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Abstract. In order to have a compact visualization of the order type of
a given point set S, we are interested in geometric graphs on S with few
edges that unequivocally display the order type of S. We introduce the
concept of exit edges, which prevent the order type from changing under
continuous motion of vertices. Exit edges have a natural dual character-
ization, which allows us to efficiently compute them and to bound their
number.
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Fig. 1. Left: representatives of the three order types of five points in general position.
Right: representatives of two order types of six points. Exit edges are drawn in black.

1 Introduction

Let S, T ⊂ R2 be two sets of n labeled points in general position (no three
collinear). We say that S and T have the same order type if there is a bijection
ϕ : S → T such that any triple (p, q, r) ∈ S3 of three distinct points has the same
orientation (clockwise or counterclockwise) as the image (ϕ(p), ϕ(q), ϕ(r)) ∈ T 3.
The resulting equivalence relation on planar n-point sets has a finite number
of equivalence classes, the order types [9]. Representatives of several distinct
order types of five or six points are illustrated in Fig. 1. Among other things,
the order type determines which geometric graphs can be drawn on a point
set without crossings. Thus, order types appear ubiquitously in the study of
extremal problems on geometric graphs.

Now, suppose we have discovered an interesting order type, and we would
like to illustrate it in a publication. One solution is to give explicit coordinates
of a representative point set S; see Fig. 2 left. This is unlikely to satisfy most
readers. We could also present S as a set of dots in a figure. For some point sets
(particularly those with extremal properties), the reader may find it difficult
to discern the orientation of an almost collinear point triple. To mend this, we
could draw all lines spanned by two points in S. In fact, it suffices to present
only the segments between the point pairs (the complete geometric graph on S).
The orientation of a triple can then be obtained by inspecting the corresponding
triangle; see Fig. 2 middle. However, such a drawing is rather dense, and we may
have trouble following an edge from one endpoint to the other. Therefore, we
want to reduce the number of edges in the drawing as much as possible, but so
that the order type remains uniquely identifiable; see Fig. 2 right.

Results. We introduce the concept of exit edges to capture which edges are suf-
ficient to uniquely describe a given order type in a robust way under continuous
motion of vertices. More precisely, in a geometric drawing of a representative
point set with all exit edges, at least one vertex needs to move across an (exit)
edge in order to change the order type. We give an alternative characterization of
exit edges in terms of the dual line arrangement, where an exit edge corresponds
to one or two empty triangular cells. This allows us to efficiently compute the
set of exit edges for a given set of n points in O(n2) time and space.

Using the more general framework of abstract order types and their dual
pseudoline arrangements, we prove that every set of n ≥ 4 points has at least
(3n−7)/5 exit edges. We also describe a family of n points with n−3 exit edges,
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Fig. 2. Three different representations of an order type of six points.

showing that this bound is asymptotically tight. An upper bound of n(n− 1)/3
follows from known results on the number of triangular cells in line arrange-
ments [10]. Thus, compared to the complete geometric graph with n(n − 1)/2
edges, using only exit edges we save at least one third of the edges.

Identification of order types. Let S be a set of n labeled points in the
plane. A geometric graph on S is a graph with vertex set S whose edges are
represented as line segments between their endpoints. A geometric graph is thus
a drawing of an abstract graph. Two geometric graphs G and H are isomorphic
if there is an orientation-preserving homeomorphism of the plane transforming G
into H. Each class of this equivalence relation may be described combinatorially
by the cyclic orders of the edge segments around vertices and crossings, and by
the incidences of vertices, crossings, edge segments, and faces. In the following,
we will consider topology-preserving deformations. An ambient isotopy of the
Euclidean plane is a continuous map f : R2 × [0, 1] → R2 such that f(·, t) is
a homeomorphism for every t ∈ [0, 1] and f(·, 0) = Id. Note that if there is an
ambient isotopy transforming a geometric graph G into another geometric graph
H, then G and H are isomorphic.

Definition 1. Let G be a geometric graph on a point set S. We say that G
is supporting for S if every ambient isotopy f of R2 that keeps the images of
the edges of G straight (thus, transforming G into another geometric graph) and
that allows at most three points of f(S, t) to be collinear for every t ∈ [0, 1], also
preserves the order type of the vertex set.

