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ON THE STRETCH FACTOR OF POLYGONAL CHAINS*

KE CHENT, ADRIAN DUMITRESCU#, WOLFGANG MULZERS, AND CSABA D. TOTHY

Abstract. Let P = (p1,p2,...,pn) be a polygonal chain in R. The stretch factor of P is
the ratio between the total length of P and the distance of its endpoints, Z?z_ll [pipit1l/Ip1pnl-
For a parameter ¢ > 1, we call P a c-chain if |p;pj| + |pjpr| < clpip|, for every triple (3,7, k),
1 <i < j <k <n. The stretch factor is a global property: it measures how close P is to a straight
line, and it involves all the vertices of P; being a c-chain, on the other hand, is a fingerprint-property:
it only depends on subsets of O(1) vertices of the chain.

We investigate how the c-chain property influences the stretch factor in the plane: (i) we show
that for every € > 0, there is a noncrossing c-chain that has stretch factor Q(nl/Q’E), for sufficiently
large constant ¢ = ¢(g); (ii) on the other hand, the stretch factor of a c-chain P is O (n1/2), for every
constant ¢ > 1, regardless of whether P is crossing or noncrossing; and (iii) we give a randomized
algorithm that can determine, for a polygonal chain P in R? with n vertices, the minimum ¢ > 1
for which P is a c-chain in O (n2'5 polylog n) expected time and O(nlogn) space. These results
generalize to R%. For every dimension d > 2 and every & > 0, we construct a noncrossing c-chain
that has stretch factor (n(lfe)(d’l)/d); on the other hand, the stretch factor of any c-chain is

(@] ((n - 1)<d_1)/d); for every ¢ > 1, we can test whether an n-vertex chain in R? is a c-chain in
0] (n3_1/d polylog n) expected time and O(nlogn) space.

Key words. polygonal chain, vertex dilation, Koch curve, recursive construction

AMS subject classifications. 05C38, 05C40, 68Q25, 68U05

1. Introduction. Given a set S of n point sites in a Euclidean space R?, what
is the best way to connect S into a geometric network (graph)? This question has
motivated researchers for a long time, going back as far as the 1940s, and beyond [20,
36]. Numerous possible criteria for a good geometric network have been proposed,
perhaps the most basic being the length. In 1955, Few [21] showed that for any set of
n points in a unit square, there is a traveling salesman tour of length at most v/2n +
7/4. This was improved to at most 0.984y/2n + 11 by Karloff [24]. Similar bounds
hold for the shortest spanning tree and the shortest rectilinear spanning tree [14,17,
22]. Besides length, two further key factors in the quality of a geometric network
are the verter dilation and the geometric dilation [32], both of which measure how
closely shortest paths in a network approximate the Euclidean distances between their
endpoints.

The dilation (also called stretch factor [30] or detour [2]) between two points p
and ¢ in a geometric graph G is defined as the ratio between the length of a shortest
path from p to g and the Euclidean distance |pg|. The dilation of the graph G is
the maximum dilation over all pairs of vertices in G. A graph in which the dilation
is bounded above by t > 1 is also called a t-spanner (or simply a spanner if ¢ is a
constant). A complete graph in Euclidean space is clearly a l-spanner. Therefore,
researchers focused on the dilation of graphs with certain additional constraints, for
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2 K. CHEN, A. DUMITRESCU, W. MULZER, AND C.D. TOTH

example, noncrossing (i.e., plane) graphs. In 1989, Das and Joseph [16] identified a
large class of plane spanners (characterized by two simple local properties). Bose et al.
[7] gave an algorithm that constructs for any set of planar sites a plane 11-spanner with
bounded degree. On the other hand, Eppstein [19] analyzed a fractal construction
showing that (§-skeletons, a natural class of geometric networks, can have arbitrarily
large dilation.

The study of dilation also raises algorithmic questions. Agarwal et al. [2] de-
scribed randomized algorithms for computing the dilation of a given path (on n ver-
tices) in R? in O(nlogn) expected time. They also presented randomized algorithms
for computing the dilation of a given tree, or cycle, in R? in O(n log? n) expected
time. Previously, Narasimhan and Smid [31] showed that an (1 + ¢)-approximation
of the stretch factor of any path, cycle, or tree can be computed in O(nlogn) time.
Klein et al. [25] gave randomized algorithms for a path, tree, or cycle in R? to count
the number of vertex pairs whose dilation is below a given threshold in O(n3/2+¢)
expected time. Cheong et al. [13] showed that it is NP-hard to determine the ex-
istence of a spanning tree on a planar point set whose dilation is at most a given
value. More results on plane spanners can be found in the monograph dedicated to
this subject [32] or in several surveys [9,18,30].

We investigate a basic question about the dilation of polygonal chains. We ask
how the dilation between the endpoints of a polygonal chain (which we will call the
stretch factor, to distinguish it from the more general notion of dilation) is influenced
by fingerprint properties of the chain, i.e., by properties that are defined on O(1)-
size subsets of the vertex set. Such fingerprint properties play an important role in
geometry; classic examples include the Carathéodory property® [27, Theorem 1.2.3]
or the Helly property® [27, Theorem 1.3.2]. In general, determining the effect of a
fingerprint property may prove elusive—given n points in the plane, consider the
simple property that every 3 points determine 3 distinct distances. It is unknown [10,
p. 203] whether this property implies that the total number of distinct distances grows
superlinearly in n. Furthermore, fingerprint properties appear in the general study of
local versus global properties of metric spaces, which is highly relevant to combinatorial
approximation algorithms based on mathematical programming relaxations [6].

In the study of dilation, interesting fingerprint properties have also been found.
For example, a (continuous) curve C' is said to have the increasing chord property [15,
26] if for any points a, b, ¢, d that appear on C in this order, we have |ad| > |bc|. The
increasing chord property implies that C' has (geometric) dilation at most 27/3 [34].
A weaker property is the self-approaching property: a (continuous) curve C' is self-
approaching if for any points a, b, ¢ that appear on C in this order, we have |ac| > |bc|.
Self-approaching curves have dilation at most 5.332 [23] (see also [4]), and they have
found interesting applications in the field of graph drawing [5, 8, 33].

We introduce a new natural fingerprint property and see that it can constrain the
stretch factor of a polygonal chain, but only in a weaker sense than one may expect;
we also provide algorithmic results on this property. Before providing details, we give
a few basic definitions.

Definitions. A polygonal chain P in R? is specified by a sequence of n points
(p1,p2,--.,Dn), called vertices. The chain P consists of n — 1 line segments between

LGiven a finite set S of points in d dimensions, if every d 4+ 2 points in S are in convex position,
then S is in convex position.

2Given a finite collection of convex sets in d dimensions, if every d + 1 sets have nonempty
intersection, then all sets have nonempty intersection.
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ON THE STRETCH FACTOR OF POLYGONAL CHAINS 3

consecutive vertices. We say P is simple if only consecutive line segments intersect
and they only intersect at their endpoints. Given a polygonal chain P in R? with n
vertices and a parameter ¢ > 1, we call P a c-chain if forall 1 <i < j <k <n, we
have

(1) lpipj| + |pipk| < clpipkl-

Observe that the c-chain condition is a fingerprint condition that is not really a local
dilation condition—it is more a combination between the local chain substructure and
the distribution of the points in the subchains.

