 7. Under the assumptions stated above, let u be a solution of (18): u(t, x) ∈
FBt,T for any (t, x), u ∈ C0,2([0, T ]×Rd,Rm), and u solves the integral equation (18).
Denote X t,x and (Y t,x, Zt,x) the solutions of (8) respectively (21). Then for any
s ∈ [0, T ]:

Y t,x
s = u(s,X t,x

s )

and in particular u(t, x) = Y t,x
t .

The proof is given in Pardoux and Peng (1994), Theorem 3.1. This theorem is
great except for one fact: It requires a priori knowledge of the existence of a strong
solution of the SPDE, i.e. we need to know that the solution u is twice strongly
differentiable. This is in general not given, since in SPDE theory one usually works
on Sobolev spaces with weak derivatives. We could work on Sobolev spaces of higher
order, and then use Sobolev embedding to obtain strong derivatives, but this requires
much extra work. Therefore the following converse result will be more useful in
practice - even though it requires much stronger assumptions!

Let b, σ, f, g satisfy all the above assumptions, and in addition let

• b ∈ C0,3
b (R+ × Rd,Rd), σ ∈ C0,3

b (R+ × Rd,Rd×n)

• f ∈ C0,3
b (R+ × Rd × Rm × Rm×n,Rm), g ∈ C0,3

b (R+ × Rd × Rm × Rm×n,Rm×k)

• Dzg(t, x, y, z)θθ∗(Dzg(t, x, y, z))∗ ≤ θθ∗ for any (t, x, y, z) and θ - again in the
sense of positive symmetric matrices

• Ψ ∈ C3
p(Rd,Rm) where C3

p are the functions in C3 which, together with all their
partial derivatives, grow at most polynomially at infinity.

Theorem 8. Under the above assumptions, u(t, x) = Y t,x
t is the unique classical

solution of (18).

This is Theorem 3.2 in Pardoux and Peng (1994). Note that here we also work
with strong derivatives - but we do not a priori require them, the theorem actually
tells us that the solution will be strongly differentiable!

3.4 Applications to Filtering

Consider the following nonlinear filtering problem: There is an unobservable random
dynamical system which is given as the solution of the SDE

dXt = b(t,Xt)dt+ σ(t,Xt)dWt

with Xt ∈ Rd, b : R+ × Rd → Rd and σ : R+ × Rd → Rd×n Borel measurable,
and an n-dimensional standard Brownian motion W . Assume we have the following
observation processes

Yt =

∫ t

0

h(s,Xs)ds+Bt
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with Yt ∈ Rn, and B is an n-dimensional Brownian motion independent of W . Then
under very general conditions (essentially only an ellipticity condition on X and some
boundedness assumptions), the law of X conditioned on Y can be described by the
solution of an SPDE, the so-called Zakai equation. More precisely, assume

• σ is Lipschitz continuous and bounded with bounded derivative

• b and h are Lipschitz continuous and bounded

• there exists α > 0 s.t. |σ(t, x)∗θ|2 ≥ α|θ|2 for all (t, x) ∈ R+ × Rd, θ ∈ Rd

Then there exist unique strong solutions X and Y of the above equations. Denote
the filtration generated by B and W by Ft, and denote the filtration generated by
Y as Gt. We are interested in describing E(f(Xt)|Gt). For this define the equivalent
measure P̃ on FT under which Y is a Brownian motion:

dP̃
dP

∣∣∣∣∣
Ft

= Z−1t , 0 ≤ t ≤ T

with

Zt = exp

(∫ t

0

h(s,Xs)
∗dYs −

1

2

∫ t

0

|h(s,Xs)|2ds
)

and thus

Z−1t = exp

(
−
∫ t

0

h(s,Xs)
∗dWs −

1

2

∫ t

0

|h(s,Xs)|2ds
)

By Bayes’ formula we have

E(f(Xt)|Gt) =
Ẽ(f(Xt)Zt|Gt)

Ẽ(Zt|Gt)

and we can describe Ẽ(f(Xt)Zt|Gt) through the solution of the Zakai equation: Let
Lt be the differential operator associated to X and let L∗t be its L2-adjoint. Consider
the SPDE

du(t, x) = L∗u(t, x)dt+ h(t, x)∗u(t, x)dYt

= L∗u(t, x)dt+ h(t, x)∗u(t, x)h(t,Xt)dt+ h(t, x)∗u(t, x)dBt

u(0, x) = p0(x) (22)

where p0 is the density of the initial distribution X0. This equation describes the
evolution of the unnormalized conditional density u: For any f ∈ L∞,

