
Computational Geometry Column 67∗

Bahareh Banyassady† Matias Korman‡ Wolfgang Mulzer†

May 15, 2018

Abstract

In the limited workspace model, we consider algorithms whose input resides in read-only
memory and that use only a constant or sublinear amount of writable memory to accomplish
their task. We survey recent results in computational geometry that fall into this model and
that strive to achieve the lowest possible running time. In addition to discussing the state of
the art, we give some illustrative examples and mention open problems for further research.

1 Introduction

Space usage has been a concern since the very early days of algorithm design. The increased
availability of devices with limited memory or power supply—such as smartphones, drones, or small
sensors—as well as the proliferation of new storage media for which write access is comparatively
slow and may have negative effects on the lifetime—such as flash drives—has led to renewed interest
in the subject. As a result, the design of algorithms for the limited workspace model has seen a
significant rise in popularity in computational geometry over the last decade. In this setting, we
typically have a large amount of data that needs to be processed. Although we may access the
data in any way and as often as we like, write-access to the main storage is limited and/or slow.
Thus, we opt to use only higher level memory for intermediate data (e.g., CPU registers). Since
application areas of the devices mentioned above – sensors, smartphones, and drones – often handle
a large amount of geographic (i.e., geometric) data, the scenario becomes particularly interesting
from the viewpoint of computational geometry.

Motivated by these considerations, there have been numerous recent works developing algo-
rithms for geometric problems that, in addition to the input, use only a small amount of memory.
Furthermore, there has been research on time-space trade-offs, where the goal is to find the fastest
algorithm for a given space budget. In the following, we give a broad overview of these results and
of the current state of the field. We also provide examples to illustrate the main challenges that
these algorithms must face and the techniques that have been developed to overcome them.

∗BB and WM supported in part by DFG grant MU 3501/2. MK supported in part by MEXT KAKENHI
No. 17K12635. WM supported in part by DFG grant MU 3501/1 and ERC StG 757609.
†Institut für Informatik, Freie Universität Berlin, Germany. Email: [bahareh,mulzer]@inf.fu-berlin.de
‡Tohoku University, Sendai, Japan. Email: mati@dais.is.tohoku.ac.jp

1

2 The Limited Workspace Model

Designing algorithms that require little working memory is a classic and well-known challenge in
theoretical computer science. Over the years, it has been attacked from many different angles. In
computational complexity theory, the complexity class LOGSPACE contains all algorithmic prob-
lems that can be solved with a workspace that has a logarithmic number of bits [7, 40]. The
research on LOGSPACE has led to several surprising insights [44, 57, 58], perhaps most recently
the st-connectivity algorithm for undirected graphs by Reingold [56], an unexpected application
of expander graphs. The focus in computational complexity is mainly on what can be done in
principle in LOGSPACE. Obtaining LOGSPACE-algorithms with a low running time is usually a
secondary concern. Streaming algorithms are another classic area where the amount of writable
memory is limited [53]. Here, the data items can be read only once (or a limited number of times),
in an unknown order. In addition, the algorithm may maintain a sublinear amount of storage to
accomplish its task. There are several results on geometric problems in the streaming model [27,45],
mostly dealing with problems concerning clustering and extent measures [4], but also with classic
questions, such as computing convex hulls or low-dimensional linear programming [28]. The in-
place model assumes that the input resides in a memory that can be read and written arbitrarily.
The algorithm may use only a constant number of additional memory cells. This means that all
complex data structures need to be encoded with the help of the input elements, severely restricting
the algorithmic options at our disposal. There are geometric in-place algorithms for computing the
convex hull or the Voronoi diagram of a given planar point set [25, 26, 29, 30]. In succinct data
structures, the goal is to minimize the precise number of bits that are needed to represent the
data, getting as close to the entropy bound as possible [54]. At the same time, one would like
to retain the ability to support the desired data structure operations efficiently. In computational
geometry, succinct data structures have been developed for classic problems like range searching,
point location, or nearest neighbor search [43].

The present notion of a limited workspace algorithm, which constitutes the main focus of this
survey, was introduced to the computational geometry community by Tetsuo Asano [8]. Initially,
the model postulated a workspace that consists of a constant number of cells [12, 13]. Over the
years, this was extended to also allow for time-space trade-offs. In the following, we describe the
most general variant of the model.

The model is similar to the standard word RAM in which the memory is organized as a sequence
of cells that can be accessed in constant time via their addresses. Each memory cell stores a single
data word [48]. In contrast to the standard word RAM, the limited workspace model distinguishes
two kinds of cells: (i) read-only cells that store the input; and (ii) read-write cells that constitute
the algorithm’s workspace. A cell of the workspace can store either an integer of O(log n) bits, a
pointer to some input cell, or a root of some polynomial of bounded degree that depends on a fixed
number of input variables (for example, the intersection point of two lines, each passing through
two input points). Here, n denotes the input size (measured in the number of cells).

Typically, the output is larger than the workspace. Thus, we assume that the output is written
sequentially to a dedicated write-only stream. Once a data item is written to the output stream,
it cannot be accessed again by the algorithm; see Figure 1. It usually depends on the algorith-
mic problem at hand how exactly the output should be structured. Our algorithms are typically
deterministic, but there are also results that use randomization. Randomized algorithms in the
limited workspace model may use an unlimited stream of random bits. However, these bits cannot
be accessed arbitrarily: if the algorithm wishes to revisit previous random bits, it needs to store

ACM SIGACT News 2 June 2018 Vol. 49, No. 2

read-only input cells

read-write workspace cells

write-only output stream

Figure 1: The different types of memory cells available in the limited workspace model.

them in its workspace.1 As usual, the running time of an algorithm on a given input is measured as
the number of elementary operations that it performs. The space usage is counted as the number
of cells in the workspace. Note that the input does not contribute to this count, but any other
memory consumption does (like memory implicitly allocated during recursion).

To bring our model into perspective, we compare it with the related models. Unlike the typical
viewpoint from computational complexity theory, our goal is to find the best running time that
can be achieved with a given space budget. In contrast to streaming algorithms, we may read the
input repeatedly and with random access. Unlike in-place algorithms, our input resides in read-
only memory, and the workspace can potentially contain arbitrary data. When analyzing the space
usage of an algorithm, we typically ignore constant factors and lower order terms, whereas these
play a crucial role in succinct data structures.

Although the objective is to have algorithms that are fast and at the same time use little—
ideally constant—workspace, it is normally not possible to achieve both goals simultaneously. Thus,
the aim is to balance the two. Often, this results in a trade-off : as more cells of workspace become
available, the running time decreases. Now, the precise relationship between the running time and
the available space becomes the main focus of our attention. For many problems, this dependency
is linear (i.e., by doubling the amount of workspace, the running time can be halved). However,
recent research has uncovered a wide range of possible trade-offs that often interpolate smoothly
between the best known results for constant and for O(n) cells of workspace.

Table 1 summarizes recent algorithms for geometric problems in the limited workspace model.
In the rest of the survery, we will briefly discuss the problems that have been considered and the
current state of the art.