The stretch factor dp of P is defined as the dilation between the two end points
p1 and p,, of the chain:

1 —1
Sp — Z?:l |pipi+1|
p=—F—".
[p1Pn]

Note that this definition is different from the more general notion of dilation (also
called stretch factor [30]) of a graph which is the maximum dilation over all pairs of
vertices. Since there is no ambiguity in this paper, we will just call ép the stretch
factor of P.

For example, the polygonal chain P = ((0,0),(1,0),...,(n,0)) in R? is a 1-chain
with stretch factor 1; and @ = ((0,0),(0,1),(1,1),(1,0)) is a (v/2 + 1)-chain with
stretch factor 3.

Without affecting the results, the floor and ceiling functions are omitted in our
calculations. For a positive integer ¢, let [{] = {1,2,...,t}. For a point set S, let
conv(S) denote the convex hull of S. All logarithms are in base 2, unless stated
otherwise.

Our results. In the Euclidean plane R?, we deduce three upper bounds on the
stretch factor of a c-chain P with n vertices (Section 2). In particular, we have
(i) 6p < c(n —1)8°, (ii) 6p < c(n —2) + 1, and (iii) p = O (¢*v/n — 12.

From the other direction, we obtain the following lower bound in R* (Section 3):
For every ¢ > 4, there is a family P. = {P™},en of simple c-chains, so that P™
has n = 4™ + 1 vertices and stretch factor (n — 1)%2)710“, where the exponent
converges to 1/2 as ¢ tends to infinity. The lower bound construction does not extend
to the case of 1 < ¢ < 4, which remains open.

Then we generalize the results to higher dimensional Euclidean spaces (Section 4):
For all integers d > 2, we show that any c-chain P with n vertices in R? has stretch
factor dp = O (c*(n — 1)(d_1)/d). On the other hand, for any constant ¢ > 0 and
sufficiently large ¢ = 2(d), we construct a c-chain in R? with n vertices and stretch
factor at least (n — 1)(1—8)(d=1/d,

Finally, we present two algorithmic results (Section 5) for all fixed dimensions
d > 2: (i) A randomized algorithm that decides, given a polygonal chain P in R? with
n vertices and a threshold ¢ > 1, whether P is a c¢-chain in O (n3_1/ 4 polylog n) ex-
pected time and O(nlogn) space. (ii) As a corollary, there is a randomized algorithm
that finds, for a polygonal chain P with n vertices, the minimum ¢ > 1 for which P
is a c-chain in O (n3~1/4 polylog n) expected time and O(nlogn) space.

2. Upper Bounds in the Plane. At first glance, one might expect the stretch
factor of a c-chain, for ¢ > 1, to be bounded by some function of ¢. For example,
the stretch factor of a 1-chain is necessarily 1. We derive three upper bounds on the
stretch factor of a c-chain with n vertices in terms of ¢ and n (cf. Theorems 1-3);
see Fig. 1 for a visual comparison between the bounds. For large n, the bound in
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4 K. CHEN, A. DUMITRESCU, W. MULZER, AND C.D. TOTH

Theorem 1 is the best for 1 < ¢ < 21/2, while the bound in Theorem 3 is the best
for ¢ > 2'/2. In particular, the bound in Theorem 1 is tight for ¢ = 1. When n
is comparable with ¢, more specifically, for ¢ > 2 and n < 64c? + 2, the bound in
Theorem 2 is the best.

L L (Z) L L L
0 500 1,000 1,500 2,000 2,500 3,000

n

FIG. 1. The values of n and c for which (i) Theorem 1: §p < c(n — 1)1°8¢, (i) Theorem 2:
dp < c(n—2)+1, and (i) Theorem 3: 6p < 8c%\/n — 1 give the current best upper bound.

Our first upper bound is obtained by a recursive application of the c-chain prop-
erty. It holds for any positive distance function that need not even satisfy the triangle
inequality.

THEOREM 1. For a c-chain P with n vertices, we have §p < c(n — 1)1°8¢,

Proof. We prove, by induction on n, that
(2) §p < cltos(n=11

for every c-chain P with n > 2 vertices. In the base case, n = 2, we have jp = 1 and
cMoe=DT = 1. Now let n > 3, and assume that (2) holds for every c-chain with fewer
than n vertices. Let P = (p1,...,pn) be a c-chain with n vertices. Then, applying
(2) to the first and second half of P, followed by the c-chain property for the first,
middle, and last vertex of P, we get

n—1 [n/2]—1 n—1
Z lpipi+1] < Z Ipipi+1| + Z Ipipi+1]
i=1 i=1 i=[n/2]

< Mosn21=DT (1p1pr oy | + [Prny210nl )
S C[IOg(’Vn/QW*l)—l . C|p1pn|

< Mg =Dl |pp,,|,
so (2) holds also for P. Consequently,

op < C]'log(nflﬂ < clog(n71)+1 —c- Clog(nfl) _ C(Tl . 1)10gc’

as required. ]

Our second upper bound combines the c-chain property with the triangle inequal-
ity, and it holds in any metric space.

This manuscript is for review purposes only.
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156 THEOREM 2. For a c-chain P with n vertices, we have §p < c(n —2) + 1.

7 Proof. Without loss of generality, assume that |pip,| = 1. For every 1 < i < n,
8 the c-chain property implies |p1p;| + |pipn| < ¢|p1pn| = ¢, hence

159 (3) Ip1pi| < ¢ = [pipnl.

160 The triangle inequality yields

161 (4) [p1pil < [P1pal + [Pupil = 1+ [pipnl.

162 The combination of (3) and (4) gives |p1p;| < <E%. Analogous argument for p, (in

=3
163 place of p1) yields |p;p,| < 5.
164 For every pair 1 < i < j < n, the triangle inequality implies

165 2|pipj| < (Ipip1]+ [p1ps|) + ([pipn| + [Pnpj|) = (Ip1pi| + [Pipnl) + (IP12j| + 1PjPn]) < 2¢,

166 hence |p;pj| < c. Overall, the stretch factor of P is bounded above by

Zn_l lpjpj+1l =
j=1 IPjPj
167 op = leT = [p1p2| + |[pn—1pn| + Z Ipipj+1
n j=2
1 1
168 §c—i2_ +c—&2— +e(n—3)=c(n—2)+1,
170 as claimed. O

171 Our third upper bound uses properties of the Euclidean plane (specifically, a
172 volume argument) to bound the number of long edges in P.

173 THEOREM 3. For a c-chain P with n vertices, we have p = O (c2x/n — 1).

174 Proof. Let P = (p1,...,pn) be a c-chain, for some constant ¢ > 1, and let L =

75 Z?:_ll |pipit1]| be its length. We may assume that p1p, is a horizontal segment of unit

176 length. By the c-chain property, every point p;, 1 < j < n, lies in an ellipse E with

177 foci p; and py; see FIG. 2. The diameter of F is its major axis, whose length is c. Let
U be a disk of radius ¢/2 concentric with F, and note that £ C U

FiG. 2. The entire chain P lies in an ellipse E with foci p1 and pn. E lies in a cocentric disk
U of radius c/2.

