
Testing Transmission Graphs for Acyclicity∗

Haim Kaplan1, Katharina Klost2, Wolfgang Mulzer2, Liam
Roditty3, and Micha Sharir1

1 Tel Aviv University, Israel
{haimk, michas}@post.tau.ac.il

2 Institut für Informatik, Freie Universität Berlin, Germany
{kathklost,mulzer}@inf.fu-berlin.de

3 Bar Ilan University, Israel
liamr@macs.biu.ac.il

Abstract
Let S be a set of n point sites in the plane, such that each site s ∈ S has an associated radius
rs > 0. The transmission graph on S, denoted T (S), is the directed graph with vertex set S
where st is a directed edge if and only if |st| ≤ rs, i.e., if t lies in the disk Ds with center s
and radius rs. A basic question is to decide whether T (S) is acyclic, i.e., whether T (S) does
not contain a directed cycle. We show that if our notion of directed cycle also includes cycles
with two edges, then this problem can be solved in O(n logn) expected time, independent of the
number of edges in T (S).

Along the way, we encounter a batched range searching problem that may be interesting in
its own right: given O(n) query triples of the form (p, r1, r2), with p ∈ R2 and 0 < r1 < r2, report
for every query (p, r1, r2) one site s ∈ S with p ∈ Ds and rs ∈ [r1, r2), if it exists. We show how
to solve this range searching problem in O(n logn) expected time.

1 Introduction

Transmission graphs are a popular model for directed sensor networks with different trans-
mission radii (see, e.g., [8] and the references therein). We are given a set S of n point sites
in the plane, representing the locations of the sensors. Each site s ∈ S has an associated
radius rs > 0 that models the transmission strength of the corresponding sensor. The disk
for the site s, denoted Ds, is the disk with center s and radius rs. The directed transmission
graph T (S) has vertex set S and a directed edge from a site s to a site t if and only if t ∈ Ds,
i.e., if the sensor s can reach the sensor t. Throughout, we will assume that S is in general
position, which means that no site lies on the disk boundary of any other site and that all
associated radii are pairwise distinct. Even though transmission graphs may contain Ω(n2)
edges, it turns out that many problems on them can be solved without explicitly generating
all those edges [7, 8].

Here, we consider the basic problem of testing whether T (S) contains a directed cycle.
This is a sequence s1, . . . , sk of k ≥ 2 sites such that s1 ∈ Dsk

and such that si+1 ∈ Dsi
, for

i = 1, . . . , k − 1. There are two reasonable variants of this question, depending on whether
we allow the case k = 2 or insist on k ≥ 3. We show that if k = 2 is permitted, this problem
can be solved in O(n logn) expected time, independent of the number of edges.

Our algorithm is based on the observation that if T (S) contains a directed cycle, then
it must contain a directed cycle with two edges. Furthermore, we identify a batched range
query problem that may be interesting by itself. Given n disks in the plane, we want to
efficiently answer a batch of n queries, each consisting of a point and a radius range. For

∗ Partially supported by ERC STG 757609 and GIF grant 1367/2015.

35th European Workshop on Computational Geometry, Utrecht, The Netherlands, March 18–20, 2019.
This is an extended abstract of a presentation given at EuroCG’19. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.

26:2 Testing Transmission Graphs for Acyclicity

each such query, we want to find a disk whose radius lies in the given range and that contains
the given query point. Kaplan et al. [7] considered a specialized version of this range query,
using a nearest neighbor data structure distributed on a balanced binary search tree. Their
solution achieves worst-case running time O(n log2 n). Another related query structure is
due to Imai et al. [6]. Their structure stores a set of n disks. The preprocessing time is
O(n logn), and it can find for any point p ∈ R2 in O(logn) time a disk that contains p, if it
exists. Our structure uses a similar high-level approach as the structure of Kaplan et al. [7].
To achieve a better running time, we lift the problem to R3 and draw on previous results on
convex hulls and the intersection of convex polyhedra.