3 Point Sets in the Plane

The most basic problems in computational geometry concern point sets in the plane: convex hulls,
triangulations, Voronoi diagrams, Euclidean minimum spanning trees, and related structures have
captured the imagination of computational geometers for decades [24]. Naturally, these structures
have also been an early focus in the study of the limited workspace model.

3.1 Convex Hulls

Asano et al. [12] observed that the edges of the convex hull for a set of n points in the plane
can be found in O(n2) time when O(1) cells of workspace are available, through a straightforward
application of Jarvis’ classic gift-wrapping algorithm [46]. Darwish and Elmasry [35] extended this
result to an asymptotically optimal time-space trade-off. For this, they developed a space-efficient

1Refer to Goldreich’s book [40] for further discussion of randomness in the presence of space restrictions.

ACM SIGACT News 3 June 2018 Vol. 49, No. 2

Problem Running Time Space Source

shortest path in a tree n 1 [13]
all nearest larger neighbors n logs n s [11]
sorting n2/(s log n) + n log s s [10]

convex hull of a point set n2/(s log n) + n log s s [35]
triangulation of a point set n2/s+ n log s s [5, 12]
Voronoi diagram/Delaunay triangulation n2 log s/s s [20, 49]
Voronoi diagrams of order 1 to K (K ≤

√
s) n2K6polylog(s)/s s [20]

Euclidean minimum spanning tree n3 log s/s2 s [12, 19]

triangulation of a simple polygon n2/s s [6, 55]
balanced partition of a simple polygon n2/s s [55]
shortest path in a simple polygon n2/s s [13, 42,55]
triangulation of a monotone polygon n logs n s [11]

visibility in a simple polygon n2/2s + n log2 n s [22]
k-visibility in a polygonal domain n2/s+ n log s s [16]
weak visibility in a simple polygon n2 1 [1]
minimum link path in a simple polygon n2 1 [1]
convex hull of a simple polygon n2 log n/2s s∗ [21]

convex hull of a simple polygon n1+1/ log s s∗∗ [21]
common tangents of two disjoint polygons n 1 [2, 3]

Table 1: A selection of problems and the best known running times in the limited workspace model.
The O-notation has been omitted in the bounds. If the space usage is given as s, then s may range
from 1 to n. For s∗, it may range from 1 to o(log n), and for s∗∗ it ranges from logn to n. The
running times for k-visibility and for the convex hull of a simple polygon have been simplified.

heap data structure. The optimality of the trade-off is implied by a lower bound for the sorting
problem due to Beame [23]. The algorithm by Darwish and Elmasry needs O(n2/(s log n)+n log s)
time in order to output the edges of the convex hull, provided that s cells of workspace are available.
The underlying heap data structure is very versatile, and it can also be used to obtain time-space
trade-offs for the sorting problem and for computing a triangulation of a planar point set [10,49].

3.2 Delaunay Triangulations and Voronoi Diagrams

Constant Workspace. For computing the Delaunay triangulation DT(S) and the Voronoi dia-
gram VD(S) of a given set S = {p1, . . . , pn} of n ≥ 3 sites in the plane, Asano et al. [12] presented
an O(n2)-time algorithm that uses O(1) cells of workspace under a general position assumption
(i.e., no 3 sites of S lie on a common line and no 4 sites of S lie on a common circle). The Voronoi
diagram for S, VD(S), is obtained by classifying the points in the plane according to their nearest
neighbor in S. For each site p ∈ S, the open set of points in R2 with p as their unique nearest site
in S is called the Voronoi cell of p and is denoted by C(p). The Voronoi edge for two sites p, q ∈ S
consists of all points in the plane with p and q as their only two nearest sites. It is a (possibly
empty) subset of the bisector B(p, q) of p and q, the line that has all points with the same distance
from p and from q. Finally, Voronoi vertices are the points in the plane that have exactly three
nearest sites in S. It is well known that VD(S) has O(n) vertices, O(n) edges, and n cells [24].

First, we explain how Asano et al. [12] find a single edge of a given cell C(p) of VD(S). Then,

ACM SIGACT News 4 June 2018 Vol. 49, No. 2

we repeatedly use this procedure to find all the edges of VD(S), using O(1) cells of workspace.

Lemma 3.1. Given a site p ∈ S and a ray γ from p that intersects ∂C(p), we can report an edge
e of C(p) whose relative closure intersects γ in O(n) time using O(1) cells of workspace.

Proof. Among all bisectors B(p, q), for q ∈ S \ {p}, we find a bisector B∗ = B(p, q∗) that intersects
γ closest to p. This can be done by scanning the sites of S while maintaining a closest bisector.
The desired Voronoi edge e is a subset of B∗. To find e, we scan S again. For each q ∈ S \ {p, q∗},
we compute the intersection between B(p, q) and B∗. Each such intersection determines a piece
of B∗ not in VD(S), namely the part of B∗ that is closer to q than to p. The portion of B∗ that
remains after the scan is exactly e. Since the current piece of B∗ in each step is connected, we must
maintain at most two endpoints to represent the current candidate for e. The claim follows.

Theorem 3.2. Suppose we are given n planar sites S = {p1, . . . , pn} in general position. We can
find all the edges of VD(S) in O(n2) time using O(1) cells of workspace.

Proof. We process each site p ∈ S to find the edges on ∂C(p). We choose γ as the ray from p
through an arbitrary site of S \ {p}. Then, γ intersects ∂C(p). Using Lemma 3.1, we find an edge
e of C(p) that intersects γ. We let γ′ be the ray from p through the left endpoint of e (if it exists),
and we apply Lemma 3.1 again to find the left adjacent edge e′ of e in C(p). We repeat this to find
further edges of C(p), in counterclockwise order, until we return to e or until we find an unbounded
edge of C(p). In the latter case, we start again from the right endpoint of e (if it exists), and we
find the remaining edges of C(p), in clockwise order.

Since each Voronoi edge is incident to two Voronoi cells, we will encounter each edge twice. To
avoid repetitions in the output, whenever we find an edge e of C(pi) with e ⊆ B(pi, pj), we report
e if and only if i < j. Since VD(S) has O(n) edges, and since reporting one edge takes O(n) time
and O(1) cells of workspace, the result follows.

Time-Space Trade-Off. Korman et al. [49] gave a randomized time-space trade-off for com-
puting VD(S) that runs in expected time O((n2/s) log s + n log s log∗ s), provided that s cells
of workspace may be used. The algorithm is based on a space-efficient implementation of the
Clarkson-Shor random sampling technique [33] that makes it possible to divide the problem into
O(s) subproblems with O(n/s) sites each. All subproblems can then be handled simultaneously
with the constant workspace method of Asano et al. [12], resulting in the desired running time.

More recently, Banyassady et al. [20] developed a better trade-off that is also applicable to
Voronoi diagrams of a higher order. Their algorithm is deterministic, and it computes the traditional
Voronoi diagram as well as the farthest-site Voronoi diagram of S in O(n2 log s/s) time, using s
cells of workspace, for some s ∈ {1, . . . , n}. The main idea is to obtain VD(S) by processing S in
batches of s sites each, using a special procedure to handle sites whose Voronoi cells have a large
number of edges.