178
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6 K. CHEN, A. DUMITRESCU, W. MULZER, AND C.D. TOTH

We set © = 4¢?/y/n — 1; and let Ly and L; be the sum of lengths of all edges in P
of length at most « and more than x, respectively. By definition, we have L = Lo+ L1
and

(5) Lo<(n—1Dx=(n—1)-4¢*/V/n —1=4c*Vn — 1.

We shall prove that L; < 4¢?y/n — 1, implying L < 8c¢?y/n — 1. For this, we further
classify the edges in Ly according to their lengths: For £ =0,1,..., 00, let

(6) Py={p;: 2"z < |pipis1| <22}

Since all points lie in an ellipse of diameter ¢, we have |p;p;r1| < ¢, for all i =
0,...,n — 1. Consequently, P, = () when ¢ < 2z, or equivalently log(c/z) < .

We use a volume argument to derive an upper bound on the cardinality of Py,
for £ =0,1,...,|log(c/x)]. Assume that p;,pr € Py, and w.lo.g., i <k. If k=1i+1,
then by (6), 2%z < |p;px|. Otherwise,

26y
2w < |pipis1| < [pipit1] + |pis1pr] < clpipil, or - < |pipk |-

Consequently, the disks of radius

@ = =

centered at the points in P, are interior-disjoint. The area of each disk is 7R?. Since
P, C U, these disks are contained in the R-neighborhood Upg of the disk U, which is
a disk of radius £ + R concentric with U. For ¢ < log(c/x), we have 2z < ¢, hence

£l
R = 22—6“7 <5 = % < §. Thus the radius of Ug is at most c. Since Ur contains |F|

interior-disjoint disks of radius R, we obtain

—_

area(Ur)  mc? 4ct

8 Pyl < = )
(8) |Pe| < TR2 TR2 92042

For every segment p;_1p; with length more than x, we have that p; € P,, for some
¢e€{0,1,...,|log(c/x)|}. The total length of these segments is

[log(c/x)] [log(c/x)] [log(¢/)]

L < P, 2E+1 404 22“1’1 _ 804
1<y B2 o202 ¢ TT ) 2y
=0 £=0 £=0
8ct X1 16¢* )
<TZ?: - :46"\/’(7/—1,
£=0
as required. Together with (5), this yields L < 8¢?-v/n — 1. d

3. Lower Bounds in the Plane. We now present our lower bound construc-
tion, showing that the dependence on n for the stretch factor of a c-chain cannot be
avoided.

THEOREM 4. For every constant ¢ > 4, there is a set P. = {P™}men of simple
c-chains, so that P™ has n = 4™ + 1 wvertices and stretch factor (n — 1) S

This manuscript is for review purposes only.



211
212

214
215
216
217

218
219
220

222
223
224
225
226
227
228
229
230
231
232
233
234

235
236
237
238
239
240
241
242
243

ON THE STRETCH FACTOR OF POLYGONAL CHAINS 7

By Theorem 3, the stretch factor of a c-chain in the plane is O ((n — 1)¥/2) for
every constant ¢ > 1. Since
1+1log(c—2)—loge 1

lim = -,
c—00 2 2

our lower bound construction shows that the limit of the exponent cannot be improved.
2e+41
Indeed, for every € > 0, we can set ¢ = *

20T
22 _ 1>
factor
(n—1) =(n-— 1)1/2_5 = Q(n1/2_5).

We first construct a family P. = {P™}en of polygonal chains. Then we show,
in Lemmata 5 and 7, that every chain in P, is simple and indeed a c-chain. The
theorem follows since the claimed stretch factor is a consequence of the construction.

Construction of P.. The construction here is a generalization of the iterative
construction of the Koch curve; when ¢ = 6, the result is the original Cesaro fractal
(which is a variant of the Koch curve) [11]. We start with a unit line segment PP,
and for m = 0,1,..., we construct P™*! by replacing each segment in P™ by four
segments such that the middle three points achieve a stretch factor of ¢, = <52 (this
choice will be justified in the proof of Lemma 7). Note that ¢, > 1, since ¢ > 4.

We continue with the details. Let P? be the unit line segment from (0,0) to (1,0);
see F1G. 3 (left). Given the polygonal chain P™ (m = 0,1,...), we construct P™*!
by replacing each segment of P™ by four segments as follows. Consider a segment
of P™, and denote its length by £. Subdivide this segment into three segments of
lengths (3 — 2)¢, 2“€ and (3 — )¢, respectively, where 0 < a < % is a parameter
to be determlned later Replace the middle segment with the top part of an isosceles
triangle of side length af. The chains P°, P!, P2, and P* are depicted in Figures 3
and 4.

and then the chains above have stretch

1+log(c—2)—logc
2

2a
Cx

o]
£le
[
o]
£le

—_
[N

(0,0) (1,0) (0,0) (1,0)
FiG. 3. The chains P° (left) and P! (right).

Note that each segment of length ¢ in P™ is replaced by four segments of total
length (1 + g)é After m 1terat10ns the chain P™ consists of 4™ line segments

of total length (1 + M

By construction, the chain P™ (for m > 1) consists of four scaled copies of
P™=1, For i =1,2,3,4, let the ith subchain of P™ be the subchain of P™ consisting
of 4m~1 segments starting from the ((i — 1)4™~! + 1)th segment. By construction,
the ith subchain of P™ is similar to the chain P™~!, for s = 1,2, 3,4.%> The following
functions allow us to refer to these subchains formally. For ¢ = 1,2, 3,4, define a
function f™ : P™ — P™ as the identity on the ith subchain of P™ that sends the

3Two geometric shapes are similar if one can be obtained from the other by translation, rotation,
and scaling; and are congruent if one can be obtained from the other by translation and rotation.
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8 K. CHEN, A. DUMITRESCU, W. MULZER, AND C.D. TOTH

remaining part(s) of P™ to the closest endpoint(s) along this subchain. So f™(P™)
is similar to P71, Let g; : P\ {P°} — P. be a piecewise defined function such that
gi(C) = o7 to f" o o(C) if C is similar to P™, where o : C — P™ is a similarity
transformation. Applying the function g; on a chain P™ can be thought of as “cutting
out” its ¢th subchain.

Fnalll: %

F1G. 4. The chains P? (left) and P* (right).

Clearly, the stretch factor of the chain monotonically increases with the parameter
a. However, if a is too large, the chain is no longer simple. The following lemma gives
a sufficient condition for the constructed chains to avoid self-crossings.

LEMMA 5. For every constant ¢ > 4, ifa < 6202, then every chain in P, is simple.

Proof. Let T = conv(P'). Observe that T is an isosceles triangle; see F1a. 5 (left).
We first show the following:

CLAM 6. Ifa < %, then conv(P™) =T for allm > 1.

Proof. We prove the claim by induction on m. It holds for m = 1 by definition.
For the induction step, assume that m > 2 and that the claim holds for m — 1.
Consider the chain P™. Since it contains all the vertices of P!, T" C conv(P™). So
we only need to show that conv(P™) C T.

2a
Cx

e
—
_
R

N[
|
£le

FIG. 5. Left: Convex hull T of P in light gray; Right: Convex hulls of g;(P?), i =1,2,3,4, in
dark gray, are contained in T'.