Related work. The connection between order types and straight-line drawings
has been studied intensively, both for planar drawings and for drawings minimiz-
ing the number of crossings. For example, it is NP-complete to decide whether
a planar graph can be embedded on a given point set [5]. Continuous move-
ments of the vertices of plane geometric graphs have also been considered [2].
The continuous movement of points maintaining the order type was considered
by Mnëv [7,14]. He showed that there are point sets with the same order type
such that there is no ambient isotopy between them preserving the order type,
settling a conjecture by Ringel [15]. The orientations of triples that have to be
fixed to determine the order type are strongly related to the concept of minimal
reduced systems [4].

Outline. We introduce the concept of exit edges for a given point set. The result-
ing exit graphs are always supporting, though they are not necessarily minimal.
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Fig. 3. Characterizing exit edges. Left: If the gray region is empty of points, then the
edge ab is an exit edge. Right: An illustration of the proof of Proposition 3.

In Section 2 we show that some exit edges are rendered unnecessary by non-
stretchability of certain pseudoline arrangements. Despite being non-minimal in
general, we argue that exit graphs are good candidates for supporting graphs by
discussing their dual representation in pseudoline arrangements (Section 3). This
connection allows us to both compute exit edges efficiently and give bounds on
their number (Section 4). Supporting graphs in general need not be connected,
and two minimal geometric graphs that are supporting for point sets with dif-
ferent order types can be drawings of the same abstract graph; see Fig. 1 right.
Thus, the structure of the drawing is crucial. In Section 5 we provide some
further properties of the exit graphs. We conjecture that graphs based on exit
edges are not only supporting but also they encode the order type, as discussed
in Section 6.

2 Exit edges

Clearly, every complete geometric graph is supporting. To obtain a supporting
graph with fewer edges, we select edges so that no vertex of the resulting geomet-
ric graph can be moved to change the order type while preserving isomorphism.

Definition 2. Let S ⊂ R2 be finite and in general position. Let a, b, c ∈ S be
distinct. Then, ab is an exit edge with witness c if there is no p ∈ S such that
the line ap separates b from c or the line bp separates a from c. The geometric
graph on S whose edges are the exit edges is called the exit graph of S.

Equivalently, ab is an exit edge with witness c if and only if the double-wedge
through a between b and c and the double-wedge through b between a and c
contain no point of S in their interior; see Fig. 3 left.

An exit edge has at most two witnesses. If |S| ≥ 4 and ab is an exit edge
in S with witness c, neither ac nor bc can be an exit edge with witness b or a,
respectively. We illustrate the set of exit edges for sets of 5 points in Fig. 1 left.

Exit edges can be characterized via 4-holes. For an integer k ≥ 3, a (general)
k-hole in S is a simple polygon P spanned by k points of S whose interior



contains no point of S. If P is convex, we call P a convex k-hole. A point a ∈ S
or an edge ab with a, b ∈ S is extremal for S if it lies on the boundary of the
convex hull of S. A point or an edge in S that is not extremal in S is internal
to S.

Proposition 3. Let S ⊂ R2 be a set of points in general position and let a, b ∈
S. Then, ab is not an exit edge of S if and only if the following conditions hold:

1. If ab is extremal in S, then ab is an edge of at least one convex 4-hole in S.
2. If ab is internal in S, then there are two 4-holes abxy and bauv, in counter-

clockwise order, such that their reflex angles (if any) are incident to ab.

We remark that an internal exit edge either has a witness on both sides or is
incident to at least one general 4-hole on one side.

Proof. Let ab be an exit edge with a witness c that lies, without loss of generality,

to the left of
−→
ab. Suppose there is a general 4-hole abxy, traced counterclockwise,

such that the reflex angle of abxy (if it exists) is incident to ab. We can assume

that y lies to the left of
−→
ab, as in Fig. 3 right. First, suppose that abxy is convex

(this must hold if ab is extremal). Since ab is an exit edge with witness c, the line
ax does not separate c from b and the line by does not separate c from a. Thus, c
must be inside the 4-hole abxy, which is impossible. Second, suppose that abxy
is not convex (then, ab is internal), and x is to the right of ab. Since ab is an exit
edge with witness c, the line bx does not separate a from c and the line ay does
not separate b from c, so c lies inside the 4-hole abxy, again a contradiction.

Conversely, assume that ab is not an exit edge. First, let ab be extremal, and
let p be the closest point in S \ {a, b} to the line ab. The triangle abp is a 3-hole
in S. Since p is not a witness for ab, there is a point q ∈ S \ {a, b, p} such that,
without loss of generality, the line bq separates a from p. Since ab is extremal, q
lies on the same side of ab as p and, in particular, the polygon abpq is convex. If
we choose q so that it is the closest such point to the line ap, the triangles bpq
and abq are 3-holes in S. Altogether, we obtain a convex 4-hole abpq in S.

