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Abstract15

Let P = (p1, p2, . . . , pn) be a polygonal chain. The stretch factor of P is the ratio between the total16

length of P and the distance of its endpoints,
∑n−1

i=1 |pipi+1|/|p1pn|. For a parameter c ≥ 1, we call17

P a c-chain if |pipj |+ |pjpk| ≤ c|pipk|, for every triple (i, j, k), 1 ≤ i < j < k ≤ n. The stretch factor18

is a global property: it measures how close P is to a straight line, and it involves all the vertices of19

P ; being a c-chain, on the other hand, is a fingerprint-property: it only depends on subsets of O(1)20

vertices of the chain.21

We investigate how the c-chain property influences the stretch factor in the plane: (i) we show22

that for every ε > 0, there is a noncrossing c-chain that has stretch factor Ω(n1/2−ε), for sufficiently23

large constant c = c(ε); (ii) on the other hand, the stretch factor of a c-chain P is O
(
n1/2), for every24

constant c ≥ 1, regardless of whether P is crossing or noncrossing; and (iii) we give a randomized25

algorithm that can determine, for a polygonal chain P in R2 with n vertices, the minimum c ≥ 1 for26

which P is a c-chain in O
(
n2.5 polylog n

)
expected time and O(n log n) space.27
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1 Introduction40

Given a set S of n point sites in the plane, what is the best way to connect S into a geometric41

network (graph)? This question has motivated researchers for a long time, going back as far42

as the 1940s, and beyond [19,35]. Numerous possible criteria for a good geometric network43
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have been proposed, perhaps the most basic being the length. In 1955, Few [20] showed that44

for any set of n points in a unit square, there is a traveling salesman tour of length at most45 √
2n+ 7/4. This was improved to at most 0.984

√
2n+ 11 by Karloff [23]. Similar bounds46

also hold for the shortest spanning tree and the shortest rectilinear spanning tree [13, 16, 21].47

Besides length, two further key factors in the quality of a geometric network are the vertex48

dilation and the geometric dilation [31], both of which measure how closely shortest paths in49

a network approximate the Euclidean distances between their endpoints.50

The dilation (also called stretch factor [29] or detour [1]) between two points p and q in a51

geometric graph G is defined as the ratio between the length of a shortest path from p to q52

and the Euclidean distance |pq|. The dilation of the graph G is the maximum dilation over53

all pairs of vertices in G. A graph in which the dilation is bounded above by t ≥ 1 is also54

called a t-spanner (or simply a spanner if t is a constant). A complete graph in Euclidean55

space is clearly a 1-spanner. Therefore, researchers focused on the dilation of graphs with56

certain additional constraints, for example, noncrossing (i.e., plane) graphs. In 1989, Das57

and Joseph [15] identified a large class of plane spanners (characterized by two simple local58

properties). Bose et al. [6] gave an algorithm that constructs for any set of planar sites59

a plane 11-spanner with bounded degree. On the other hand, Eppstein [18] analyzed a60

fractal construction showing that β-skeletons, a natural class of geometric networks, can61

have arbitrarily large dilation.62

The study of dilation also raises algorithmic questions. Agarwal et al. [1] described63

randomized algorithms for computing the dilation of a given path (on n vertices) in R2 in64

O(n logn) expected time. They also presented randomized algorithms for computing the65

dilation of a given tree, or cycle, in R2 in O(n log2 n) expected time. Previously, Narasimhan66

and Smid [30] showed that an (1 + ε)-approximation of the stretch factor of any path, cycle,67

or tree can be computed in O(n logn) time. Klein et al. [24] gave randomized algorithms for68

a path, tree, or cycle in R2 to count the number of vertex pairs whose dilation is below a69

given threshold in O(n3/2+ε) expected time. Cheong et al. [12] showed that it is NP-hard to70

determine the existence of a spanning tree on a planar point set whose dilation is at most a71

given value. More results on plane spanners can be found in the monograph dedicated to72

this subject [31] or in several surveys [8, 17,29].73

We investigate a basic question about the dilation of polygonal chains. More precisely,74

we ask how the dilation between the endpoints of a polygonal chain (which we will call75

the stretch factor, to distinguish it from the more general notion of dilation) is influenced76

by fingerprint properties of the chain, i.e., by properties that are defined on O(1)-size77

subsets of the vertex set. Such fingerprint properties play an important role in geometry,78

where classic examples include the Carathéodory property1 [26, Theorem 1.2.3] or the Helly79

property2 [26, Theorem 1.3.2]. In general, determining the effect of a fingerprint property80

may prove elusive: given n points in the plane, consider the simple property that every 381

points determine 3 distinct distances. It is unknown [9, p. 203] whether this property implies82

that the total number of distinct distances grows superlinearly in n.83

Furthermore, fingerprint properties appear in the general study of local versus global84

properties of metric spaces that is highly relevant to combinatorial approximation algorithms85

that are based on mathematical programming relaxations [5]. In the study of dilation,86

1 Given a finite set S of points in d dimensions, if every d + 2 points in S are in convex position, then S
is in convex position.