By construction, P™ C U?=1 conv(g;(P™)); see F1a. 5 (right). By the inductive
hypothesis, conv(g;(P™)) is an isosceles triangle similar to T, for i = 1,2,3,4. Since
the bases of conv(gi(P™)) and conv(gs(P™)) are collinear with the base of T by
construction, due to similarity, they are contained in 7. The base of conv(gz(P™))
is contained in 7. In order to show conv(go(P™)) C T, by convexity, it suffices to
ensure that its apex p is also in T. Note that the coordinates of the top point is

This manuscript is for review purposes only.
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t= (1/27 a+/cz — l/c*)7 so the supporting line £ of the left side of T is

_ 2a4/c2 -1

y=———"—z, and
Cx
1 a? (2 -1 2
po (Lo o @lE-l) (a e )
2 2c, c2 2c, 2
By the condition of a < % = m in the lemma, p lies on or below ¢. Un-

der the same condition, we have conv(gs(P™)) C T by symmetry. Then P™ C
U?:l conv(g;(P™)) C T. Since T is convex, conv(P™) C T. So conv(P™) =T, as
claimed. |

We can now finish the proof of Lemma 5 by induction. Clearly, P° and P! are
simple. Assume that m > 2, and P™~! is simple. Consider the chain P™. For
i =1,2,3,4, g;(P™) is similar to P™~!, hence simple by the inductive hypothesis.
Since P™ = U?=1 gi(P™), it is sufficient to show that for all ¢,5 € {1,2, 3,4}, where
i # j, a segment in g;(P™) does not intersect any segments in g;(P™), unless they are
consecutive in P™ and they intersect at a common endpoint. This follows from the
above claim together with the observation that for ¢ # j, the intersection g;(P™) N
g;j(P™) is either empty or contains a single vertex which is the common endpoint of
two consecutive segments in P™. 0

In the remainder of this section, we assume that

c—2 Cx
9 - - .
©) “T T T o1

Under this assumption, all segments in P! have the same length a. Therefore, by
construction, all segments in P™ have the same length

There are 4™ segments in P™, with 4™ + 1 vertices, and its stretch factor is

* m 2 * m
Spm —4m [ &) — (=€ .
2(ce +1) e +1

log(n—1)
2 )

Consequently, m = log,(n — 1) = and

log(n—1) log(n—1)

2¢, 2 2¢—4 2 1+log(c—2)—log e
Spm = = =(n-=-1" =~
P (c* + 1) ( c ) (n=1) ’

as claimed. To finish the proof of Theorem 4, it remains to show the constructed
polygonal chains are indeed c-chains.

LEMMA 7. For every constant ¢ > 4, P. is a family of c-chains.

We first prove a couple of facts that will be useful in the proof of Lemma 7. We
defer an intuitive explanation until after the formal statement of the following lemma.

LEMMA 8. Let m > 1 and let P™ = (p1,p2,.-.,Pn), where n = 4™ + 1. Then the
following hold:

This manuscript is for review purposes only.
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(i) There exists a sequence (q1,q2, . -.,qe) of £ =2-4™"L points in R? such that
the chain R™ = (p1,q1,D2,42, - - -, De, Qe, Pe+1) 18 similar to P™.
(ii) For m > 2, define gs : P. \ {P°, P} — P. by

95(P™) = (g3 0 g2(P™)) U (ga © g2(P™)) U (g1 © g3(P™)) U (g2 0 gs(P™)) -

Then gs(P™) is similar to P™~1,

Part (i) of Lemma 8 says that given P™, we can construct a chain R™ similar
to P™ by inserting one point between every two consecutive points of the left half of
P™, see F1G. 6 (left). Part (ii) says that the “top” subchain of P™ that consists of
the right half of go(P™) and the left half of gs(P™), see F1G. 6 (right), is similar to

Fi1G. 6. Left: Chain P™ with the scaled copy of itself R™ (in red); Right: Chain P™ with its
subchain gs(P™) marked by its convex hull.

Proof of Lemma 8. For part (i), we review the construction of P™, and show that
R™ and P™ can be constructed in a coupled manner. In Fic. 7 (left), consider P* =
(p1, P2, P3, P4, Ps). Recall that all segments in P! are of the same length a = ﬁ
The isosceles triangles Apypaps and Apipsps are similar. Let o : Ap1psps — Ap1paps
be the similarity transformation. Let ¢ = o(p2) and g2 = o(p4). By construction,
the chain R! = (p1,q1, p2,q2,p3) is similar to P!. In particular, all of its segments
have the same length, and so the isosceles triangle Ap,qipo is similar to Apipsps.

Moreover, its base is the segment pipa, so Apiqips is precisely conv(g;(P?)), see
F1a. 7 (right).

b3

q2
q1

p1 P2\ pa

FiG. 7. Left: the chains P! and R (red); Right: the chains P? and R (red).

Write P? = (vq,v,...,v17), then v3 = ¢ by the above argument and v; = g2 by
symmetry. Now Avivavs, Avzvavs, Avsvgvr, and Avyvgvg are four congruent isosceles
triangles, all of which are similar to Awvjvgvi7, since the angles are the same. Repeat
the above procedure on each of them to obtain R? = (v, uy,vs,us, ..., Vs, Us, Vg),
which is similar to P2. Continue this construction inductively to get the desired
chain R™ for any m > 1.

This manuscript is for review purposes only.
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For part (ii), see F1G. 7 (right). By definition, g5(P?) is the subchain (vr,vs, v,
v10,v11). Observe that the segments vyvg and vigv; are collinear by symmetry.
Moreover, they are parallel to vivi7 since Zvrvgvg = Zv1v5v9. SO g5 (P2) is similar to
P1; see F1G. 7 (left). Then for m > 2, g5(P™) is the subchain of P™ starting at vertex
v7, ending at vertex v11. By the construction of P™, g5(P™) is similar to P™~1. O

Proof of Lemma 7. We proceed by induction on m again. The claim is vacuously

true for P°. For P!, among all ten choices of 1 <i < j < k <5, % =Cy =
c—2

5= < cis the largest, and so P! is also a c-chain. Assume that m > 2 and P™ ! is
a c-chain. We need to show that P™ is also a c-chain. Consider a triplet of vertices
{pi,pj,pr} C P™, where 1 <i<j<k<n=4m+1.
Recall that P™ consists of four copies of the subchain P™~!, namely g;(P™),
g2(P™), g3(P™), and g4(P™), see FiG. 8(left). If {p;,p;,pr} C ¢i(P™) for any
1 =1,2,3,4, then by the induction hypothesis,

lpip;| + PPk <e
[pipk|

So we may assume that p; and p belong to two different g,(P™)’s. There are four
cases to consider up to symmetry:
Case 1. p; € g1(P™) and py € g2(P™);
Case 2. p; € g1(P™) and py, € g3(P™);
Case 3. p; € g1(P™) and py, € g4(P™);
Case 4. p; € g2(P™) and py, € g3(P™)

m

1
ce+1

F1G. 8. Left: Chain P™ with its four subchains of type P™ 1 marked by their convex hulls;
Right: Chain P™ with the scaled copy of itself R™ (in red) constructed in Lemma 8 ().