We now describe this algorithm in more detail. We assume that our algorithm has O(s) cells
of workspace, for the given parameter s. This does not strengthen the model, and it simplifies
the analysis of the algorithms, as we can assume that we can manipulate structures that require
O(s) cells of space (such as a Voronoi diagram of O(s) sites), without a detailed analysis of the
associated constants.

ACM SIGACT News 5 June 2018 Vol. 49, No. 2

Lemma 3.3. Suppose we are given a set V = {p1, . . . , ps} of s sites in S, together with, for each
i ∈ {1, . . . , s}, a ray γi from pi that intersects ∂C(pi). We can report, for each i, an edge ei of
C(pi) that intersects γi, in total time O(n log s) using O(s) cells of workspace.

Proof. The algorithm scans the sites twice. In the first scan, we find, for i = 1, . . . , s, the bisector
B∗i that contains ei. In the second scan, we determine for each B∗i , i = 1, . . . , s, the exact portion
of B∗i that determines ei.

We start by partitioning S into n/s disjoint batches T1, T2, . . . , Tn/s of s consecutive sites in
the input. Then, we compute VD(V ∪ T1) in O(s log s) time, using O(s) cells of workspace. For
each i, we find the edge e′i of VD(V ∪ T1) that intersects γi closest to pi, and we store the bisector
B′i that contains e′i. This takes time O(|V ∪ T1|) = O(s) by a simple traversal of the diagram.
Now, for j = 2, . . . , n/s, we repeat this procedure with VD(V ∪ Tj), and we update B′i if the new
diagram gives an edge that intersects γi closer to pi than B′i. After all batches T1, . . . , Tn/s have
been scanned, the current bisector B′i is the desired final bisector B∗i , for i = 1, . . . , s.

In the second scan, to find the portion of B∗i that constitutes ei, for i = 1, . . . , s, we again
consider the batches T1, . . . , Tn/s of size s. As before, for j = 1, . . . , n/s, we compute VD(V ∪ Tj),
and for i = 1, . . . , s, we find the portion of B∗i inside the cell Cij of pi in VD(V ∪ Tj). We update
the endpoints of ei to the intersection of the current ei and the cell Cij . After processing Tj , there

is no site in V ∪
⋃j

k=1 Tk that is closer to ei than pi. Thus, after the second scan, ei is the edge of
C(pi) that intersects γi.

In total, we construct O(n/s) Voronoi diagrams, each with at most 2s sites, in O(s log s) time
each. The remaining work in each step of each scan is O(s). Thus, the total running time is
O(n log s). At each time, we have O(s) sites in workspace and a constant amount of information
per site, including their Voronoi diagram. Thus, the space bound is not exceeded.

The global time-space trade-off algorithm has two phases. In the first one, we scan S sequen-
tially. During this scan, we keep a set V of s sites from S in the workspace whose Voronoi cells we
intend to find. In the beginning, V consists of the first s sites from S, and we apply Lemma 3.3
to compute one edge of VD(S) on each cell C(pi), for pi ∈ V . The starting ray γi for each pi ∈ V
is constructed in the same way as in Theorem 3.2. After that, we update these rays to find the
next edge on each C(pi), for pi ∈ V , as in Theorem 3.2. Now, however, for each pi ∈ V , we store
the original ray γ′i in addition to the current ray γi. These two rays help us determine which edges
on C(pi) have been reported already. Whenever all edges for a site pi ∈ V have been found, we
replace pi with the next relevant site from S, and we say that pi has been processed ; see Figure 2.

Since (i) the Voronoi diagram of S has O(n) edges; (ii) in each iteration, we find s edges; and
(iii) each edge is encountered at most twice, it follows that after O(n/s) iterations of this procedure,
fewer than s sites remain in V . All other sites of S have been processed

At this point, phase 1 of the algorithm ends (and the second one starts). During the execution of
the first phase, we output only some of the Voronoi edges, according to the following rule: suppose
we discover the edge e while scanning the site pi, and let pj be the other site with e on its cell
boundary. We output e only if either (i) pj is a fresh site, i.e., pj has not been processed yet and is
not currently in V (this can be tested using the index of the last site inserted into V); or (ii) pj is
in V and e has not been reported as an edge of C(pj) (this can be tested in O(log s) time with a
binary search tree that contains all elements in V and using the rays γj and γ′j). In this way, each
Voronoi edge is reported at most once.

ACM SIGACT News 6 June 2018 Vol. 49, No. 2

Figure 2: Illustration of the algorithm of Banyassady et al. [20] after nine iterations of Lemma 3.3
for a set S of n = 35 sites and workspace of O(log n) cells. The black segments are the edges of
VD(S) that have already been found. The gray and the red sites represent, respectively, the sites
which have been fully processed and those which are currently in the workspace.

Let VR be the set of sites that have not been processed when the first phase of the algorithm
ends. We cannot use Lemma 3.3 any longer, since it needs two passes over the input to find a
single new edge for each site in VR, and the sites in VR may have too many associated Voronoi
edges. Each remaining Voronoi edge must be on the cell boundaries of two sites in VR. Thus, in
the second phase, we compute VD(VR) in O(s log s) time. Let ER denote the set of its edges. Some
edges of ER also occur in VD(S) (possibly in truncated form). To identify these edges, we proceed
similarly to the second scan of Lemma 3.3: in each step, we compute the Voronoi diagram V of VR
and a batch of s sites from S. For each edge e of ER, we check whether e occurs in V (possibly in
truncated form). If not, we set e to be empty; otherwise, we update the endpoints of e according
to the truncated version. After all edges in ER have been checked, we continue with the next batch
of s sites from S. After processing all batches, the remaining non-empty edges in ER are precisely
the edges of VD(S) that are incident to two cells in VD(VR). Some of these edges may have been
reported in the first phase. We can identify each such edge in O(1) time by using the starting ray
and the current ray of the two incident cells from the first phase. These rays are still available in
the workspace, because VR consists of those sites that were left over at the end of the first phase.
We output the remaining edges in ER.

Theorem 3.4. Let S = {p1, . . . , pn} be a planar n-point set in general position, and s ∈ {1, . . . n}.
We can report all edges of VD(S) using O((n2/s) log s) time and O(s) cells of workspace.

Proof. Lemma 3.3 guarantees that the edges reported in the first phase are in VD(S). Also,
conditions (i) and (ii) ensure that no edge is reported twice. Furthermore, in the second phase,
no edge will be reported for a second time. Since VR ⊂ S, an edge e ∈ VD(S) is incident to the
cell of two sites in VR, if and only if the same edge (possibly in extended form) occurs in VD(VR).
Furthermore, for each edge e of VD(VR), we consider all sites of S, and we remove only the portions
of e that cannot be present in VD(S).