2 Given a finite collection of convex sets in d dimensions, if every d + 1 sets have nonempty intersection,
then all sets have nonempty intersection.
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interesting fingerprint properties have also been found. For example, a (continuous) curve C87

is said to have the increasing chord property [14,25] if for any points a, b, c, d that appear88

on C in this order, we have |ad| ≥ |bc|. The increasing chord property implies that C has89

(geometric) dilation at most 2π/3 [33]. A weaker property is the self-approaching property: a90

(continuous) curve C is self-approaching if for any points a, b, c that appear on C in this91

order, we have |ac| ≥ |bc|. Self-approaching curves have dilation at most 5.332 [22] (see92

also [3]), and they have found interesting applications in the field of graph drawing [4, 7, 32].93

We introduce a new natural fingerprint property and see that it can constrain the stretch94

factor of a polygonal chain, but only in a weaker sense than one may expect; we also provide95

algorithmic results on this property. Before providing details, we give a few basic definitions.96

Definitions. A polygonal chain P in the Euclidean plane is specified by a sequence of n97

points (p1, p2, . . . , pn), called its vertices. The chain P consists of n−1 line segments between98

consecutive vertices. We say P is simple if only consecutive line segments intersect and they99

only intersect at their endpoints. Given a polygonal chain P in the plane with n vertices100

and a parameter c ≥ 1, we call P a c-chain if for all 1 ≤ i < j < k ≤ n, we have101

|pipj |+ |pjpk| ≤ c|pipk|. (1)102

Observe that the c-chain condition is a fingerprint condition that is not really a local dilation103

condition—it is more a combination between the local chain substructure and the distribution104

of the points in the subchains.105

The stretch factor δP of P is defined as the dilation between the two end points p1 and106

pn of the chain:107

δP =
∑n−1

i=1 |pipi+1|
|p1pn|

.108

Note that this definition is different from the more general notion of dilation (also called109

stretch factor [29]) of a graph which is the maximum dilation over all pairs of vertices. Since110

there is no ambiguity in this paper, we will just call δP the stretch factor of P .111

For example, the polygonal chain P = ((0, 0), (1, 0), . . . , (n, 0)) is a 1-chain with stretch112

factor 1; and Q = ((0, 0), (0, 1), (1, 1), (1, 0)) is a (
√

2 + 1)-chain with stretch factor 3.113

Without affecting the results, the floor and ceiling functions are omitted in our calculations.114

For a positive integer t, let [t] = {1, 2, . . . , t}. For a point set S, let conv(S) denote the115

convex hull of S. All logarithms are in base 2, unless stated otherwise.116

Our results. We deduce three upper bounds on the stretch factor of a c-chain P with n117

vertices (Section 2). In particular, we have (i) δP ≤ c(n− 1)log c, (ii) δP ≤ c(n− 2) + 1, and118

(iii) δP = O
(
c2√n− 1

)
.119

From the other direction, we obtain the following lower bound (Section 3): For every120

c ≥ 4, there is a family Pc = {P k}k∈N of simple c-chains, so that P k has n = 4k + 1 vertices121

and stretch factor (n− 1)
1+log(c−2)−log c

2 , where the exponent converges to 1/2 as c tends to122

infinity. The lower bound construction does not extend to the case of 1 < c < 4, which123

remains open.124

Finally, we present two algorithmic results (Section 4): (i) A randomized algorithm that125

decides, given a polygonal chain P in R2 with n vertices and a threshold c > 1, whether P is126

a c-chain in O
(
n2.5 polylog n

)
expected time and O(n logn) space. (ii) As a corollary, there127

is a randomized algorithm that finds, for a polygonal chain P with n vertices, the minimum128

c ≥ 1 for which P is a c-chain in O
(
n2.5 polylog n

)
expected time and O(n logn) space.129

MFCS 2019
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2 Upper Bounds130

At first glance, one might expect the stretch factor of a c-chain, for c ≥ 1, to be bounded by131

some function of c. For example, the stretch factor of a 1-chain is necessarily 1. We derive132

three upper bounds on the stretch factor of a c-chain with n vertices in terms of c and n133