By Lemma 8 (i), the vertex set of g1 (P™) U g2(P™) is contained in the chain R™
shown in F1G. 8 (right). If we are in Case 1, i.e., p; € g1(P™) and pi € g2(P™), then
Di,Pj, P can be thought of as vertices of R™. The similarity between R™ and P™,
maps points p;, pj, px to suitable points p, p’;,pj € P™ such that

pipi| + PPkl pipy| + |pjpx]
1P| pipk|

Since p; € g1(R™) U g2(R™) while py, € g3(R™) U g4(R™), the triplet (p, p’;,p},) does
not belong to Case 1. In other words, Case 1 can be represented by other cases.
Recall that in Lemma 5, we showed that conv(P™) is an isosceles triangle T of

diameter 1. Observe that if |p;pr| > T{&-l’ then

. . 141
pips| + pipk| T — %, +2=c,

piel T
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as required. So we may assume that |p;px| < therefore only Case 4 remains,

ie., p; € g2(P™) and py € g3(P™).

P | 4

c*+1

1
c+17

Fia. 9. Left: Chain P™ with its subchain gs(P™) marked by its convezr hull; Right: The last
case where p; is in the left shaded subchain and py is in the right shaded subchain.

By Lemma 8 (ii), the “top” subchain g5(P™) of P™ is also similar to P!, see
F1a. 9 (left). If p; and pg are both in g5 (P™), i.e., p; € (g3 0 g2(P™)) U (g4 © g2(P™))
and py, € (g1 0 g3(P™)) U (g2 © g3(P™)), then so is p;.

By the induction hypothesis, we have

pips| + Ipipk|
|DipK| -

So we may assume that at least one of p; and py is not in g5(P™). Without loss of
generality, let p; € go(P™) \ g5(P™). The similarity that maps P™~! to go(P™) and
gs5(P™), respectively, have the same scaling factor of a = ﬁ, and they carry the
bottom dashed segment in F1G. 9 (right), to the two red segments.

CrLamm 9. If p; € g2(P™) \ g5(P™) and py, € gs(P™), then |pip| > 5572 -

Proof. As noted above, we assume that p; is in conv(ga(P™)\ g5(P™)) = Aq1q2q3
in F1g. 10. If py € g5(P™) N g3(P™) = Agrqsqs, then the configuration is illustrated
in F1c. 10 (left). Note that Agi1gogs and Agrgegs are reflections of each other with
respect to the bisector of Zg3qsqs. Hence the shortest distance between Agqgoqs and
Agrqeqs is min{|qsgsl, |g2¢6l, |q1g7|}. Since ¢, > 1, we have

c 3/2 c
17| > lgrqo| = lgsgs| = a®/* = (2(0*11)) > 2(«:*7;1)2
Further note that ¢2qs4qsqs is an isosceles trapezoid, so the length of its diagonal is
bounded by |g2¢6| > |g2¢4] = (e qyz- Therefore the claim holds when p; € Agrqegs.
Otherwise pr € g3(P™) \ g5(P™) = Agogsqr: see F1G. 10 (right). Note that
Aqi1g2q3 and Aqggsqr are reflections of each other with respect to the bisector of
Zq4q5q¢- So the shortest distance between the shaded triangles is the minimum be-
tween |q3q7| |g2gs], and |g1q9|. However, all three candidates are strictly larger than
|qaqs| = Ciﬂ) This completes the proof of the claim. 0

Now the diameter of go(P™) U g3(P™) is a = oD (note that there are three
diameter pairs), so

lpip;| + |pjpKl < 2 31D

-~ =2c,+2=c,
vk 2(c.+1)2

as required. This concludes the proof of Lemma 7 and Theorem 4. O
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qs qs
qs3 q4 g6 qr qs3 qa (] qr
q2 qs q2 qs
q1 q9 q1 q9

F1G. 10. p; € Aqiq2q3, Left: pr € Aqrgeqs; Right: pr € Aqogsqr.

4. Generalizations to Higher Dimensions. A c-chain P with n vertices and
its stretch factor p can be defined in any metric space, not just the Euclidean plane.
We now discuss how our results generalize to other metric spaces, with a particular
focus on the high-dimensional Euclidean space R?. First, we examine the upper
bounds from Section 2.

4.1. Upper bounds. As already noted in Section 2, the upper bound dp <
c¢(n —1)'°8¢ of Theorem 1 holds for any positive distance function that need not even
satisfy the triangle inequality.

Theorem 2 uses only the triangle inequality, and the bound dp < ¢(n —2) +1
holds in any metric space. This bound cannot be improved, in the following sense:
For every ¢ > 2 4 /5 and even n, we can define a finite metric space on the vertex
set of P by |p1pn| = 1; for 1 <i < n,

c—1

0'51 if 4 is even &+ ifdis even
lp1pil =4 .2, and |pipn| = § .4 ;

L if i is odd t1 ifiisodd ’

and |p;p;| = c for all 1 <i < j < n. It is easy to verify that P is a c-chain (the case
that puts the strongest constraint on ¢ in (1) occurs if, e.g., i = 1, 1 < j < n is even,
and j < k < n is odd) and that P has stretch factor

n—1 ‘p'p'—&-l‘ 2
y — 1171 fr —
Sp = 7214 = |p1p2| + |Pn—1Pn| + g lpipit1] = c(n —2) + 1.
|p1pn| i=2

The proof of Theorem 3 uses a volume argument in the plane. The argument
extends to R?, for all constant dimensions d > 2, and yields §p = O (c?(n — 1)(‘1*1)/‘1).

THEOREM 10. For a c-chain P with n vertices in R, for some constant d > 2,
we have
op =0 (cZ(n - 1)(d71)/d) .

Proof. Let P = (p1,...,pn) be a c-chain in R%, for some constants ¢ > 1 and
d € N. We may assume that |p1p,| = 1. By the c-chain property, all vertices of P lie
in an ellipsoid F with foci at p; and p,,, with major axis of length ¢. Let U be a ball
of radius ¢/2 concentric with E; and note that E C U.

We set z = ¢2/(n—1)"/%; and let Ly and L; be the sum of lengths of all edges in P
of length at most x and more than z, respectively. By definition, we have L = Ly+ L,
and

(10) Lo < (n— 1)z = 2(n—1)d-D/d,
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We shall prove that Ly = O (c?(n — 1){@=1)/4). For this, we further classify the edges
in Ly according to their lengths: For £ =0,1,..., 00, let

(11) P, = {pi c2hr < |pipis1| < 2€+1x}.

As shown in the proof of Theorem 2, we have |p;p;+1] < ¢, for all i = 0,...,n — 1.
Consequently, Py = () when ¢ < 2z, or equivalently log(c/z) < .