Regarding the running time, the first phase requires O(n/s) invocations of Lemma 3.3 and
O(n) tests whether a Voronoi edge should be output. This takes O((n2/s) log s+n log s) time. The
second phase does a single scan over S, and it computes a Voronoi diagram for each batch of s
sites, which takes O(n log s) time in total. Thus, the total running time is O((n2/s) log s).

At each point, we store only s sites in V (along with a constant amount of information attached

ACM SIGACT News 7 June 2018 Vol. 49, No. 2

to each site), the batch of s sites being processed and the associated Voronoi diagram. All of this
requires O(s) cells of workspace, as claimed.

Banyassady et al. [20] also showed that these techniques work for Voronoi diagrams of higher
order [14,50]. More precisely, they obtained the first time-space trade-off for computing the family
of all Voronoi diagrams for S up to a given order K in O

(
n2K5(log s + K logK)/s

)
time using s

cells of workspace.2 The algorithm is based on the simulated parallelization technique, i.e, there
is one instance of the algorithm for each order k, for k = 1, . . . ,K, where the instance for order
k outputs the features for the order-k Voronoi diagram and produces the input needed by the
instance for order k + 1. The computational steps of the individual instances and the memory
usage are coordinated in such a way as to make efficient use of the available workspace while
avoiding an exponential blow-up in the running time that could be caused by a naive application
of the technique.

Open Problem 1. What is the best trade-off for computing higher-order Voronoi diagrams? Are
there non-trivial lower bounds? Can we quickly compute a diagram of a given order without com-
puting the diagrams of lower order? How can we compute Voronoi diagrams of order larger than√
s when s words of workspace are available?

If the goal is to compute any triangulation (rather than a Delaunay triangulation), Ahn et al. [5]
gave a divide and conquer approach that is faster. Their method runs in O(n2/s + n log s) time
and uses s cells of workspace.

3.3 Euclidean Minimum Spanning Trees

Constant Workspace. Let S be a set of n sites in the plane. The Euclidean minimum spanning
tree of S, EMST(S), is the minimum spanning tree of the complete graph GS on S, where the edges
are weighted with the Euclidean distance of their endpoints. The task of computing EMST(S) was
among the first problems to be considered in the limited workspace model. Asano et al. [12] provided
an algorithm that reports the edges of EMST(S) by increasing length using O(n3) time and O(1)
cells of workspace. This is still the fastest algorithm for the problem when constant workspace is
available.

We now describe the algorithm in more detail. We assume that S is in general position, i.e., no
sites of S lie on a common line, no four points in S lie on a common circle, and the edge lengths
in GS are pairwise distinct. Then, EMST(S) is unique. Given S, we can compute EMST(S) in
O(n log n) time if O(n) cells of workspace are available [24]. It is well known that EMST(S) is a
subgraph of the Delaunay triangulation of S, DT(S) [24]. Thus, it suffices to consider only the
edges of DT(S) instead of the complete graph GS on S.

We apply Theorem 3.2, to construct EMST(S) using the edges of DT(S) [12]. Since DT(S) and
VD(S) are graph-theoretic duals, we can output all edges of DT(S) in O(n2) time with O(1) cells of
workspace by adapting the algorithm in the proof of Theorem 3.2. Even more, we can implement a
subroutine clockwiseNextDelaunayEdge(p, pq) that receives the Delaunay edge pq of a site p and
finds the next clockwise Delaunay edge incident to p in O(n) time using O(1) cells of workspace.

2The algorithm assumes that K = O(
√
s). This assumption is due to the fact that we need Θ(K) cells of workspace

to represent a feature of a Voronoi diagram of order K, so that our algorithm can handle up to
√
s features of a

diagram of order
√
s with s cells of workspace.

ACM SIGACT News 8 June 2018 Vol. 49, No. 2

(a)

p qe

r

(b)

p qe

r

Figure 3: Illustration of the algorithm for determining if the edge e = pq is part of the EMST. The
walk starts from the edge pr. After 5 steps, it returns to p, but it does not see e. Thus the walk
continues until it encounters e as an edge incident to q. Thus, e 6∈ EMST(S). (b) Slightly modified
instance in which p and q are in different components. The walk starts from pr, and after 7 steps
it encounters e as an edge of p. Thus, e ∈ EMST(S).

By the bottleneck shortest path property of minimum spanning trees, a Delaunay edge e = pq
is not in EMST(S) if and only if DT(S) has a path between p and q consisting only of edges with
length less than |pq| [36]. Let DT<e be the subgraph of DT(S) with the edges of length less than
|e|. The subgraph DT≤e is defined analogously, having all edges of DT(S) with length at most |e|.

Lemma 3.5. Let S be a planar point set and let e = pq be an edge of DT(S). Given e, we can
determine whether e appears in EMST(S) in O(n2) time using O(1) cells of workspace.

Proof. As explained above, we must determine whether there is a path between p and q in DT<e.
Since DT≤e is a plane graph, if p to q are connected in DT<e, then there is a path that forms a face
in DT≤e with e on its boundary. Thus, we can check for the existence of such a path by walking
from p along the boundary of the face of DT<e that is intersected by e and checking whether we
can encounter q.

In the first step, we find the clockwise next edge pr from e that is incident to p and has length
at most |e|. This can be done by repeated invocations of clockwiseNextDelaunayEdge. In the
next step, we find the clockwise next edge from rp that is incident to r and that has length at
most |e|, again by repeated calls to clockwiseNextDelaunayEdge. The walk continues, for at most
2n steps, until we encounter the edge e again. This can happen in two ways: (i) we see e while
enumerating the incident edges of q. Then, p and q are in the same component of DT<e, and hence
e does not belong to EMST(S); or (ii) we see e while again enumerating incident edges of p. In this
case, it follows that e connects two connected components of DT<e, and e belongs to EMST(S).3

See Figure 3 for an illustration.
This procedure generates a subset of the edges in DT(S), and each edge is generated at most

twice, by a call to clockwiseNextDelaunayEdge in O(n) time. Thus, the total running time is
O(n2). The space bound is immediate.

Theorem 3.6. Given a set S of n sites in the plane, we can output all edges of EMST(S) in O(n3)
time using O(1) cells of workspace.

3Note that the walk may return to p first even though p and q lie in the same component of DT<e. Thus, it is
crucial that we continue the walk until e is encountered for a second time from p.

ACM SIGACT News 9 June 2018 Vol. 49, No. 2

Proof. The algorithm computes the edges of DT(S) using the adaptation of the algorithm in the
proof of Theorem 3.2. Every time we detect a new Delaunay edge e, we pause the computation of
DT(S) and, using Lemma 3.5, we determine if e is in EMST(S). If so, we output e (do nothing
otherwise). In either case we resume with the computation of DT(S) (pausing and resuming can be
done because this subroutine only uses O(s) space). Since DT(S) has O(n) edges, and since it takes
O(n2) time to decide membership in EMST(S), the total time to determine the edges of EMST(S)
is O(n3). Furthermore, by Theorem 3.2, the overhead for computing DT(S) is O(n2), which is
negligible compared to the remainder of the algorithm. The space requirement is immediate from
Theorem 3.2 and Lemma 3.5.