(cf. Theorems 1–3); see Fig. 1 for a visual comparison between the bounds. For large n,134

the bound in Theorem 1 is the best for 1 ≤ c ≤ 21/2, while the bound in Theorem 3 is the135

best for c > 21/2. In particular, the bound in Theorem 1 is tight for c = 1. The bound in136

Theorem 2 is the best for c ≥ 2 and n ≤ 111c2.137

500 1000 1500 2000

2

4

6

8

10

Figure 1 The values of n and c for which (i) Theorem 1, (ii) Theorem 2, and (iii) Theorem 3
give the current best upper bound.

Our first upper bound is obtained by a recursive application of the c-chain property. It138

holds for any positive distance function that may not even satisfy the triangle inequality.139

I Theorem 1. For a c-chain P with n vertices, we have δP ≤ c(n− 1)log c.140

Proof. We prove, by induction on n, that141

δP ≤ cdlog(n−1)e, (2)142

for every c-chain P with n ≥ 2 vertices. In the base case, n = 2, we have δP = 1 and143

cdlog(2−1)e = 1. Now let n ≥ 3, and assume that (2) holds for every c-chain with fewer than144

n vertices. Let P = (p1, . . . , pn) be a c-chain with n vertices. Then, applying (2) to the first145

and second half of P , followed by the c-chain property for the first, middle, and last vertex146

of P , we get147

n−1∑
i=1
|pipi+1| ≤

dn/2e−1∑
i=1

|pipi+1|+
n−1∑

i=dn/2e

|pipi+1|148

≤ cdlog(dn/2e−1)e (|p1pdn/2e|+ |pdn/2epn|
)

149

≤ cdlog(dn/2e−1)e · c|p1pn|150

≤ cdlog(n−1)e|p1pn|,151
152

so (2) holds also for P . Consequently,153

δP ≤ cdlog(n−1)e ≤ clog(n−1)+1 = c · clog(n−1) = c (n− 1)log c,154

as required. J155
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Our second bound interprets the c-chain property geometrically and makes use of the156

fact that P resides in the Euclidean plane.157

I Theorem 2. For a c-chain P with n vertices, we have δP ≤ c(n− 2) + 1.158

c−1
2

p1

1
pn

c−1
2

c
2

c
2

Figure 2 The entire chain P lies in an ellipse with foci p1 and pn.

Proof. Without loss of generality, assume that |p1pn| = 1. Since P is a c-chain, for every159

1 < j < n, we have |p1pj |+ |pjpn| ≤ c|p1pn| = c. If we fix the points p1 and pn, then every160

pj lies in an ellipse E with foci p1 and pn, for 1 < j < n, see Figure 2. The diameter of E161

is its major axis, whose length is c. Since E contains all vertices of the chain P , we have162

|p1p2|, |pn−1pn| ≤ c+1
2 ≤ c and |pjpj+1| ≤ c for all 1 < j < n − 1. Therefore the stretch163

factor of P is bounded above by164

δP =
∑n−1

j=1 |pjpj+1|
|p1pn|

= |p1p2|+ |pn−1pn|+
n−2∑
j=2
|pjpj+1|165

≤ c+ 1
2 + c+ 1

2 + c(n− 3) = c(n− 2) + 1,166
167

as required. J168

Our third upper bound uses a volume argument to bound the number of long edges in P .169

I Theorem 3. Let P = (p1, . . . , pn) be a c-chain, for some constant c ≥ 1, and let L =170 ∑n−1
i=1 |pipi+1| be its length. Then L = O

(
c2√n− 1

)
|p1pn|, hence δP = O

(
c2√n− 1

)
.171

Proof. We may assume that p1pn is a horizontal segment of unit length. By the argument172

in the proof of Theorem 2, all points pi (i = 1, . . . , n) are contained in an ellipse E with foci173

p1 and pn, where the major axis of E has length c. Let U be the minimal axis-aligned square174

containing E; its side is of length c.175

We set x = 8c2/
√
n− 1; and let L0 and L1 be the sum of lengths of all edges in P of176

length at most x and more than x, respectively. By definition, we have L = L0 + L1 and177

L0 ≤ (n− 1)x = (n− 1) · 8c2/
√
n− 1 = 8c2√n− 1. (3)178

We shall prove that L1 ≤ 8c2√n− 1, implying L ≤ 2x(n− 1) = O
(
c2√n− 1

)
. For this, we179

further classify the edges in L1 according to their lengths: For ` = 0, 1, . . . ,∞, let180