Second, let ab be internal. Let p be closest in S \ {a, b} to the line ab such
that p lies to the left of ab. The triangle abp is a 3-hole in S. Since p is not
a witness for ab, there is a point q ∈ S \ {a, b, p} such that either the line bq
separates a from p or the line aq separates b from p. If q lies to the left of ab, we
obtain a convex 4-hole as in the previous case. Thus, we can assume that all such
points q lie to the right of ab. We choose the point q so that it is (one of the)
closest to the line ab among all points that prevent ab from being an exit edge
with witness p. Without loss of generality, we assume that the line bq separates
a from p. The choice of q guarantees that bpq is a 3-hole in S. Thus, abqp is a
4-hole in S incident to ab from the left. An analogous argument with a point p′

from S \ {a, b} that is closest to ab such that p′ lies to the right of ab shows that
there is an appropriate 4-hole in S incident to ab from the right. ut

Proposition 4. Let S ⊂ R2 be finite and in general position and, for every
t ∈ [0, 1], let S(t) be a continuous deformation of S at time t. More formally,
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Fig. 4. Left: moving c over ab to orient (a, b, c) clockwise, without changing the orien-
tation of other triples, would contradict Pappus’s theorem [15]. Right: it is not always
possible to move a witness c continuously to the corresponding exit edge ab.

let f : R2 × [0, 1] → R2 be an ambient isotopy and S(t) = {f(s, t) | s ∈ S},
for t ∈ [0, 1]. Let Sc ⊆ S be the first subset of at least three points to become
collinear. Let (a, b, c) be the first triple to become collinear, at time t0 > 0. If c
lies on the segment ab in S(t0), then ab is an exit edge of S(0) with witness c.

Proof. For t ∈ [0, t0), the triple orientations in S(t) remain unchanged, and
in S(t0), the point c lies on ab. Thus, for t ∈ [0, t0), there is no line through
two points of S(t) that strictly separates the relative interior of ab from c. In
particular, there is no such separating line through a or b in S(0). Hence, ab is
an exit edge with witness c. ut

Corollary 5. The exit graph of every point set is supporting.

The proof of Proposition 4 also shows that if a line separates c from the
relative interior of ab, then there is such a line through a or b. This may suggest
that the exit edges are necessary for a supporting graph. However, this is not true
in general. For example, in Fig. 4 left, we see a construction by Ringel [15]: ab is
an exit edge with witness c, but c cannot move over ab without violating Pappus’
theorem. We note that in this situation, we might consider the abstract order
type for the triple orientations we would obtain after moving c over ab. Since
there is no planar point set with this set of triple orientations, this abstract order
type is not realizable. Deciding realizability is (polynomial-time-)equivalent to
the existential theory of the reals [14]. We will revisit these concepts in Section 4.

We note that there are point sets where two or more other exit edges prevent
a witness c from crossing its corresponding exit edge ab; see, for example, Fig. 4
bottom right. Since the two geometric graphs in Fig. 4 right are not isomorphic,
they cannot be transformed into each other by a continuous deformation as the
one used in Definition 1. However, in this example, while c cannot move to ab
without changing the order type in Fig. 4 bottom right, if ab were not present,
we could first change the point set to the one in Fig. 4 top right and then move
c over ab. Thus, ab indeed has to be in a supporting graph.



3 Exit edges and empty triangular cells

The (real) projective plane P2 is a non-orientable surface obtained by augmenting
the Euclidean plane R2 by a line at infinity. This line has one point at infinity
for each direction, where all parallel lines with this direction intersect. Thus, in
P2, each pair of parallel lines intersects in a unique point.

For a point set S in the Euclidean plane, add a line `∞ to obtain the projective
plane. We use a duality transformation that maps a point s of P2 to a line s∗

in P2. In this way, we get a set of lines S∗ dual to S, giving a projective line
arrangement A. The removal of a line from A does not disconnect P2. Since P2

has non-orientable genus 1, removing any two lines `1 and `2 from P2 disconnects
it into two components. We call the closure of each of the two components a
halfplane determined by `1 and `2. The marked cell c∞ is the cell of A that
contains the point `∗∞ dual to the line `∞. By appropriately choosing the duality
transformation, we can assume that `∗∞ lies at vertical infinity.