Open Problem 2. Can EMST(S) be found in o(n3) time and constant workspace?

Time-Space Trade-Offs. The running time of the algorithm is dominated by the O(n) calls
to Lemma 3.5. Thus, the time-space trade-off from Theorem 3.4 does not immediately extend
for computing EMST(S). Recently, Banyassady et al. [19] revisited the problem and provided a
time-space trade-off, building on the ideas in Theorem 3.6. Their algorithm computes EMST(S)
in O(n3 log s/s2) time, provided that s cells of workspace are available. It uses the workspace in
two different ways: akin to Lemma 3.3, we check s edges in parallel for membership in EMST(S).
Further, Banyassady et al. [19] introduce s-nets, a compact representation of planar graphs. Using
s-nets, one can speed up Kruskal’s MST algorithm on S by making better use of the limited
workspace.4 The s-net structure seems to be of independent interest, as it provides a compact way
to represent planar graphs that could be exploited by other algorithms that deal with such graphs.

4 Triangulations, Partitions, and Shortest Paths in Polygons

Let P be a simple planar polygon with n vertices. When dealing with P , it is often useful to
first compute a triangulation for P . We remind the reader of the terminology: a diagonal is a
line segment between two vertices of P that goes through the interior of P . A triangulation is a
maximal set of diagonals that do not cross each other. Any triangulation of P contains exactly
n − 3 diagonals, and—famously and perhaps notoriously—a triangulation of P can be found in
linear time when linear workspace is available [32].

In order to perform divide-and-conquer algorithms on P , we often would like to have a balanced
partition of P : a chord is a line segment with endpoints on the boundary of P that goes through the
interior of P . Given s ∈ {1, . . . , n}, a balanced partition of P is a set of s mutually non-crossing
chords that partition P into subpolygons with O(n/s) vertices each. Ideally, the chords should
be diagonals, but other choices, such as vertical segments, are acceptable as well. With linear
workspace at our disposal, for any given s, a balanced partition of P can be obtained in linear
time by first triangulating P and then traversing the dual graph of the triangulation while greedily
selecting appropriate diagonals to serve as the chords of the partition.

A third classic problem on P is shortest path computation: given two points u and v inside
P , find the unique (geodesic) shortest path from u to v that stays in P . The standard algorithm
for this problem triangulates P and then walks in the dual graph of the triangulation from the
triangle containing u to the triangle containing v. During this walk, the algorithm maintains a

4Although the spirit of the algorithm is the same, in [19], the walks are performed in the relative neighborhood
graph of S instead of DT(S). This is critical, since DT(S) is not of bounded degree.

ACM SIGACT News 10 June 2018 Vol. 49, No. 2

simple funnel data structure and outputs the segments of the shortest path. This requires linear
time and linear space (see, for example, Mitchell’s survey [52]).

Thus, in traditional computational geometry, it appears that the most fundamental of the three
problems is polygon triangulation. Once a subroutine for triangulating P is at hand, the other two
problems can be solved rather easily, with additional linear overhead. However, the study of the
limited workspace model has revealed a more intricate web of relationships between these problems
that we will now explain.

4.1 First Results in the Limited Workspace Model

Asano et al. [13] showed a way of navigating a trapezoidation of P with O(1) cells of workspace,
so that the adjacent trapezoids for any given trapezoid can be found in O(n) time (assuming that
the vertices of P are in general position). They also gave a simple algorithm to output the path
between two vertices of a tree that needs linear time and O(1) cells of workspace [13]. These two
results together lead to a constant workspace algorithm for the shortest path problem in P that
requires O(n2) time in theory and turns out to be quite efficient in practice [34]. Furthermore,
Asano et al. provide two alternative constant workspace algorithms for shortest paths in polygons
that are based on constrained Delaunay triangulations [13] and ray shooting [12], respectively. The
former algorithm requires O(n3) time, the latter algorithm requires O(n2) time. An experimen-
tal evaluation of these algorithms was conducted by Cleve and Mulzer [34]. It showed that the
theoretical guarantees for the shortest path algorithms could also be observed in practice.

Open Problem 3. How fast can we find shortest paths in polygonal domains in the limited
workspace model?

4.2 Space-efficient Reductions

The initial study of Asano et al. [13] was quickly followed by another work of Asano et al. [9] that
showed how to enumerate all triangles in a triangulation of P using O(n2) time and O(1) cells
of workspace. They also proved the following: if one can compute a triangulation of P in time
T (n, s) when s cells of workspace are available, then one can use a bottom-up approach to find
O(s) diagonals that constitute a balanced partition of P into subpolygons with O(n/s) vertices,
using T (n, s) +O(n2/s) time and s cells of workspace. As they explain, such a balanced partition
also leads to a time-space trade-off for the shortest path problem in P : given the diagonals of the
partition, one can navigate through the subpolygons and compute a shortest path between any two
vertices in P in additional O(n2/s) time, using s cells of workspace. Thus, we have a reduction
from shortest paths in polygons to polygon triangulation that runs in T (n, s)+O(n2/s) time, using
s cells of workspace. At the time of Asano et al.’s work [9], the best general bound for T (n, s)
was T (n, s) = O(n2), so that their result at first seemed only useful in a regime where P can be
preprocessed and the balanced partition can be stored in the workspace for later use.

Aronov et al. [6] showed a connection between shortest paths and polygon triangulation that
goes in the other direction. Given a shortest path algorithm as a black-box, they use it to partition
P recursively into smaller pieces that fit into the workspace. Then, each piece can be triangulated in
the workspace using linear time and space [32]. Even though it may happen that the recursion runs
out of space—in which case the algorithm needs to fall back to a brute force triangulation method—
it turns out that if there are at least s = Ω(log n) cells of workspace at our disposal, the recursion
always succeeds. Then, the resulting running time R(n) is of the form R(n) = T (n, s) + R(cn),

ACM SIGACT News 11 June 2018 Vol. 49, No. 2

where c < 1 is a constant and T (n, s) is the time needed to compute the shortest path between two
points in a simple polygon with n vertices, provided that s cells of workspace are available.

Thus, by combining the results of Asano et al. [9] and Aronov et al. [6], one can see that all three
problems are equivalent in the limited workspace model: a triangulation can be used to partition
P into balanced pieces [9]. Once we have the partition, we can compute the shortest path between
any two points in P [9]. Finally, a shortest path subroutine allows us to find a triangulation of P in
essentially the same time and space [6]. Thus, given a fast algorithm for any of the three problems,
we can use the reductions to obtain algorithms for the other two problems that require essentially
the same time and space (the transformation only adds an additive overhead of O(n2/s) time).

4.3 Obtaining Genuine Trade-Offs

Even though the work of Asano et al. [9] gave a time-space trade-off for shortest paths in polygons,
it did so at the expense of a preprocessing step that triangulates the polygon, a task for which
they could only claim a O(n2) time algorithm, even if s = ω(1) cells of workspace were available.
Thus, at SoCG 2014, Tetsuo Asano asked whether there is a more direct time-space trade-off for
the shortest path problem that does not go through such a preprocessing step.