P` =
{
pi : 2`x < |pipi+1| ≤ 2`+1x

}
. (4)181

Since all points lie in an ellipse of diameter c, we have |pipi+1| ≤ c, for all i = 0, . . . , n− 1.182

Consequently, P` = ∅ when c ≤ 2`x, or equivalently log(c/x) ≤ `.183

MFCS 2019
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We use a volume argument to derive an upper bound on the cardinality of P`, for184

` = 0, 1, . . . , blog(c/x)c. Assume that pi, pk ∈ P`, and w.l.o.g., i < k. If k = i + 1, then185

by (4), 2`x < |pipk|. Otherwise,186

2`x < |pipi+1| < |pipi+1|+ |pi+1pk| ≤ c|pipk|, or
2`x

c
< |pipk|.187

Consequently, the disks of radius188

R = 2`x

2c = 4 · 2`c√
n− 1

(5)189

centered at the points in P` are interior-disjoint. The area of each disk is πR2. Since P` ⊂ U ,190

these disks are contained in the R-neighborhood UR of the square U , i.e., the Minkowski191

sum R+ U . For ` ≤ log(c/x), we have 2`x ≤ c, hence R = 2`x
2c ≤

c
2c = 1

2 ≤
c
2 . Then we can192

bound the area of UR from above as follows:193

area(UR) < (c+ 2R)2 ≤ (2c)2 = 4c2. (6)194

Since UR contains |P`| interior-disjoint disks of radius R, we obtain195

|P`| ≤
area(UR)
πR2 <

4c2

πR2 = 16c4

π22`x2 . (7)196

For every segment pi−1pi with length more than x, we have that pi ∈ P`, for some ` ∈197

{0, 1, . . . , blog(c/x)c}. The total length of these segments is198

L1 ≤
blog(c/x)c∑

`=0
|P`| · 2`+1x <

blog(x/c)c∑
`=0

16c4

π22`x2 · 2
`+1x =

blog(x/c)c∑
`=0

32c4

π2`x
199

<
32c4

πx

∞∑
`=0

1
2`

= 64c4

πx
= 8c2

π
·
√
n− 1,200

201

as required. Together with (3), this yields L ≤ 8
(
1 + c2/π

)
·
√
n− 1. J202

3 Lower Bounds203

We now present our lower bound construction, showing that the dependence on n for the204

stretch factor of a c-chain cannot be avoided.205

I Theorem 4. For every constant c ≥ 4, there is a set Pc = {P k}k∈N of simple c-chains, so206

that P k has n = 4k + 1 vertices and stretch factor (n− 1)
1+log(c−2)−log c

2 .207

By Theorem 3, the stretch factor of a c-chain in the plane is O
(
(n− 1)1/2) for every208

constant c ≥ 1. Since209

lim
c→∞

1 + log(c− 2)− log c
2 = 1

2 ,210

our lower bound construction shows that the limit of the exponent cannot be improved.211

Indeed, for every ε > 0, we can set c = 22ε+1

22ε−1 , and then the chains above have stretch factor212

(n− 1)
1+log(c−2)−log c

2 = (n− 1)1/2−ε = Ω(n1/2−ε).213

We first construct a family Pc = {P k}k∈N of polygonal chains. Then we show, in214

Lemmata 5 and 6, that every chain in Pc is simple and indeed a c-chain. The theorem follows215

since the claimed stretch factor is a consequence of the construction.216
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Construction of Pc. The construction here is a generalization of the iterative construction217

of the Koch curve; when c = 6, the result is the original Cesàro fractal (which is a variant218

of the Koch curve) [10]. We start with a unit line segment P 0, and for k = 0, 1, . . . , we219

construct P k+1 by replacing each segment in P k by four segments such that the middle220

three points achieve a stretch factor of c∗ = c−2
2 (this choice will be justified in the proof of221

Lemma 6). Note that c∗ ≥ 1, since c ≥ 4.222

We continue with the details. Let P 0 be the unit line segment from (0, 0) to (1, 0); see223

Figure 3 (left). Given the polygonal chain P k (k = 0, 1, . . . ), we construct P k+1 by replacing224

each segment of P k by four segments as follows. Consider a segment of P k, and denote225

its length by `. Subdivide this segment into three segments of lengths ( 1
2 −

a
c∗

)`, 2a
c∗
`, and226

( 1
2 −

a
c∗

)`, respectively, where 0 < a < c∗
2 is a parameter to be determined later. Replace the227

middle segment with the top part of an isosceles triangle of side length a`. The chains P 0,228

P 1, P 2, and P 4 are depicted in Figures 3 and 4.229

(0, 0)
1

(1, 0) (0, 0)

1
2 −

a
c∗

a a

1
2 −

a
c∗

(1, 0)

2a
c∗

Figure 3 The chains P 0 (left) and P 1 (right).