The combinatorial structure of A, together with the marked cell, determines
the order type of S. We show how to identify exit edges and their witnesses in
dual line arrangements.

We use the marked cell c∞ to orient the lines from S∗: first, we orient the
lines on the boundary of c∞ in one direction. Then, we iteratively remove lines
that have already been oriented, and we define the orientation for the remaining
lines from S∗ by considering the new lines on the boundary of c∞. Then, c∞ is
the only cell whose boundary is oriented consistently, that is, it can be traversed
completely along the resulting orientation. In particular, for an unmarked trian-
gular cell 4 in A, the directed edges of 4 form a transitive order on its vertices,
with a unique vertex of 4 in the middle. We call this vertex the exit vertex of 4
and the line through the other two vertices of 4 the witness line of 4.

Note that if we consider the duality mapping a point p = (px, py) from
the real plane to the (non-vertical) line p∗ : y = pxx − py, then the described
orientation procedure corresponds to orienting these dual lines from left to right.

Theorem 6. Let S ⊂ R2 be in general position, and let a, b, c ∈ S. Then, ab
is an exit edge with witness c if and only if the lines a∗, b∗, and c∗ bound an
unmarked triangular cell 4 in the arrangement A of lines from S∗ so that c∗ is
the witness line of 4 and the point ab

∗
= a∗ ∩ b∗ is the exit vertex of 4.

Proof. For two points p, q ∈ S and their dual lines p∗, q∗ ∈ S∗, we denote by
w(p∗, q∗) the halfplane determined by p∗ and q∗ that does not contain the marked
cell. Thus, the boundary of w(p∗, q∗) is not oriented consistently. Since projective
duality preserves incidences, the condition that no line spanned by two points
of S intersects the edge pq is equivalent in S∗ to w(p∗, q∗) not containing any
vertex of A.

Let 4 be the triangular region determined by the intersection of the two
halfplanes w(a∗, c∗) and w(b∗, c∗). By the projective duality, ab is an exit edge
with witness c in S if and only if no line of S∗ intersects a∗ inside w(b∗, c∗) or
b∗ inside w(a∗, c∗). In other words, if and only if two sides of 4, lying on a∗ and
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Fig. 5. An illustration of the proof of Theorem 6. If ab is an exit edge with witness
c in S, then the two bold drawn segments of the corresponding triangular cell are
unintersected, and thus, bound an unmarked triangular cell in S∗. The exit vertex is
represented with a black disk.

b∗, contain no intersection with lines from S∗. This is equivalent to 4 being a
cell of the arrangement A. Moreover, a∗ and b∗ share the exit vertex of 4; see
Fig. 5. Consequently, the exit vertex a∗ ∩ b∗ is the dual of the line containing
the exit edge ab. ut

Corollary 7. Let S be a set of n points in general position. Then the exit edges
of S can be enumerated in O(n2) time by constructing the dual line arrangement
of S and checking which cells are unmarked triangular cells.

4 On the number of exit edges

Line arrangements can be generalized to so-called pseudoline arrangements. A
pseudoline is a closed curve in the projective plane P2 whose removal does not
disconnect P2. A set of pseudolines in P2, where any two pseudolines cross ex-
actly once, determines a (projective) pseudoline arrangement. If no three pseu-
dolines intersect in a common point, the pseudoline arrangement is simple. All
notions that we have introduced for line arrangements, such as consistent orien-
tations, exit vertices, or witness lines, naturally extend to pseudolines.

A pseudoline arrangement is stretchable if it is isomorphic to a line arrange-
ment, that is, the corresponding cell complexes into which the two arrange-
ments partition P2 are isomorphic. The combinatorial dual analogues of line
arrangements and pseudoline arrangements are order types and abstract order
types, respectively. Thus, deciding if a pseudoline arrangement is stretchable is
(polynomial-time-)equivalent to the existential theory of the reals [7,14].

As discussed in Section 3, the maximum number of triangular cells in a simple
projective pseudoline arrangement gives an upper bound on the number of exit
edges of a point set. However, one triangular cell could be c∞, and there could
be pairs of triangular cells with the same exit vertex. We call a configuration of
the latter type an hourglass; see Fig. 6. We say that the two pseudolines p and q
that define the exit vertex of the two triangular cells of an hourglass H slice H
and that H is sliced by p and by q.