We use a volume argument to derive an upper bound on the cardinality of Py,
for ¢ =0,1,...,|log(c/x)]. Assume that p;,pr € Py, and w.lo.g., i <k. Iff k =i+ 1,
then 2z < |p;px| by (11). Otherwise,

26y
2w < |pipis1| < [pipit1] + |pis1px] < clpiprl, or - < |Dipk |-

Consequently, the balls of radius

20y 2c
12 R=""=__="
(12) 2¢ 2(n —1)1/4d
centered at the points in P, are interior-disjoint. The volume of each ball is agR?,
where ag > 0 depends on d only. Since P, C FE, these balls are contained in the
R-neighborhood of the ball U, which is a ball Ug of radius § + R concentric with

U. For ¢ < log(c/z), we have 2z < ¢, hence R = 22%1 < £ = 3. Consequently, the
radius of Uy is at most c¢. Since Ug contains |P| interior-disjoint balls of radius R,

we obtain

d d 2( _1)1/d d 9d
agc c n
w e (e () 2y,

For every segment p;p;+1 with length more than x, we have that p; € Py, for some
e {0,1,...,log(c/x)|}. Using (13), the total length of these segments is

[log(c/z)] [log(c/z)] od 2
+1 £+1
£=0 £=0
d+1 2 i1 o 1 d+2 2 (d—1)/d
<2 c(n—l)dZWSQ c(n—l) 5
=0
as required. Together with (10), this yields L = O (c?(n — 1)(¢=D/4), 0

4.2. Lower bounds in R%. We show that the exponent (d—1)/d in Theorem 10
cannot be improved. More precisely, for every € > 0, we construct a family of axis-
parallel chains in R? whose stretch factor is n(1=2)(4=1/d for sufficiently large n(e).
For the higher-dimensional case, we focus on axis-parallel chains, as they are easier to
analyze. In the plane (d = 2), this construction is also possible, but it yields weaker
bounds than Theorem 4.

THEOREM 11. Let d > 2 be an integer. For all constants € > 0 and sufficiently
large ¢ = Q(d), there is a positive integer ng such that for every n > ny, there exists an
axis-parallel c-chain in RY with n vertices and stretch factor at least (n—1)(1=2)(d=1)/d,

Proof. Let d > 2, e > 0, and ¢ = Q(d) be given. We describe a recursive
construction in terms of an even integer parameter

(14) r > 3=e)/de),

This manuscript is for review purposes only.



146
447
448
449
450
451
152
453
454
455
456
457
458
459
460
461
162
463
464

465

466

467

168
469
470
471
472
A73
474
AT5
476
477
478
479
480
481
482
483
184

485

486
487
488
189
490

ON THE STRETCH FACTOR OF POLYGONAL CHAINS 15

We recursively define a family Q. = {Q™}nen of axis-parallel c-chains in R?, where
each chain Q™ has n,, < 3™*1r9™ vertices. Then, we show that the stretch factor of
every Q™ is at least (n,, — 1)1=2)(¢=1/4 for sufficiently large m € N.

Construction of Q.. For each chain in Q., we maintain a subset of active directed
edges, which are disjoint, have the same length, and are parallel to the same coordinate
axis. In a nutshell, the recursion works as follows. We start with a chain Q° that
consists of a single segment that is labeled active; then for m = 1,2,..., we obtain
Q™ by replacing each active edge in a fixed chain 7 by a homothetic copy of Q™ 1.
The chain 7 is defined below; it consists of 6r¢ + 1 edges, 3r% of which are active.

We define the chain 7 in four steps, see Fig. 11 for an illustration. Let e, i =
1,...,d, be the standard basis vectors in R

(1) Consider the (d — 1)-dimensional hyperrectangle A = [0, 1] x [0, —1]472. Let

~o be an axis-parallel Hamiltonian cycle on the 2r?~2 integer points that lie
in A such that the origin is incident to an edge parallel to the x;-axis. We

label the vertices of yo by v;, for i = 1,...,2r% 2, in order, where v; is the
origin.

(2) Let a = (3r2 +1)/(3r) = r + 1/(3r), and consider the d-dimensional hyper-
rectangle A x [0,a] = [0,1] x [0, —1]¢2 x [0, a]. We construct a Hamiltonian

cycle 71 on the 4r?=2 points in
{v; x{0,a} |i=1,...,2r" 2}
by replacing every edge (va;—1,v2;) in o with three edges
((v2i-1,0), (v2i-1,a)), ((v2i-1,0a), (v2i,a)), and ((v2i,a), (v2;,0)).

Note that y; has 4r¢~2 edges, such that 2r?=2 edges have length a and are
parallel to the x4-axis. Also note that the origin v; is incident to a unit edge
parallel to the zi-axis, and to an edge of length a parallel to the z4-axis.

(3) Delete the edge of 741 that is incident to the origin v; and parallel to the
x1-axis. This turns 1 into a Hamiltonian chain 7 from the origin to the
vertex e; in the hyperrectangle A x [0,a] = [0,1] x [0,7 — 1]972 x [0, a].

(4) Consider the hyperrectangle B(r) = [0,3r% 4+ 1] x[0,7—1]972x[0, a]. Let 7 be
the chain from the origin to (3r2+1)-e; that is obtained by the concatenation
of 3r2 /2 copies of 7, translated by vectors (2 —1)-e; for j = 1,2,...,3r2/2,
interlaced with 372/2 + 1 unit segments parallel to e;. Note that 7 has
(3r2/2) - (4r%72 —1) +3r?/2 + 1 = 6r® + 1 edges, (3r?/2) - 2r?~2 = 3r? of
which have length a and are parallel to the z4-axis. We label all these edges
as active, so that 7 has 3r? active edges. Observe that B(r) is the minimum
axis-parallel bounding box of .

LEMMA 12. The chain 7 is a ¢’-chain for ¢’ = 8 + 2rv/d — 1. Furthermore, if the
points q1, g2, and g3 are contained in active edges, in this order along m and not all
in the same edge, then

[0192| + |9243| <8+ 2rVd—1.
|q143]

Proof. We extend 7 to a chain 7’ by attaching a parallel copy of 2 to each end of
. We prove the lemma for 7’. Then, the lemma also follows for 7, as 7 is a subchain
of #’. Write n’ = (p1,...,pn). Since p;, p;, and pi are endpoints of active edges, for
any choice of 1 < i < j < k <n, the second claim in the lemma implies that 7’ is a
¢’-chain.

This manuscript is for review purposes only.
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%0 g 72
vy v5 ‘
1 1
- T - i
v3 vg
9 vy
vl vg

24 copies of y9 and 25 unit segments

FiGc. 11. The cycles o (top left), v1 (top middle), and the chains vy2 (top right), © (bottom)
for d =3 and r = 4. The cycles and chains are in red, their bounding boxes are outlined in black.

We give an upper bound for the ratio (|q1g2| + |¢2¢3|)/|g1g3]- Recall that all the
active edges in 7’ come from the 3r2/2 + 2 translated copies of the chain ~,; and
72 has vertices in an axis-aligned bounding box B = [0,1] x [0,7 — 1]?~2 x [0, a].
Denote by By, B, ..., Bs2/2, B3y2 /241 the minimum axis-aligned bounding boxes of
the 3r2/2 + 2 translates of v, in 7’. Suppose that q1, g2, and g3 are in B;,, B;,, and
B;,, respectively. By assumption, i; < iy < 143.

If 41 = i3, then g1, ¢2, and ¢3 are in B;,. Since ¢; and g3 are not on the same
active edge, and since 7o has integer coordinates, we have |¢1¢3| > 1. Consequently,

lq1G2| + |g243] < 2 - diam (B, )

lq1g3] - 1
< 2\/12 (r—1)2+a?
=21+ r—l) +(r+1/(3r))2
2+ (d —1)r2

<2V2+2rvVd—1.