Note that each segment of length ` in P k is replaced by four segments of total length230

(1 + 2a(c∗−1)
c∗

)`. After k iterations, the chain P k consists of 4k line segments of total length231 (
1 + 2a(c∗−1)

c∗

)k

.232

By construction, the chain P k (for k ≥ 1) consists of four scaled copies of P k−1. For233

i = 1, 2, 3, 4, let the ith subchain of P k be the subchain of P k consisting of 4k−1 segments234

starting from the ((i− 1)4k−1 + 1)th segment. By construction, the ith subchain of P k is235

similar to the chain P k−1, for i = 1, 2, 3, 4.3 The following functions allow us to refer to236

these subchains formally. For i = 1, 2, 3, 4, define a function fk
i : P k → P k as the identity237

on the ith subchain of P k that sends the remaining part(s) of P k to the closest endpoint(s)238

along this subchain. So fk
i (P k) is similar to P k−1. Let gi : Pc \ {P 0} → Pc be a piecewise239

defined function such that gi(C) = σ−1 ◦ fk
i ◦ σ(C) if C is similar to P k, where σ : C → P k

240

is a similarity transformation. Applying the function gi on a chain P k can be thought of as241

“cutting out” its ith subchain.242

Figure 4 The chains P 2 (left) and P 4 (right).

3 Two geometric shapes are similar if one can be obtained from the other by translation, rotation, and
scaling; and are congruent if one can be obtained from the other by translation and rotation.

MFCS 2019
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Clearly, the stretch factor of the chain monotonically increases with the parameter a.243

However, if a is too large, the chain is no longer simple. The following lemma gives a sufficient244

condition for the constructed chains to avoid self-crossings.245

I Lemma 5. For every constant c ≥ 4, if a ≤ c−2
2c , then every chain in Pc is simple.246

Proof. Let T = conv(P 1). Observe that T is an isosceles triangle; see Figure 5 (left). We247

first show the following:248

B Claim. If a ≤ c−2
2c , then conv(P k) = T for all k ≥ 1.249

Proof. We prove the claim by induction on k. It holds for k = 1 by definition. For the250

induction step, assume that k ≥ 2 and that the claim holds for k − 1. Consider the chain251

P k. Since it contains all the vertices of P 1, T ⊂ conv(P k). So we only need to show that252

conv(P k) ⊂ T .253

1
2 −

a
c∗

a a

1
2 −

a
c∗

2a
c∗

p

t

a
(

1
2 −

a
c∗

)
(

1
2 −

a
c∗

)2

Figure 5 Left: Convex hull T of P 1 in light gray; Right: Convex hulls of gi(P 2), i = 1, 2, 3, 4, in
dark gray, are contained in T .

By construction, P k ⊂
⋃4

i=1 conv(gi(P k)); see Figure 5 (right). By the inductive hypoth-254

esis, conv(gi(P k)) is an isosceles triangle similar to T , for i = 1, 2, 3, 4. Since the bases of255

conv(g1(P k)) and conv(g4(P k)) are collinear with the base of T by construction, due to256

similarity, they are contained in T . The base of conv(g2(P k)) is contained in T . In order to257

show conv(g2(P k)) ⊂ T , by convexity, it suffices to ensure that its apex p is also in T . Note258

that the coordinates of the top point is t =
(

1/2, a
√
c2
∗ − 1/c∗

)
, so the supporting line ` of259

the left side of T is260

y =
2a
√
c2
∗ − 1
c∗

x, and261

p =
(

1
2 −

a

2c∗
−
a2 (c2

∗ − 1
)

c2
∗

,

(
a

2c∗
+ a2

c2
∗

)√
c2
∗ − 1

)
.262

263

By the condition of a ≤ c−2
2c = c∗

2(c∗+1) in the lemma, p lies on or below `. Under the same264

condition, we have conv(g3(P k)) ⊂ T by symmetry. Then P k ⊂
⋃4

i=1 conv(gi(P k)) ⊂ T .265

Since T is convex, conv(P k) ⊂ T . So conv(P k) = T , as claimed. C266

We can now finish the proof of Lemma 5 by induction. Clearly, P 0 and P 1 are simple.267