Soon after, Har-Peled [42] answered this question in the affirmative. He described a random-
ized algorithm that uses the violator spaces framework [38] and a new polygon decomposition
technique [41] in order to compute the shortest path between any two points in P in expected time
O(n2/s + n log s log4(n/s)), provided that s cells of workspace are available. Har-Peled’s result,
combined with the reductions of Asano et al. and Aronov et al., also gives algorithms for the other
two problems that run in expected time O(n2/s+ n log s log5(n/s)), using s cells of workspace [6].

Very recently, Oh and Ahn [55] showed that a similar result could also be obtained with a
deterministic algorithm. They explained how to find the trapezoidal decomposition of P in O(n2/s)
time, using s cells of workspace. This decomposition, together with the method of Asano et al. [9],
gives a O(n2/s) time deterministic algorithm for obtaining a balanced partition of P with s chords
using s cells of workspace. Again, the reductions yield algorithms with similar running times for
both computing a triangulation and shortest paths in P , see Table 1.

4.4 Special Cases

Special classes of polygons have also been studied. Asano and Kirkpatrick [11] showed that a
monotone polygon can be triangulated in O(n logs n) time, provided that s cells of workspace
are available. This is a remarkable trade-off, since at the s = O(1) extreme, it decreases the
memory required by a linear fraction while only increasing the running time by a logarithmic
factor. Moreover, it also has a gradual improvement of the running time as the available space
increases that matches the best bounds when s = Θ(n). The algorithm by Asano and Kirkpatrick
proceeds through a reduction to the all nearest larger neighbors (ANLN) problem: given a sequence
a1, a2, . . . , an of n real numbers, find for each ai, i ∈ {1, . . . , n}, the closest indices j < i and k > i
with aj , ak > ai.

Open Problem 4. Asano and Kirkpatrick showed that their algorithm is optimal for s = O(1).
Can the time-space trade-off be improved?

ACM SIGACT News 12 June 2018 Vol. 49, No. 2

5 Other Problems in Simple Polygons

In addition to shortest paths and triangulations, also problems concerning visibility, convex hulls,
and common tangents for simple polygons have been studied in the limited workspace model.

5.1 Visibility

Another problem that has received heavy attention in the limited workspace model is visibility in
simple polygons. Visibility problems have played a major role in computational geometry for a
long time, see [39] for an overview. The simplest problem in this family is as follows: given a simple
polygon P , a point p ∈ P , and an integer k ≥ 0, compute the set of points in P that are k-visible
from p, i.e., the set of points q ∈ P for which the connecting segment pq properly intersects the
boundary of P at most k times. This set is called the k-visible region of p in P . Thus, if we
interpret the polygon as the walls of a building, the 0-visible region of p is the set of points that p
can see directly, without seeing through the walls. If we consider 2-visibility, we allow the segment
to leave (and re-enter) P once, and so on.

For k = 0, the 0-visibility problem can be solved in linear time and space, using a classic
algorithm [47]. For larger values of k, the problem can be solved in quadratic time [17].5 Several
time-space trade-offs are known for computing the k-visible region. For 0-visibility, Barba et al. [22]
presented an algorithm that requires O(1) cells of workspace and that runs in O(nr̄) time, where r̄ is
the number of reflex vertices of P that appear in the 0-visible region of p. Their work also contains
a time-space trade-off for finding the 0-visible region. More precisely, they describe a recursive
method based on their constant workspace algorithm that runs in O(nr/2s +n log2 r) deterministic
time and in O(nr/2s+n log r) randomized expected time. Here, r is the number of reflex vertices in
P . Their algorithm uses s cells of workspace, where s is allowed to range from 1 to log r [22]. Only
slightly later, a superset of the authors [21] gave an improved algorithm for the 0-visibility problem
that runs faster for specific combinations of r, s, and n. In fact, Barba et al. [21] discovered a much
more general method for obtaining time-space trade-offs for a wide class of geometric algorithms
that they call stack-based algorithms. See below for a more detailed description of this method.

Open Problem 5. For s = log n, the visibility region can be computed in O(n log2 n) deterministic
and O(n log n) expected time. For s = n, it takes O(n) deterministic time. What happens for
s = log n, . . . , n? Partial answers are known. For example, using the compressed stack framework
mentioned below, we can achieve O(n) time using nε cells of workspace, for any fixed ε > 0. What
is the smallest value of s for which we can compute the visibility region in linear time?

For the general case of k ∈ {1, . . . , n}, Bahoo et al. [16] provided a time-space trade-off that
computes the k-visible region of p in a polygonal region P in O

(
(k + c)n/s + n log s

)
time using

s cells of workspace, where s may range from 1 to n. Here, 1 ≤ c ≤ n is the number of “critical”
vertices of P , i.e., vertices, where the k-visible region may change.6 This algorithm makes use of
known time-space trade-offs for the k-selection problem [31] and requires a careful analysis of the
combinatorics of the k-visible region of p in P .

Another notion of visibility was considered by Abrahamsen [1]. Given a simple polygon P and
an edge e of P , the weak visibility region of e in P is the set of all the points inside P that are

5Note that the notion of k-visibility is slightly different in [17]: they consider all k-visible points in the plane and
not just the points inside the polygon.

6The actual trade-off is a bit more complicated, and we chose a simpler bound for the sake of presentation.

ACM SIGACT News 13 June 2018 Vol. 49, No. 2

visible from at least one point on e. Abrahamsen developed constant workspace algorithms for
edge-to-edge visibility. This leads to an O(nm) time algorithm for finding the weak visibility region
inside a given simple polygon P for an edge e in constant workspace, where m denotes the size of
the output. The result also gives an O(n2) time and constant workspace algorithm for computing
a minimum-link-path between two points in a simple polygon with n vertices.

5.2 The Compressed Stack Framework

Barba et al. [21] provided a general method for stack-based algorithms in the limited workspace
model. Intuitively, a deterministic incremental algorithm is stack-based if its main data structure
takes the form of a stack. In addition to computing 0-visibility regions, classic examples from this
category include the algorithms for computing the convex hull of a simple polygon by Lee [51] or
for triangulating a monotone polygon by Garey et al. [37]. Other applications in graphs of bounded
treewidth are also known [18].

The general trade-off is obtained by using a compressed stack that explicitly stores only a subset
of the stack that is needed during the computation and that recomputes the remaining parts of
the stack as they are needed. Some delicate work goes into balancing the space required for the
partial stack and the time needed for reconstructing the other parts. The upshot of applying this
technique is as follows: given a stack-based algorithm that on input size n runs in O(n) time and
uses a stack with O(n) cells, one can obtain an algorithm that uses s cells of workspace and runs
in O(n2 log n/2s) time for s = o(log n) and in n1+1/ log s time for s ≥ log n.7 An experimental
evaluation of the framework was conducted by Baffier et al. [15].

Open Problem 6. Can we modify the compressed stack framework to compress other structures
(e.g., queues, dequeues, or trees)? If so, what additional applications follow from these techniques?