Otherwise i; < 43, and the first coordinates of ¢; and g3 differ by at least 2(i5 —
i1) — 1 > i3 — i1, hence |q1q3]| > i35 — i1. In this case,

|a12| + la2gs| _ 2 diam(By, U By,)

913 B i3 — 11
<2 V(2033 —i1) + 1)2+ (d—2)(r — 1)2 + a2
i3 — 11
CAlis—i) +4+ 2ry/d—1
i3 — i1
<8+2rVd—1,
as claimed. This completes the proof of Lemma 12. 0

This manuscript is for review purposes only.
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QL)

Ql

QZ

FIG. 12. The chains Q° (top), Q' (middle), and Q2 (bottom) for d = r = 2. The active edges
are highlighted by red bold lines. The bounding box B of Q' and bounding boxes B’ of homothetic
copies of Q1 in Q? are shaded.

FiG. 13. The chains Q! (top) and Q? (bottom) for d =3 and r = 2.

513 Now the axis-parallel chains Q™ can be defined recursively (see Fig. 12 for an
514 illustration). Let Q° be a line segment of length 372 + 1, parallel to the x-axis,
515 labeled active. Let Q' be 7 and let B = B(7) be its minimum axis-parallel bounding
516 box. Recall that B = [0,3r% 4+ 1] x [0, — 1]472 x [0, a].

517 We maintain the invariant that each chain @™ (m € N) is contained in B. In
518 order to do this, let B’ be a hyperrectangle obtained from B by a rotation of 90
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—

degrees in the (ej,e,) plane, and scaling by a factor of a/(3r% + 1) = 1/(3r); i.e.,
B’ =[0,a/(3r)] x [0, (r—1)/(3r)]¢"2 x [0, a]. In particular, the longest edges of B’ are
parallel to the active edges in B, and they all have length a. Place a translate of B’
along each active edge in Q' such that all such translates are contained in B. Note that
the distance between any two translates is at least 1 —2a/(3r) = 1/3—2/(9r%) > 5/18.

For all m > 1, we construct Q™*! by replacing the active edges of Q' with a
scaled (and rotated) copy of Q™ in each translate of B’; and we let the active edges
of Q™ T be the active edges in these new copies of Q™.

Instead of keeping track of the total length of @™, we analyze the total length of
the active edges of Q™. In each iteration, the number of active edges increases by a
factor of 3r? and the length of an active edge decreases by a factor of a/(3r% + 1) =
1/(3r). Overall the total length of active edges increases by a factor of r¢=1. Tt follows
that for all m € N, the chain Q™ has 3™r%™ active edges, and their total length is
(3r2 4+ 1) - r(d=1™_ Thus, we have

NN

)
T = W N

v Ot Ot Ot Ot Ot Ot Ot Ot Ot Ot Ut Ut Ot
W W W N NN NN NN NN
N = O © 00 O

w

(15) Q™ > (3r* +1) - pld=1m,

534 for m € N. Next we estimate the number of vertices in Q™. Recall that the recursive
535 construction replaces each active edge with 3r¢ active edges and 3r?+1 inactive edges
536 (which are never replaced). Consequently, for m > 1, the number of inactive edges in
537 QM is (3rd + 1) Z;igl 3irdi and the total number of vertices is

d d = di d d 3mrdm —1
oo _ m,.dm i,.di __ m_.dm
538 Ny = 14 377%™ + (3r —|—1);3r =1+3"r""" 4+ (3r* +1) 3d 1
539 Note that
510 (16) 3mrdm < n,, < 3.3mpdm,

541 Since the distance between the two endpoints of Q™ remains 372 + 1, we can use (15)
542 and the upper bound in (16) to obtain

13 (17) Q™ > pld=1m 5 (_"m E
o 3241 = \gmi1

5144 Now, (14) implies that r = 3-3(17)/(@) for a constant 8 > 1. Thus, using the lower
545 bound in (16), we get that

(-2
d

edm
546 nfn > 35m7,5dm — gem (6 .3 ) — Bsdm . gm > 3m+1’

547 for sufficiently large m. Hence, combining with (17), we can bound the stretch factor
548 from below as .
L N e

3241 =" ’
550 for sufficiently large m.
551 It remains to show that Q. = {Q™ : m € N} is a family of c-chains, where
552 ¢ = Q(d). We proceed by induction on m. The claim is trivial for m = 0, and it
553 follows from Lemma 12 for m = 1.
554 Now, let m > 2. Write Q™ = (p1,...,pn), and let 1 < i < j < k < n. We
555

shall derive an upper bound for the ratio (|p;p;| + |[pjpr|)/|pipk|- Recall that Q™ is
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obtained by replacing each active edge of Q' = 7 by a scaled copy of @™ !. If p; and
pr are in the same copy of Q™! then so is p; and induction completes the proof.

Otherwise let B, B}, and B}, be the bounding boxes of the copies of Q™! that
contain p;, p;, and py, respectively. Let a;, a;, and ai be the active segments in Q'
that are replaced by Bj, B}, and By; and let ¢; € a;, ¢; € aj, and g € aj be the
orthogonal projections of p;, p;, and py onto a;, aj, and ag, respectively. (If ¢ = 1,
then let ¢; = py1; if K = n, then let ¢, = p,. Since the proof of Lemma 12 works on
the extended chain 7', it applies to ¢;, ¢;, and gy regardless of this special condition.)

Since each projection happens within a hyperplane orthogonal to the x4-axis onto
an active edge in a translated copy of [0,a/(37)] x [0, (r —1)/(3r)]9=2 x [0, a], we have
that |piqi|, |p;g;l, and |prgx| are each bounded above by

2 12 VA—1 1 _Jd-1
\/a2+(d—2)(r L +— < +

1
(3r) (3r)2 = 3 3r— 3 6

As there are at least two distinct active edges among a;, a;, and a (and as the
distance between p; or p, and any active edge in 7 is at least 1), we have

|9iq;| + lgjqr| > max{|qiq;l,|g;qxl} > 1.
Combining these two bounds with the triangle inequality, we get
pips| + Ipipkl < (Ipigil + 1aigs] + 1a5p51) + (Ipsas| + lajanl + larprl)

4 2
< laigil + gl + 5 Vd =1+ 2

5 4
< (3 + 3 \/H) (lg:iq5] + lgjqrl)-

On the other hand, we have |p;px| > 15—8|qiqk|, as this lower bound holds for the
projections of the edges to each coordinate axis. Now Lemma 12 yields

pips| + lpipkl _ 5/3 +4vd—1/3 |aig;| + a0l

|pipx| B 5/18 |gi gk
<(6424vVd—-1/5)-(8+2rvd—1)
=0(r(d—1)).
This completes the proof of Theorem 11. O

5. Algorithm for Recognizing c-Chains. In this section, we design a ran-
domized Las Vegas algorithm to recognize c-chains in d-dimensional Euclidean space.
More precisely, given a polygonal chain P = (p1,...,p,) in R? and a parameter
¢ > 1, the algorithm decides whether P is a c-chain, in O (n3’1/d polylog n) ex-
pected time. By definition, P = (p1,...,pn) is a c-chain if |p;p;| + [pjpr| < ¢ |pipk|
for all 1 <7 < j < k < n; equivalently, p; lies in the ellipsoid of major axis ¢ with
foci p; and pi. Consequently, it suffices to test, for every pair 1 < ¢ < k < n, whether
the ellipsoid of major axis c|p;px| with foci p; and py, contains p;, for all j, i < j < k.
For this, we can apply recent results from geometric range searching.