2 Range Queries

We begin by describing our batched range searching problem. The setting is as follows: let S
be a set of n sites in R2, each with an associated radius rs > 0. Let Ds be the disk with
radius rs and center s. We will consider the following query problem:
(R) We are given O(n) query triples (p, r1, r2), where p ∈ R2 and r2 ≥ r1 > 0. For every

query triple, we would like to find a site s ∈ S with rs ∈ [r1, r2) and p ∈ Ds, if it exists.

2.1 Canonical Intervals, Paths, and Nodes
The queries in (R) concern sites whose associated radii lie in given intervals. Just as in range
trees [1, Chapter 5], we subdivide each such query interval [r1, r2) into O(logn) pieces from
a fixed set of canonical intervals. For this, we build a balanced binary tree B on S. For an
example of the tree, illustrating the concepts introduced in this section see Figure 1 The
leaves of B are the sites of S, sorted from left to right by increasing associated radius. The
tree B has n leaves, O(n) vertices, and height O(logn). For each vertex v ∈ B, let Iv be the
sorted list of sites in the leaves of the subtree rooted at v. We call the sets Iv, for v ∈ B, the
canonical intervals of S. There are O(n) of them.

Next, we define canonical paths and canonical nodes for a query q = (p, r1, r2). For a
radius r > 0, the predecessor of r in S is the site s ∈ S with the largest radius rs ≤ r. The
proper predecessor of r is the site s ∈ S with the largest radius rs < r. The successor and
proper successor of r are defined analogously. Let [r1, r2) be the query interval of q. We
consider the path π1 in B from the root to the leaf with the proper predecessor t1 of r1 and
the path π2 in B from the root to the leaf with the successor t2 of r2. If t1 does not exist,
we take π1 as the left spine of B, and if t2 does not exist, we take π2 as the right spine of
B. Then, π1 and π2 are called the canonical paths for q. The set of canonical nodes for q is
defined as follows: for each vertex v in π1 \ π2, we include the right child of v if it is not in
π1, and for each v in π2 \ π1, we include the left child of v if it is not in π2. Furthermore, we
include the last node of π1 if t1 does not exist, and the last node of π2 if t2 does not exist.

I Lemma 2.1. The total size of the canonical intervals is O(n logn), and the tree B together
with the sorted canonical intervals can be built in O(n logn) time. For any query q, there are
O(logn) canonical nodes, and they can be found in O(logn) time. The canonical intervals
for the canonical nodes of q constitute a partition of the query interval for q.

Proof. Since a site s ∈ S appears in O(logn) canonical intervals, the total size of the
canonical intervals is O(n logn). To construct B, we sort S according to the associated
radii rs, and we build B on top of the sorted list. To find the sorted canonical intervals, we
perform a bottom-up traversal of B, obtaining the canonical interval for each internal node
by copying and joining the canonical intervals of its children.

H. Kaplan, K. Klost, W. Mulzer, L. Roditty, and M. Sharir 26:3

Canonical path of (p, rs3 , rs8)

Canonical nodes of (p, rs3 , rs8)

Vertex containing s9 in Iv

≤ s8

≤ s4

≤ s2

≤ s1

s1 s2

≤ s4

s3 s4

≤ s6

≤ s5

s5 s6

≤ s8

s7 s8

≤ s12

≤ s10

≤ s9

s9 s10

≤ s11

s11 s12

≤ s14

≤ s13

s13 s14

≤ s15

s15 s16

Figure 1 An example of canonical intervals, paths, and nodes.

The bound on the number of canonical nodes for q follows, since B has height O(logn).
To find them, we trace the canonical paths for q in B. The partition property holds directly
by construction. J

2.2 The Query Procedure
In order to solve a batch of queries of type (R), we build a dedicated search structure for
each canonical interval, and we solve all queries that encompass one canonical interval in
a single go. This means that we have a set of disks in the plane and a set of query points,
and we need to determine for each query point whether it is contained in the union of the
given disks. To solve this batched query efficiently, we exploit the well-known lifting map.
Let U =

{
(x, y, z) | x2 + y2 = z

}
be the three-dimensional unit paraboloid. For a point

p ∈ R2, the lifted version p̂ of p is its vertical projection onto U . Each disk Ds, for s ∈ S,
is mapped to an upper halfspace D̂s, so that the projection of D̂s ∩ U onto the xy-plane is
the set R2 \Ds;1 see Figure 2. Now, the union of a set of disks in R2 is represented as the
intersection of the lifted upper halfspaces in R3.