5.3 Common Tangents

The problem of finding the common tangents of two disjoint polygons can also be solved with a
limited amount of workspace. Abrahamsen [2] showed that one can find the separating tangents of
two polygons with n vertices and disjoint convex hulls in O(n) time and O(1) cells of workspace (if
the convex hulls overlap, the algorithm reports that a separating common tangent does not exist.)
His algorithm is stunningly simple, consisting essentially of a single for-loop, but it requires a subtle
analysis. In follow-up work, Abrahamsen and Walczack [3] changed two lines in Abrahamsen’s
algorithm to show that the problem of finding the outer tangents of two disjoint polygons with
n vertices can also be solved with O(n) time and O(1) cells of workspace. Combining these two
results, one can decide in the same time and space complexity if the convex hulls of the given
polygons are disjoint, overlapping, or nested.

Open Problem 7. Can we find the outer common tangents of two non-disjoint polygons in linear
time using O(1) words of workspace?

7Again, as above, the actual trade-off is more nuanced, but we simplified the bound to make it more digestible for
the casual reader. More details can be found in the original paper [21].

ACM SIGACT News 14 June 2018 Vol. 49, No. 2

References

[1] M. Abrahamsen. An optimal algorithm computing edge-to-edge visibility in a simple polygon.
In Proc. 25th Canad. Conf. Comput. Geom. (CCCG), 2013. 4, 13

[2] M. Abrahamsen. An optimal algorithm for the separating common tangents of two polygons.
In Proc. 31st Int. Sympos. Comput. Geom. (SoCG), pages 198–208, 2015. 4, 14

[3] M. Abrahamsen and B. Walczak. Outer common tangents and nesting of convex hulls in linear
time and constant workspace. In Proc. 24th Annu. European Sympos. Algorithms (ESA), pages
4:1–4:15, 2016. 4, 14

[4] P. K. Agarwal, S. Har-Peled, and K. R. Varadarajan. Approximating extent measures of
points. J. ACM, 51(4):606–635, 2004. 2

[5] H.-K. Ahn, N. Baraldo, E. Oh, and F. Silvestri. A time-space trade-off for triangulations of
points in the plane. In Proc. 23rd Internat. Comput. and Combinat. Conf. (COCOON), pages
3–12, 2017. 4, 8

[6] B. Aronov, M. Korman, S. Pratt, A. van Renssen, and M. Roeloffzen. Time-space trade-offs
for triangulating a simple polygon. In Proc. 15th Scand. Symp. Work. Alg. Theo. (SWAT),
pages 30:1–30:12, 2016. 4, 11, 12

[7] S. Arora and B. Barak. Computational Complexity: A Modern Approach. Cambridge Univer-
sity Press, Cambridge, UK, 2009. 2

[8] T. Asano. Constant-working-space algorithms: How fast can we solve problems without using
any extra array? In Proc. 19th Annu. Internat. Sympos. Algorithms Comput. (ISAAC), page 1,
2008. 2

[9] T. Asano, K. Buchin, M. Buchin, M. Korman, W. Mulzer, G. Rote, and A. Schulz. Memory-
constrained algorithms for simple polygons. Comput. Geom., 46(8):959–969, 2013. 11, 12

[10] T. Asano, A. Elmasry, and J. Katajainen. Priority queues and sorting for read-only data.
In Proc. 10th Int. Conf. Theory and Applications of Models of Computation (TAMC), pages
32–41, 2013. 4

[11] T. Asano and D. G. Kirkpatrick. Time-space tradeoffs for all-nearest-larger-neighbors prob-
lems. In Proc. 13th Algorithms and Data Structures Symposium (WADS), pages 61–72, 2013.
4, 12

[12] T. Asano, W. Mulzer, G. Rote, and Y. Wang. Constant-work-space algorithms for geometric
problems. J. Comput. Geom., 2(1):46–68, 2011. 2, 3, 4, 5, 8, 11

[13] T. Asano, W. Mulzer, and Y. Wang. Constant-work-space algorithms for shortest paths in
trees and simple polygons. J. Graph Algorithms Appl., 15(5):569–586, 2011. 2, 4, 11

[14] F. Aurenhammer, R. Klein, and D.-T. Lee. Voronoi Diagrams and Delaunay Triangulations.
World Scientific Publishing, 2013. 8

ACM SIGACT News 15 June 2018 Vol. 49, No. 2

[15] J.-F. Baffier, Y. Diez, and M. Korman. Experimental study of compressed stack algorithms
in limited memory environments. In Proc. 17th Int. Symp. Experimental Algorithms (SEA),
page to appear, 2018. 14

[16] Y. Bahoo, B. Banyassady, P. Bose, S. Durocher, and W. Mulzer. Time-space trade-off for
finding the k-visibility region of a point in a polygon. In Proc. 11th Workshop Alg. Comp.
(WALCOM), pages 308–319, 2017. 4, 13

[17] A. L. Bajuelos, S. Canales, G. Hernández-Peñalver, and A. M. Martins. A hybrid metaheuristic
strategy for covering with wireless devices. J. UCS, 18(14):1906–1932, 2012. 13

[18] N. Banerjee, S. Chakraborty, V. Raman, S. Roy, and S. Saurabh. Time-space tradeoffs for dy-
namic programming algorithms in trees and bounded treewidth graphs. In Proc. 21st Internat.
Comput. and Combinat. Conf. (COCOON), pages 349–360, 2015. 14

[19] B. Banyassady, L. Barba, and W. Mulzer. Time-space trade-offs for computing Euclidean
minimum spanning trees. In Proc. 13th Latin American Symp. Theoret. Inform. (LATIN),
pages 108–119, 2018. 4, 10

[20] B. Banyassady, M. Korman, W. Mulzer, A. van Renssen, M. Roeloffzen, P. Seiferth, and
Y. Stein. Improved time-space trade-offs for computing Voronoi diagrams. In Proc. 34th
Sympos. Theoret. Aspects Comput. Sci. (STACS), pages 9:1–9:14, 2017. 4, 5, 7, 8

[21] L. Barba, M. Korman, S. Langerman, K. Sadakane, and R. I. Silveira. Space-time trade-offs
for stack-based algorithms. Algorithmica, 72(4):1097–1129, 2015. 4, 13, 14

[22] L. Barba, M. Korman, S. Langerman, and R. I. Silveira. Computing a visibility polygon using
few variables. Comput. Geom., 47(9):918–926, 2014. 4, 13

[23] P. Beame. A general sequential time-space tradeoff for finding unique elements. SIAM J.
Comput., 20(2):270–277, 1991. 4

[24] M. de Berg, O. Cheong, M. van Kreveld, and M. Overmars. Computational Geometry: Algo-
rithms and Applications. Springer-Verlag, Berlin, third edition, 2008. 3, 4, 8

[25] H. Brönnimann, T. M. Chan, and E. Y. Chen. Towards in-place geometric algorithms and
data structures. In Proc. 20th Annu. Sympos. Comput. Geom. (SoCG), pages 239–246, 2004.
2