THEOREM 13. For every integer d > 2, there are randomized algorithms that can
decide, for a polygonal chain P = (p1,...,p,) in R? and a threshold ¢ > 1, whether
P is a c-chain in O (n?’*l/d polylog n) expected time and O(nlogn) space.
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Agarwal, Matousek and Sharir [3, Theorem 1.4] constructed, for a set S of n
points in R?, a data structure that can answer semi-algebraic range searching queries;
in particular, it can report the number of points in S that are contained in a query
ellipsoid. Specifically, they showed that, for every d > 2 and € > 0, there is a constant
B and a data structure with O(n) space, O (nl"’g) expected preprocessing time, and

0] (nlfl/ d logB n) query time. The construction was later simplified by Matousek

and Patdkovd [28]. Using this data structure, we can quickly decide whether a given
polygonal chain is a c-chain.

Proof of Theorem 13. Subdivide the polygonal chain P = (p1,...,p,) into two
equal-sized subchains (to within 1) Py = (p1,...,Prn/21) and Po = (prn/2],---»Pn);
and recursively subdivide P; and P, until reaching 1-vertex chains. Denote by T the
recursion tree. Then, T is a binary tree of depth [logn]. There are at most 2° nodes
at level 7; the nodes at level i correspond to edge-disjoint subchains of P, each of
which has at most n/2¢ edges. Let W; be the set of subchains on level i of T’; and let
W =U,;>o Wi. We have |W| < 2n.

For each polygonal chain Q € W, construct an ellipsoid range searching data
structure DS(Q) described above [3] for the vertices of @, with a suitable parameter
€ > 0. Their overall expected preprocessing time is

& i nytte lte Ty lte
;2-0((21,) >=O n ; (21) :O(n ),

and their space requirement is ZZE(% "loi. 0 (n/2") = O(nlogn). The query time of
each chain in W; is O ((n/Qi)lfl/d polylog (n/2’))

For each pair of indices 1 < ¢ < k < n, we do the following. Let E;; denote
the ellipsoid of major axis ¢|p;px| with foci p; and pi. The chain (p;j41,...,px—1) is
subdivided into O(logn) maximal subchains in W, using at most two subchains from
each set W;, i = 0,...,[logn]. For each of these subchains @ € W, query the data
structure DS(Q) with the ellipsoid E; ;. If all queries are positive (i.e., the count
returned is |@| in all queries), then P is a c-chain; otherwise there exists j, i < j < k,
such that p; ¢ E; i, hence |p;p;|+ |pjpr| > c|pipk|, witnessing that P is not a c-chain.

The query time over all pairs 1 < i < k < n is bounded above by

) el n\1-1/d n n
(2> Z 2-0 ((21) polylog (21>) = (2) -0 (nl_l/d polylog n)
i=0

7=

=0 (n?’*l/d polylog n) .

This subsumes the expected time needed for constructing the structures DS(Q), for
all @ € W. So the overall running time of the algorithm is O (n3_1/ 4 polylog n), as
claimed. 0

In the decision algorithm in the proof of Theorem 13, only the construction of
the data structures DS(Q), @ € W, uses randomization, which is independent of the
value of c¢. The parameter c is used for defining the ellipsoid E; ;, and the queries to
the data structures; this part is deterministic. Hence, we can find the optimal value
of ¢ by Meggido’s parametric search [29] in the second part of the algorithm.

Meggido’s technique reduces an optimization problem to a corresponding decision
problem at a polylogarithmic factor increase in the running time. An optimization
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problem is amenable to this technique if the following three conditions are met [35]:
(1) the objective function is monotone in the given parameter; (2) the decision problem
can be solved by evaluating bounded-degree polynomials, and (3) the decision problem
admits an efficient parallel algorithm (with polylogarithmic running time using a
polynomial number of processors). All three conditions hold in our case: The area of
each ellipsoid with foci in S monotonically increases with ¢; the data structure of [28]
answers ellipsoid range counting queries by evaluating polynomials of bounded degree;
and the (g) queries can be performed in parallel. Alternatively, Chan’s randomized
optimization technique [12] is also applicable. Both techniques yield the following
result.

COROLLARY 14. There are randomized algorithms that can find, for a polygonal
chain P = (p1,...,pn) in RY, the minimum ¢ > 1 for which P is a c-chain in
0] (ngfl/d polylog n) expected time and O(nlogn) space.

We note that, for ¢ = 1, the test takes O(n) time: it suffices to check whether
points ps, ..., p, lie on the line spanned by p;p2, in that order.

Remark. Recently, Agarwal et al. [1, Theorem 13] designed a data structure for
semi-algebraic range searching queries that supports O(logn) query time, at the ex-
pense of higher space and preprocessing time. The size and preprocessing time depend
on the number of free parameters that describe the semi-algebraic set. An ellipsoid
in R? is defined by 2d + 1 parameters: the coordinates of its foci and the length of
its major axis. Specifically, they showed that, for every d > 2 and ¢ > 0, there is a
data structure with O(n24+1+¢) space and O(n??*1%¢) expected preprocessing time
that can report the number of points in S contained in a query ellipsoid in O(logn)
time. This data structure allows for a tradeoff between preprocessing time and overall
query time in the algorithm above. However the resulting tradeoff does not seem to
yield an improvement over the expected running time in Theorem 13 for any d > 2.

6. Conclusion. We conclude with some remarks and open problems.

1. The lower bound construction in the plane can be slightly improved as follows.
For m > 1, let P = g2(P™)Ugs(P™), see F1G. 14 (right). Observe that P]"
is a c-chain with n = 4™ /2 4+ 1 vertices and stretch factor

1+4log(c—2)—logc
2

c(c—2)/8(n—1)

Since y/¢(c —2)/8 > 1 for ¢ > 4, this improves the result of Theorem 4 by a
constant factor. Since this construction does not improve the exponent, and
the analysis would be longer (requiring a case analysis without new insights),
we omit the details.

FIG. 14. The chains P* (left) and P2 (right).
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2. The lower bound construction in the plane depends on a parameter c, =

(¢ —2)/2. If ¢ were used instead, the condition ¢ > 4 in Theorem 4 could be
replaced by ¢ > 1, and the bound could be improved from

14log(c—2)—log ¢ 14log c—log(c+1)
2

(n— 1) o (1)

Although we were unable to prove that the resulting P™’s, m € N, are ¢
chains, a computer program has verified that the first few generations of
them are indeed c-chains.

. The upper bounds in Theorem 1-3 (and their generalizations to higher dimen-

sions, e.g., Theorem 10) are valid regardless of whether the chain is crossing
or not. On the other hand, the lower bounds in Theorem 4 and Theorem 11
are given by noncrossing chains. A natural question is whether sharper upper
bounds hold if the chains are required to be noncrossing. Specifically, can the
exponent of n in the upper bound for R¢ be reduced to % —¢, where e > 0
depends on ¢?

. The running time of the algorithm in Theorem 13 is sub-cubic, but super-

quadratic. Is this necessary, or is it possible to decide the c-chain property in
time O(n?) or better?
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