I Lemma 2.2. The range searching problem (R) can be solved in O(n logn) expected time.

Proof. For each v ∈ B, we construct a three-dimensional representation of the union of
the disks in the canonical interval Iv. As explained, this is the intersection Ev of the lifted
three-dimensional halfspaces D̂s, for s ∈ Iv. The intersection of two three-dimensional convex
polyhedra with a total of m vertices can be computed in O(m) time [2, 3]. Therefore, we
can construct all the polyhedra Ev, for v ∈ B, in overall O(n logn) time, by a bottom-up
traversal of B (by Lemma 2.1, the total number of vertices of these polyhedra is O(n logn)).

For the batched query processing, we computed a polytope Q̂v for each v ∈ B. The
polytope Q̂v is obtained by determining all the points p that appear in a query (p, r1, r2)

1 This halfspace is bounded by the plane z = 2xsx − x2
s + 2ysy − y2

s + r2
s , where s = (xs, ys).

EuroCG’19

26:4 Testing Transmission Graphs for Acyclicity

Ds
t

D̂s

t̂

Figure 2 Lifting disks and points. For D̂ only the bounding plane is shown.

that has v as a canonical node, lifting those point points p to their three-dimensional
representations p̂, and taking the convex hull of the resulting three-dimensional point set.
The lifted query points all lie on the unit paraboloid U , so every lifted query point appears
as a vertex on Q̂v. To find all polytopes Q̂v, for v ∈ B, efficiently, we proceed as follows: let
A be the three-dimensional point set obtained by taking all points that appear in a query
and by lifting them onto the unit paraboloid. We compute the convex hull of A in O(n logn)
time. Then, for each v ∈ B, we find the convex hull of all lifted queries that have v in their
canonical path. This can be done in O(n logn) total expected time by a top-down traversal
of B. We already have the polytope for the root of B. To compute the polytope for a child
node, given that the polytope for the parent node is available, we use the fact that for any
polytope E in R3 with m vertices, we can compute the convex hull of any subset of the
vertices of E in O(m) expected time [4]. Once we have for each v ∈ B the convex hull of the
lifted query points that have v on their canonical path, we can compute for each v ∈ B the
polytope Q̂v that is the convex hull of the lifted query points that have v as a canonical node.
For this, we consider the canonical path polytope stored at the parent node of v, and we
again use the algorithm from [4] to extract the convex hull for the lifted query points that
have v as a canonical node.

Now that the polyhedra Q̂v and the polytopes Ev are available, for all v ∈ B, we can
answer the queries as follows: for each node v ∈ B, we must find the vertices of Q̂v that do
not lie inside of Ev. These are exactly the vertices of Q̂v that are not vertices of Q̂v ∩ Ev. As
mentioned, the intersections Q̂v ∩ Ev can be found in linear time for each node v ∈ B, for a
total time O(n logn), and once the intersection is available, we can easily find all vertices
p̂ of Q̂v that are not vertices of Q̂v ∩ Ev (e.g., using radix sort). For any such vertex, we
need to find an answer for the corresponding query, if is has not yet been found. For this,
we create a data structure that supports ray shooting queries on Ev in O(logn) time. This

H. Kaplan, K. Klost, W. Mulzer, L. Roditty, and M. Sharir 26:5

can be done in O(|Ev|) time [5], so the overall construction time is O(n logn). We answer
a vertical ray shooting query for the query point p in Ev in O(logn) to find a disk in the
given radius range that contains p. Since this is done at most once for each query triple, the
overall time remains O(n logn), as desired. J

3 Testing for Acyclicity

Now we consider the problem of testing if a given transmission graph is acyclic, where we
allow cycles with two edges. Let s, t be two sites such that the edges st and ts both exist in
T (S). We call s, t a double edge. Double edges in a transmission graph can be characterized
by certain configurations between sites:

I Lemma 3.1. Let s, t ∈ S with t ∈ Ds and rs ≤ rt. Then s, t is a double edge in T (S).