Observation 8. A triangular cell can be a part of at most one hourglass.
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Fig. 6. Left: the two triangular cells 41 and 42 do not form an hourglass, because
they share a vertex that is not an exit vertex. Right: the two triangular cells 41 and
42 form an hourglass because they share an exit vertex.

Observation 9. An exit edge ab with two witness points is dual to an hourglass
with exit vertex ab

∗
.

Any projective arrangement of n ≥ 4 lines has at least n triangular cells, as
each line is incident to at least three triangular cells [12]. This is known to be
tight. Therefore, taking into account the marked cell c∞ and possible hourglasses,
any set of n ≥ 4 points has at least dn−12 e exit edges. We improve this lower
bound by bounding from below the difference between the number of triangular
cells and the number of hourglasses.

Proposition 10. Any set of n ≥ 4 points in the plane has at least (3n − 7)/5
exit edges.

For the proof of Proposition 10 we use the following two lemmas. The first is a
theorem by Grünbaum [10, Theorem 3.7 on p. 50], and the second can be derived
from the proof of that theorem.

Lemma 11 (Grünbaum [10]). In a simple pseudoline arrangement L every
pseudoline from L is incident to at least three triangular cells.

Lemma 12 (Grünbaum [10]). Let L be a simple arrangement of pseudolines,
and let H be a closed halfplane determined by two pseudolines `1, `2 ∈ L. If two
other pseudolines of L cross in the interior of H, then there is a triangular cell
in H that is incident to `1 but not to `2.

Proof (of Proposition 10). Let L be a simple projective line arrangement of
n ≥ 4 pseudolines `1, `2, . . . , `n. For each pseudoline `i ∈ L, let ti be the number
of triangular cells incident to `i and hi the number of hourglasses sliced by `i.
Set xi = ti − hi/2. For each pseudoline `i ∈ L, there are three possible cases.

Case (i): there is no hourglass sliced by `i. By Lemma 11, every pseudoline
is incident to at least three triangular cells. Thus, we have xi = ti ≥ 3.

Case (ii): the pseudoline `i slices an hourglass together with some pseudoline
`j and the interior of each of the two halfplanes determined by `i and `j contains
at least one crossing of some other pair of pseudolines. By Lemma 12, `i is
incident to the two triangular cells of the hourglass plus at least two other
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Fig. 7. In case (iii), both `1 and `2 must bound the marked cell, shown striped on the
right picture. Moreover, that cell is bounded by four pseudolines.

triangular cells, one in each closed halfplane. (We ignore here that a cell might
be the marked one.) Thus, ti ≥ 4. Observation 8 implies hi ≤ ti/2. Overall we
get xi = ti − hi/2 ≥ ti − ti/4 ≥ (3/4) · 4 = 3.

Case (iii): the pseudoline `i slices an hourglass together with some pseudo-
line `j , and one of the two closed halfplanes H1 and H2 determined by `i and
`j contains no crossing of any other pair of pseudolines in its interior. Suppose
the closed halfplane that contains no further crossing is H1. Then, the hourglass
sliced by `i and `j is in H1, as the other two lines defining the hourglass do
not cross in that halfplane; see Fig. 7 (left). Since H1 contains no crossing in its
interior, it is divided by the other pseudolines into 4-gons and the two triangular
cells of the hourglass. In particular, the marked cell is bounded by only four
pseudolines, two of them being `i and `j ; see Fig. 7, right. Thus, there can be
at most four pseudolines for which case (iii) applies. Notice that in this case
hi = 1, since any other hourglass sliced by `i would have one triangular cell in
each of the two halfplanes H1 and H2 and the two triangular cells in H1 form the
already-counted hourglass (and by Observation 8 they cannot be part of another
hourglass). Thus, we can only guarantee that xi ≥ 3 − 1/2 = 5/2. However, as
we showed, this case can happen at most for two pairs of pseudolines.

Let T be the total number of triangular cells in L and let H be the total
number of hourglasses. Summing the contributions of cases (i)–(iii), we have

3T −H =

n∑
i=1

ti −
1

2

n∑
i=1

hi =
n∑

i=1

xi ≥ 3 · (n− 4) + 4 ·
(

5

2

)
= 3n− 2.

By Observation 8, we have T ≥ 2H. Combining these inequalities, we get

T −H =
3T −H + 2(T − 2H)

5
≥ 3T −H

5
≥ 3n− 2

5
.