Assume that k ≥ 2, and P k−1 is simple. Consider the chain P k. For i = 1, 2, 3, 4, gi(P k) is268

similar to P k−1, hence simple by the inductive hypothesis. Since P k =
⋃4

i=1 gi(P k), it is269

sufficient to show that for all i, j ∈ {1, 2, 3, 4}, where i 6= j, a segment in gi(P k) does not270

intersect any segments in gj(P k), unless they are consecutive in P k and they intersect at a271

common endpoint. This follows from the above claim together with the observation that for272

i 6= j, the intersection gi(P k) ∩ gj(P k) is either empty or contains a single vertex which is273

the common endpoint of two consecutive segments in P k. J274
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In the remainder of this section, we assume that275

a = c− 2
2c = c∗

2(c∗ + 1) . (8)276

Under this assumption, all segments in P 1 have the same length a. Therefore, by construction,277

all segments in P k have the same length278

ak =
(

c∗
2(c∗ + 1)

)k

.279

There are 4k segments in P k, with 4k + 1 vertices, and its stretch factor is280

δP k = 4k

(
c∗

2(c∗ + 1)

)k

=
(

2c∗
c∗ + 1

)k

.281

Consequently, k = log4(n− 1) = log(n−1)
2 , and282

δP k =
(

2c∗
c∗ + 1

) log(n−1)
2

=
(

2c− 4
c

) log(n−1)
2

= (n− 1)
1+log(c−2)−log c

2 ,283

as claimed. To finish the proof of Theorem 4, it remains to show the constructed polygonal284

chains are indeed c-chains.285

I Lemma 6. For every constant c ≥ 4, Pc is a family of c-chains.286

We first prove a couple of facts that will be useful in the proof of Lemma 6. We defer an287

intuitive explanation until after the formal statement of the lemma.288

I Lemma 7. Let k ≥ 1 and let P k = (p1, p2, . . . , pn), where n = 4k + 1. Then the following289

hold:290

(i) There exists a sequence (q1, q2, . . . , qm) of m = 2 · 4k−1 points in R2 such that the chain291

Rk = (p1, q1, p2, q2, . . . , pm, qm, pm+1) is similar to P k.292

(ii) For k ≥ 2, define g5 : Pc \ {P 0, P 1} → Pc by293

g5(P k) =
(
g3 ◦ g2(P k)

)
∪
(
g4 ◦ g2(P k)

)
∪
(
g1 ◦ g3(P k)

)
∪
(
g2 ◦ g3(P k)

)
.294

Then g5(P k) is similar to P k−1.295

Part (i) of Lemma 7 says that given P k, we can construct a chain Rk similar to P k
296

by inserting one point between every two consecutive points of the left half of P k, see297

Figure 6 (left). Part (ii) says that the “top” subchain of P k that consists of the right half of298

g2(P k) and the left half of g3(P k), see Figure 6 (right), is similar to P k−1.299

Figure 6 Left: Chain P k with the scaled copy of itself Rk (in red); Right: Chain P k with its
subchain g5(P k) marked by its convex hull.
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Proof of Lemma 7. For (i), we review the construction of P k, and show that Rk and P k
300

can be constructed in a coupled manner. In Figure 7 (left), consider P 1 = (p1, p2, p3, p4, p5).301

Recall that all segments in P 1 are of the same length a = c∗
2(c∗+1) . The isosceles triangles302

∆p1p2p3 and ∆p1p3p5 are similar. Let σ : ∆p1p3p5 → ∆p1p2p3 be the similarity transfor-303

mation. Let q1 = σ(p2) and q2 = σ(p4). By construction, the chain R1 = (p1, q1, p2, q2, p3)304

is similar to P 1. In particular, all of its segments have the same length. So the isosceles305

triangle ∆p1q1p2 is similar to ∆p1p3p5. Moreover, its base is the segment p1p2, so ∆p1q1p2306

is precisely conv(g1(P 2)), see Figure 7 (right).307

p1 p2

p3

p4 p5

q1

q2

v1 v2

v3

v4 v5

v6

v7 v8

v9

v10 v11

v17

Figure 7 Left: the chains P 1 and R1 (red); Right: the chains P 2 and R1 (red).