[26] H. Brönnimann, J. Iacono, J. Katajainen, P. Morin, J. Morrison, and G. T. Toussaint. In-place
planar convex hull algorithms. In Proc. 5th Latin American Symp. Theoret. Inform. (LATIN),
pages 494–507, 2002. 2

[27] T. M. Chan. Faster core-set constructions and data-stream algorithms in fixed dimensions.
Comput. Geom., 35(1-2):20–35, 2006. 2

[28] T. M. Chan and E. Y. Chen. Multi-pass geometric algorithms. Discrete Comput. Geom.,
37(1):79–102, 2007. 2

[29] T. M. Chan and E. Y. Chen. In-place 2-d nearest neighbor search. In Proc. 19th Annu.
ACM-SIAM Sympos. Discrete Algorithms (SODA), pages 904–911, 2008. 2

ACM SIGACT News 16 June 2018 Vol. 49, No. 2

[30] T. M. Chan and E. Y. Chen. Optimal in-place and cache-oblivious algorithms for 3-d convex
hulls and 2-d segment intersection. Comput. Geom., 43(8):636–646, 2010. 2

[31] T. M. Chan, J. I. Munro, and V. Raman. Selection and sorting in the “restore” model. In
Proc. 25th Annu. ACM-SIAM Sympos. Discrete Algorithms (SODA), pages 995–1004, 2014.
13

[32] B. Chazelle. Triangulating a simple polygon in linear time. Discrete Comput. Geom., 6(5):485–
524, 1991. 10, 11

[33] K. L. Clarkson and P. W. Shor. Applications of random sampling in computational geometry.
II. Discrete Comput. Geom., 4(5):387–421, 1989. 5

[34] J. Cleve and W. Mulzer. An experimental study of algorithms for geodesic shortest paths in
the constant workspace model. In Proc. 33rd European Workshop Comput. Geom. (EWCG),
pages 165–168, 2017. 11

[35] O. Darwish and A. Elmasry. Optimal time-space tradeoff for the 2d convex-hull problem. In
Proc. 22nd Annu. European Sympos. Algorithms (ESA), pages 284–295, 2014. 3, 4

[36] D. Eppstein. Spanning trees and spanners. In J.-R. Sack and J. Urrutia, editors, Handbook of
Computational Geometry, chapter 9, pages 425–461. Elsevier, 2000. 9

[37] M. R. Garey, D. S. Johnson, F. P. Preparata, and R. E. Tarjan. Triangulating a simple polygon.
Inform. Process. Lett., 7(4):175–179, 1978. 14

[38] B. Gärtner, J. Matoušek, L. Rüst, and P. Skovron. Violator spaces: Structure and algorithms.
Discrete Applied Mathematics, 156(11):2124–2141, 2008. 12

[39] S. K. Ghosh. Visibility Algorithms in the Plane. Cambridge University Press, New York, NY,
USA, 2007. 13

[40] O. Goldreich. Computational Complexity. A conceptual perspective. Cambridge University
Press, Cambridge, UK, 2008. 2, 3

[41] S. Har-Peled. Quasi-polynomial time approximation scheme for sparse subsets of polygons. In
Proc. 30th Annu. Sympos. Comput. Geom. (SoCG), pages 120–129, 2014. 12

[42] S. Har-Peled. Shortest path in a polygon using sublinear space. J. Comput. Geom., 7(2):19–45,
2016. 4, 12

[43] M. He. Succinct and implicit data structures for computational geometry. In Space-Efficient
Data Structures, Streams, and Algorithms–Papers in Honor of J. Ian Munro on the Occasion
of His 66th Birthday, pages 216–235, 2013. 2

[44] N. Immerman. Nondeterministic space is closed under complementation. SIAM J. Comput.,
17(5):935–938, 1988. 2

[45] P. Indyk. Streaming algorithms for geometric problems. In Proc. 24th Annu. Conf. Found.
Software Technology and Theoret. Comput. Sci. (FSTTCS), pages 32–34, 2004. 2

ACM SIGACT News 17 June 2018 Vol. 49, No. 2

[46] R. A. Jarvis. On the identification of the convex hull of a finite set of points in the plane.
Inform. Process. Lett., 2(1):18–21, 1973. 3

[47] B. Joe and R. B. Simpson. Corrections to Lee’s visibility polygon algorithm. BIT, 27(4):458–
473, 1987. 13

[48] D. Knuth. The Art of Computer Programming: Fundamental Algorithms, volume 1. Addison-
Wesley, Redwood City, CA, USA, 3rd edition, 1997. 2

[49] M. Korman, W. Mulzer, A. van Renssen, M. Roeloffzen, P. Seiferth, and Y. Stein. Time-space
trade-offs for triangulations and Voronoi diagrams. Comput. Geom., page available online,
2017. doi:10.1016/j.comgeo.2017.01.001. 4, 5

[50] D.-T. Lee. On k-nearest neighbor Voronoi diagrams in the plane. IEEE Trans. Computers,
31(6):478–487, 1982. 8

[51] D.-T. Lee. On finding the convex hull of a simple polygon. International Journal of Parallel
Programming, 12(2):87–98, 1983. 14

[52] J. S. B. Mitchell. Shortest paths and networks. In J. E. Goodman, J. O’Rourke, and C. D.
Tóth, editors, Handbook of Discrete and Computational Geometry, chapter 31, pages 811–848.
CRC Press, Inc., 3rd edition, 2017. 11

[53] S. Muthukrishnan. Data streams: Algorithms and applications. Foundations and Trends in
Theoretical Computer Science, 1(2):117–236, 2005. 2

[54] G. Navarro. Compact Data Structures - A Practical Approach. Cambridge University Press,
2016. 2

[55] E. Oh and H.-K. Ahn. A New Balanced Subdivision of a Simple Polygon for Time-Space
Trade-off Algorithms. In Proc. 28th Annu. Internat. Sympos. Algorithms Comput. (ISAAC),
pages 61:1–61:12, 2017. 4, 12

[56] O. Reingold. Undirected connectivity in log-space. J. ACM, 55(4):Art. #17, 24 pp., 2008. 2

[57] W. J. Savitch. Relationships between nondeterministic and deterministic tape complexities.
J. Comput. System Sci., 4(2):177–192, 1970. 2

[58] R. Szelepcsényi. The method of forcing for nondeterministic automata. Bulletin of the EATCS,
33:96–99, 1987. 2

ACM SIGACT News 18 June 2018 Vol. 49, No. 2

	Introduction
	The Limited Workspace Model
	Point Sets in the Plane
	Convex Hulls
	Delaunay Triangulations and Voronoi Diagrams
	Euclidean Minimum Spanning Trees

	Triangulations, Partitions, and Shortest Paths in Polygons
	First Results in the Limited Workspace Model
	Space-efficient Reductions
	Obtaining Genuine Trade-Offs
	Special Cases

	Other Problems in Simple Polygons
	Visibility
	The Compressed Stack Framework
	Common Tangents