By Theorem 6, the number of exit edges in a point set is equal to the number of
exit vertices in its dual line arrangement. In general, the number of exit vertices
in a pseudoline arrangement is bounded from below by T − H − 1. Therefore,
there are at least 3

5n−
7
5 exit edges. ut

We do not know if the lower bound in Proposition 10 is tight. The smallest
number of exit edges we could achieve is n− 3 for n ≥ 9; see Fig. 8.



Fig. 8. Construction with n− 3 exit edges.

The number of triangular cells in a simple arrangement of n lines in the pro-
jective plane P2 is at most n(n−1)/3 [10], so there are at most n2/3+O(n) exit
edges. This means that representing an order type with the exit graph instead
of the complete geometric graph saves at least one third of the edges. Palásti
and Füredi [17] showed that for every value of n there are simple arrangement
of n lines in P2 with n(n − 3)/3 triangular cells. Moreover, Roudneff [16] and
Harborth [11] proved that the upper bound n(n−1)/3 is tight for infinitely many
values of n (see also [3]). The point sets that are dual to the currently-known ar-
rangements that maximize the number of triangular cells have n2/6 +O(n) exit
edges, since most of their exit edges have two witnesses. This gives a quadratic
lower bound in the worst case, but the leading coefficient remains unknown. It
is worth noting that there are line arrangements with no pair of adjacent trian-
gular cells [13], which implies the existence of point sets where every exit edge
has precisely one witness.

5 Properties of exit graphs

We present some further results on supporting graphs and exit graphs.

Theorem 13. Any geometric graph supporting a point set S, with |S| ≥ 9,
contains a crossing.

Proof. Let G be a geometric graph with vertex set S without crossings. There
is a point set S′ with a different order type that also admits G: Dujmović [6]
showed that every plane graph admits a plane straight-line embedding with at
least

√
n/2 points on a line; as we have a point set with a collinear triple that

admits G, there are at least two point sets in general position with a different
order type that admit G. Moreover, one can continuously morph S to S′ while
keeping the corresponding geometric graph planar and isomorphic to G (see, for
example, [2]). Therefore, G does not support S. ut
Proposition 14. Let S be a point set in general position in R2 and let G be its
exit graph. Every vertex in the unbounded face of G is extremal, that is, it lies
on the boundary of the convex hull of S.

Note that, as shown in Fig. 4 left, an analogous statement does not hold for
general supporting graphs. The proof can be found in the full version [1].
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Fig. 9. Top: two arrangements of 14 pseudolines with the same set of triangular cells
(extending [8, Figure 3]). No triangular cell crossed by the line at infinity. Bottom:
corresponding dual point sets. The order types are not the same (see for example the
number of extremal points).

6 Concluding remarks

We conjecture that the geometric graph G of exit edges not only is supporting
for S, but also that any point set S′ that is the vertex set of a geometric graph
isomorphic to G has the same order type as S. One might conjecture that al-
ready knowing all exit edges and their witnesses (in the dual line arrangement,
all triangular cells and their orientations) is sufficient to determine the order
type. Surprisingly, this turns out to be wrong. A counterexample is sketched in
Fig. 9 as a dual (stretchable) pseudoline arrangement of 14 lines in the projective
plane, based on an example by Felsner and Weil [8]. It consists of two arrange-
ments of six lines in the Euclidean plane that are combinatorially different, but
share the set of triangular cells and their orientations. While the exit edges are
the same for the two different order types, the corresponding exit graphs are
not isomorphic. In the dual of that example the order of the triangular cells
along each pseudoline differs, but that extra information is not enough to dis-
tinguish the two order types: We can modify the pseudoline arrangements in
Fig. 9 by, essentially, duplicating pseudolines 1–6 and making a pseudoline and
its duplication cross between the crossings with two green pseudolines (7–14).
An illustration is presented in the full version [1].
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14. Mnëv, N.E.: The universality theorems on the classification problem of config-
uration varieties and convex polytope varieties. In: Topology and Geometry—
Rohlin Seminar. Lecture Notes in Math., vol. 1346, pp. 527–544. Springer (1988).
https://doi.org/https://doi.org/10.1007/BFb0082792

15. Ringel, G.: Teilungen der Ebene durch Geraden oder topologische Geraden. Math-
ematische Zeitschrift 64, 79–102 (1956)

16. Roudneff, J.P.: On the number of triangles in simple arrangements of pseu-
dolines in the real projective plane. Discrete Math. 60, 243–251 (1986).
https://doi.org/10.1016/0012-365X(86)90016-6
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