Ẽ(f(Xt)Zt|Gt) = 〈f, u(t, ·)〉
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where 〈·, ·〉 is the L2 inner product. This result is shown in Pardoux (1979), Corollary
3.2 of section II. In particular

E(f(Xt)|Gt) =
〈f, u(t, ·)〉
〈1, u(t, ·)〉

Therefore (22) is somewhat like a conditional Kolmogorov forward equation (or con-
ditional Fokker-Planck equation) - although the actual conditional Fokker-Planck
equation would be the Kushner equation, which we do not treat here. We are able
to reverse time and obtain a backward equation for which we can find a stochastic
representation in terms of a BDSDE. The forward process for this BDSDE will then
not be X, but the diffusion associated to the differential operator part of L∗t . How-
ever it turns out that there is also something like a conditional Kolmogorov backward
equation, and that it is maybe more natural to find a BDSDE representation for this
backward equation: For f ∈ L∞(Rd) ∩ L2(Rd) consider the backward SPDE

dv(t, x) = −Ltv(t, x)dt− h(t, x)∗v(t, x)d
←
Y t

= −Ltv(t, x)dt− h(t, x)∗v(t, x)h(t,Xt)dt− h(t, x)∗v(t, x)d
←
Bt

v(T, x) = f(x)

The solution v of this equation satisfies for any (t, x) (cf. Pardoux (1979), Theorem
2.1 of section II)

v(t, x) = Ẽ(f(X t,x
T )Zt,T |Gt,T )

where as previously X t,x is the version of X that starts in x at time t, Gt,T is the
future σ-algebra of Y after t, and

Zt,T = exp

(∫ T

t

h(s,Xs)
∗dYs −

1

2

∫ T

t

|h(s,Xs)|2ds
)

Also, it is adjoint to u in the following sense:

Theorem 9. Almost all trajectories of (〈u(t, ·), v(t, ·)〉 : 0 ≤ t ≤ T ) are constant.

This is Theorem 3.1 of section II in Pardoux (1979).
Again, of course the “real” conditional Kolmogorov backward equation will be the

adjoint of the Kushner equation.
In a sense, the expression of v and u as conditional expectations is already a

stochastic representation of the solutions of the SPDEs, and it is strongly reminiscent
of the Kolmogorov equations. But let us also represent v as solution of a BDSDE.
This is natural because it is precisely the type of equation that we treated in the
last section. We have two options to do so: under the measure P, the drift term
h(t, x)∗v(t, x)h(t,Xt)dt is stochastic. This was not permitted in the representation in
Pardoux and Peng (1994), but we could slightly generalize their results to include our
case. For this it is necessary that Xt is FBt,T ∨ FWt -measurable. But this is of course
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the case. Assume all the conditions from the previous section are satisfied. Then we
obtain the BDSDE

−dRt,x
s = h(s,X t,x

s )∗Rt,x
s h(s,Xs)ds+ h(s,X t,x

s )∗Rt,x
s d

←
Bs − Zt,x

s dWs

Rt,x
T = f(X t,x

T )

where X is as previously, starting at time 0 with density p0, and X t,x starts at time
t in x. The “filtration” for which we search an adapted solution is FBs,T ∨ FWs .

The simpler and maybe more natural way to find a representation is to work under
the equivalent probability P̃ for which Y is a Brownian motion. Since then we have
P̃-a.s. v(s,X t,x

s ) = Rt,x
s for the solution R of the BDSDE, this equality will also hold

P-a.s. Under P̃ we have two choices for the second Brownian motion: we can choose
W , which is a standard Brownian motion that is independent of Y under P̃. But we
can also choose a completely new Brownian motion W̃ , independent ofW and Y , and
define X̃ as solution of (8) driven by W̃ . In actual calculations, the second option
might be more convenient. Consider the BDSDE

−dRt,x
s = h(s, X̃ t,x

s )∗Rt,x
s d

←
Y s − Zt,x

s dW̃s

Rt,x
T = f(X̃ t,x

T )

under the measure P̃ and with the “filtration” Gs,T ∨ FW̃t,s , s ≥ t. Under the right
assumptions on h and f , there is a unique solution Rt,x, that additionally satisfies
P̃-a.s. and thus P-a.s.

Rt,x
s = v(s, X̃ t,x

s )

Here it does not matter whether W̃ = W or whether W̃ is independent of W .

Bibliographic Notes Most of the material is from Pardoux and Peng (1994), where
BDSDEs were first introduced. The material on filtering is from Pardoux (1979).
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