Write P 2 = (v1, v2, . . . , v17), then v3 = q1 by the above argument and v7 = q2 by308

symmetry. Now ∆v1v2v3, ∆v3v4v5, ∆v5v6v7, and ∆v7v8v9 are four congruent isosceles309

triangles, all of which are similar to ∆v1v9v17, since the angles are the same. Repeat the310

above procedure on each of them to obtain R2 = (v1, u1, v2, u2, . . . , v8, u8, v9), which is similar311

to P 2. Continue this construction inductively to get the desired chain Rk for any k ≥ 1.312

For (ii), see Figure 7 (right). By definition, g5(P 2) is the subchain (v7, v8, v9, v10, v11).313

Observe that the segments v7v8 and v10v11 are collinear by symmetry. Moreover, they are314

parallel to v1v17 since ∠v7v8v9 = ∠v1v5v9. So g5(P 2) is similar to P 1; see Figure 7 (left).315

Then for k ≥ 2, g5(P k) is the subchain of P k starting at vertex v7, ending at vertex v11. By316

the construction of P k, g5(P k) is similar to P k−1. J317

Due to space constraints, the proof of Lemma 6 is deferred to the full version.318

4 Algorithm for Recognizing c-Chains319

In this section, we design a randomized Las Vegas algorithm to recognize c-chains. More320

precisely, given a polygonal chain P = (p1, . . . , , pn), and a parameter c ≥ 1, the algorithm321

decides whether P is a c-chain, in O
(
n2.5 polylog n

)
expected time. By definition, P =322

(p1, . . . , pn) is a c-chain if |pipj | + |pjpk| ≤ c |pipk| for all 1 ≤ i < j < k ≤ n; equivalently,323

pj lies in the ellipse of major axis c with foci pi and pk. Consequently, it suffices to test,324

for every pair 1 ≤ i < k ≤ n, whether the ellipse of major axis c|pipk| with foci pi and pk325

contains pj , for all j, i < j < k. For this, we can apply recent results from geometric range326

searching.327

I Theorem 8. There is a randomized algorithm that can decide, for a polygonal chain328

P = (p1, . . . , pn) in R2 and a threshold c > 1, whether P is a c-chain in O
(
n2.5 polylog n

)
329

expected time and O(n logn) space.330

Agarwal, Matoušek and Sharir [2, Theorem 1.4] constructed, for a set S of n points in331

R2, a data structure that can answer ellipse range searching queries: it reports the number332

of points in S that are contained in a query ellipse. In particular, they showed that, for333

every ε > 0, there is a constant B and a data structure with O(n) space, O
(
n1+ε

)
expected334

preprocessing time, and O
(
n1/2 logB n

)
query time. The construction was later simplified335
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by Matoušek and Patáková [27]. Using this data structure, we can quickly decide whether a336

given polygonal chain is a c-chain.337

Proof of Theorem 8. Subdivide the polygonal chain P = (p1, . . . , pn) into two subchains of338

equal or almost equal sizes, P1 = (p1, . . . , pdn/2e) and P2 = (pdn/2e, . . . , pn); and recursively339

subdivide P1 and P2 until reaching 1-vertex chains. Denote by T the recursion tree. Then,340

T is a binary tree of depth dlogne. There are at most 2i nodes at level i; the nodes at level i341

correspond to edge-disjoint subchains of P , each of which has at most n/2i edges. Let Wi be342

the set of subchains on level i of T ; and let W =
⋃

i≥0 Wi. We have |W | ≤ 2n.343

For each polygonal chain Q ∈ W , construct an ellipse range searching data structure344

DS(Q) described above [2] for the vertices of Q, with a suitable parameter ε > 0. Their345

overall expected preprocessing time is346

dlog ne∑
i=0

2i ·O
(( n

2i

)1+ε
)

= O

n1+ε

dlog ne∑
i=0

(
1
2i

)ε
 = O

(
n1+ε

)
,347

their space requirement is
∑dlog ne

i=0 2i ·O
(
n/2i

)
= O(n logn), and their query time at level i348

is O
((
n/2i

)1/2 polylog
(
n/2i

))
= O

(
n1/2 polylog n

)
.349

For each pair of indices 1 ≤ i < k ≤ n, we do the following. Let Ei,k denote the ellipse of350

major axis c|pipk| with foci pi and pk. The chain (pi+1, . . . , pk−1) is subdivided into O(logn)351

maximal subchains in W , using at most two subchains from each set Wi, i = 0, . . . , dlogne.352