Proof. The edge ts exists, since t ∈ Ds, or, equivalently, |st| ≤ rs. By the second assumption,
we get |st| ≤ rs ≤ rt, and thus both edges exist. J

Now we use Lemma 3.1 to reduce the problem of deciding if T (S) is acyclic to finding
double edges in T (S).

I Lemma 3.2. A transmission graph T (S) contains a cycle if and only if it contains a double
edge.

Proof. If T (S) contains a double edge, we already have a cycle of length two. Now let
C = s1, . . . , sk be a cycle in T (S), such that s1 is the site of minimum radius in C. We have
s2 ∈ Ds1 by the definition of C and rs1 ≤ rs2 by assumption. By Lemma 3.1, we have that
s1, s2 is the desired double edge. J

We use the range query data structure from Section 2.2 to check if a given transmission
graph is acyclic.

I Lemma 3.3. Let T (S) be a transmission graph on a set S with n sites. In O(n logn)
expected time, we can check if T (S) is acyclic.

Proof. By Lemma 3.2, it suffices to check if T (S) contains a double edge. We can do this
by using the range query data structure as follows. Let rmin be the minimum radius of any
input disk. For each site t, we create a query triple (t, rmin, rt) and perform a batched range
query (R) with these triples on all sites. If there is a site t for which the query returns a
value, we have, by the choice of the queries, that t is contained in the disk for some smaller
site. This directly implies the existence of a double edge by Lemma 3.1. In the other case,
we know that there are no double edges and we can conclude that the graph is acyclic. J

4 Conclusion

We showed how to check a transmission graph for acyclicity in O(n logn) time, when we
include cycles of length two. Right now, we are working on the same setting, while disallowing
these cycles.

Regarding the range query data structure, it would be interesting to derandomize it
within the same time bound. Furthermore, at the moment we are only able to find one
disk containing each given point. In particular with regard to applications in transmission
graphs, it would be useful to be able to find all disks containing each query point, in overall
O((n+ k) logn) time, where k is the overall number of disks reported.

EuroCG’19

26:6 Testing Transmission Graphs for Acyclicity

References
1 Mark de Berg, Otfried Cheong, Marc van Kreveld, and Mark H. Overmars. Computational

Geometry: Algorithms and Applications. Springer-Verlag, third edition, 2008.
2 Timothy M. Chan. A simpler linear-time algorithm for intersecting two convex polyhedra

in three dimensions. Discrete Comput. Geom., 56(4):860–865, December 2016.
3 Bernard Chazelle. An optimal algorithm for intersecting three-dimensional convex polyhe-

dra. SIAM J. Comput., 21(4):671–696, 1992.
4 Bernard Chazelle and Wolfgang Mulzer. Computing hereditary convex structures. Discrete

Comput. Geom., 45(4):796–823, 2011.
5 David P. Dobkin and David G. Kirkpatrick. Fast detection of polyhedral intersections. In

Proc. 9th Internat. Colloq. Automata Lang. Program. (ICALP), pages 154–165, 1982.
6 Hiroshi Imai, Masao Iri, and Kazuo Murota. Voronoi diagram in the Laguerre geometry

and its applications. SIAM J. Comput., 14(1):93–105, 1985.
7 Haim Kaplan, Katharina Klost, Wolfgang Mulzer, and Liam Roditty. Finding the girth

in disk graphs and a directed triangle in transmission graphs. In Proc. 34th European
Workshop Comput. Geom. (EWCG), pages 68:1–6, 2018.

8 Haim Kaplan, Wolfgang Mulzer, Liam Roditty, and Paul Seiferth. Spanners for directed
transmission graphs. SIAM J. Comput., 47(4):1585–1609, 2018.

	Introduction
	Range Queries
	Canonical Intervals, Paths, and Nodes
	The Query Procedure

	Testing for Acyclicity
	Conclusion