For each of these subchains Q ∈W , query the data structure DS(Q) with the ellipse Ei,k. If353

all queries are positive (i.e., the count returned is |Q| in all queries), then P is a c-chain;354

otherwise there exists j, i < j < k, such that pj /∈ Ei,k, hence |pipj | + |pjpk| > c|pipk|,355

witnessing that P is not a c-chain.356

The query time over all pairs 1 ≤ i < k ≤ n is bounded above by357

(
n

2

) 2dlog ne∑
i=0

O
((
n/2i

)1/2 polylog
(
n/2i

))
=
(
n

2

)
·O
(
n1/2 polylog n

)
358

= O
(
n2.5 polylog n

)
.359

360

This subsumes the expected time needed for constructing the structures DS(Q), for all361

Q ∈W . So the overall running time of the algorithm is O
(
n2.5 polylog n

)
, as claimed. J362

In the decision algorithm above, only the construction of the data structures DS(Q),363

Q ∈W , uses randomization, which is independent of the value of c. The parameter c is used364

for defining the ellipses Ei,k, and the queries to the data structures; this part is deterministic.365

Hence, we can find the optimal value of c by Meggido’s parametric search [28] in the second366

part of the algorithm.367

Meggido’s technique reduces an optimization problem to a corresponding decision problem368

at a polylogarithmic factor increase in the running time. An optimization problem is amenable369

to this technique if the following three conditions are met [34]: (1) the objective function370

is monotone in the given parameter; (2) the decision problem can be solved by evaluating371

bounded-degree polynomials, and (3) the decision problem admits an efficient parallel372

algorithm (with polylogarithmic running time using polynomial number of processors). All373

three conditions hold in our case: The area of each ellipse with foci in S monotonically374

increases with c; the data structure of [27] answers ellipse range counting queries by evaluating375

polynomials of bounded degree; and the
(

n
2
)
queries can be performed in parallel. Alternatively,376
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Chan’s randomized optimization technique [11] is also applicable. Both techniques yield the377

following result.378

I Corollary 9. There is a randomized algorithm that can find, for a polygonal chain P =379

(p1, . . . , pn) in R2, the minimum c ≥ 1 for which P is a c-chain in O
(
n2.5 polylog n

)
expected380

time and O(n logn) space.381

We remark that, for c = 1, the test takes O(n) time: it suffices to check whether points382

p3, . . . , pn lie on the line spanned by p1p2, in that order.383

5 Concluding Remarks384

We end with some final observations and pointers for further research.385

1. For k ≥ 1, let P k
∗ = g2(P k) ∪ g3(P k), see Figure 8 (right). It is easy to see that P k

∗ is a386

c-chain with n = 4k/2 + 1 vertices and has stretch factor
√
c(c− 2)/8(n−1)

1+log(c−2)−log c
2 .387

Since
√
c(c− 2)/8 ≥ 1 for c ≥ 4, this improves the result of Theorem 4 by a constant388

factor. Since this construction does not improve the exponent, and the analysis would be389

longer (requiring a case analysis without new insights), we omit the details.

Figure 8 The chains P 4 (left) and P 4
∗ (right).

390

2. If c is used instead of c∗ = (c− 2)/2 in the lower bound construction, then the condition391

c ≥ 4 in Theorem 4 can be replaced by c ≥ 1, and the bound can be improved from392

(n− 1)
1+log(c−2)−log c

2 to (n− 1)
1+log c−log(c+1)

2 . However, we were unable to prove that the393

resulting P k’s, k ∈ N, are c-chains, although a computer program has verified that the394

first few generations of them are indeed c-chains.395

3. The volume argument in Theorem 3 easily generalizes to higher dimensions. If P be a396

c-chain in Rd for fixed c ≥ 1 and d ≥ 2, then δP = O
(
c2(n− 1)1−1/d

)
. It is interesting397

to find out whether extra dimension(s) allows one to achieve a larger stretch factor.398

4. The upper bounds in Theorem 1–3 are valid regardless of whether the chain is crossing399

or not. On the other hand, the lower bound in Theorem 4 is given by noncrossing chains.400

A natural question is whether a sharper upper bound holds if the chains are required to401

be noncrossing. More specifically, can the exponent of n in the upper bound be reduced402

to 1/2− ε, where ε > 0 depends on c?403

5. Our algorithm in Section 4 can recognize c-chains with n vertices in O
(
n2.5 polylog n

)
404

expected time and O(n logn) space, using ellipse range searching data structures. It is405

likely that the running time can be improved in the future, perhaps at the expense of406

increased space, when suitable time-space trade-offs for semi-algebraic range searching407

become available. The existence of such data structures is conjectured [2], but currently408

remains open.409
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