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Abstract
Let S be a planar point set in general position, and let P(S) be the set of all plane (straight-line)
spanning paths for S. A flip in a path P ∈ P(S) is the operation of removing an edge e ∈ P and
replacing it with a new edge f on S such that the resulting graph is again a path in P(S). Towards
the question whether any two plane spanning paths of P(S) can be transformed into each other by
a sequence of flips, we give positive answers if S is a wheel set, an ice cream cone, or a double chain.
On the other hand, we show that in the general setting, it is sufficient to prove the statement for
plane spanning paths with fixed first edge.

Related Version A full version of this paper is available at https://arxiv.org/abs/2202.10831

1 Introduction

Let S be a set of n points in the plane such that no three points in S are collinear (this
property is called general position of S). Let P(S) be the set of all plane (i.e., crossing-free),
straight-line spanning paths for S. A flip on a path P ∈ P(S) is the operation of removing
one edge e ∈ P and replacing it with a new edge f on S such that the resulting graph is again
a plane spanning path form P(S) (note that e and f might cross). Unless stated otherwise,
all paths in this paper are plane, spanning, and straight-line.

The question we consider is the following. Given two paths Ps, Pt ∈ P(S), can we always
transform the starting path Ps into the target path Pt by a sequence of flips? Or, to phrase
it in a more graph-theoretic manner: the flip-graph (on P(S)) is defined to have vertex set
P(S) and two vertices form an edge if and only if the corresponding paths differ by a single
flip. Then, we are concerned with the question, whether the flip-graph is connected for any
point set S.

∗ This work was initiated at the 2nd Austrian Computational Geometry Reunion Workshop in Strobl,
June 2021. We thank all participants for fruitful discussions, especially Eva-Maria Hainzl, Guangping
Li, Irene Parada, Daniel Perz, Josef Tkadlec, and Alexandra Weinberger.

† Partially supported by the Austrian Science Fund (FWF): W1230 and the European Union H2020-
MSCA-RISE project 73499 - CONNECT.

‡ Supported by DFG within the Research Training Group GRK 2434 Facets of Complexity.
§ Supported in part by ERC StG 757609.
¶ Supported by ERC StG 757609.
‖ Supported by the Austrian Science Fund (FWF): W1230.
∗∗Partially supported by Austrian Science Fund within the collaborative DACH project Arrangements

and Drawings as FWF project I 3340-N35.

38th European Workshop on Computational Geometry, Perugia, Italy, March 14–16, 2022.
This is an extended abstract of a presentation given at EuroCG’22. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.

https://arxiv.org/abs/2202.10831


66:2 Flipping Plane Spanning Paths
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Figure 1 For Type 1 flips, the two involved edges share a common endpoint. For Type 2, the
union of both paths is a plane spanning cycle (note that Type 2 flips can be simulated by a sequence
of Type 1 flips). For Type 3, the two involved flipping edges cross, while the rest of the cycle is
plane.

Flips in geometric graphs are a local but very powerful operation, see the survey of Bose
and Hurtado [3]. On page 71, Bose and Hurtado write: “We are unaware of any progress for
the same problem (obtaining a connected flip-graph for Hamiltonian crossing-free paths) on
generic point sets.”

Akl, Islam, and Meijer [2] showed that the flip graph is connected with diameter at most
2n− 5 for any n ≥ 3 points in convex position, and for any n ≤ 8 points in general position.
Slightly later, tight bounds were derived by Chang and Wu [4]: if S is in convex position,
then the diameter of the flip graph of P(S) is exactly 2n− 5, for n = 3, 4, and exactly 2n− 6,
for n ≥ 5.

There are different types of possible flips in a plane spanning path P ∈ P(S), but here we
will mostly focus on Type 1 flips (see Figure 1 for other types of flips): enumerate the vertices
of P as p1, . . . , pn. Then, a Type 1 flip consists of replacing an edge pi−1pi of P , i > 2, by
the edge p1pi. It results in the path pi−1, . . . , p1, pi, . . . , pn (of course, the flip is only valid if
the resulting path is still plane). In other words, a Type 1 flip inverts a contiguous chunk
from one of the two ends of P .1

Our Results. First, we verify by a computer assisted proof with the help of the order type
database [1] that the flip graph is connected for any set of n ≤ 10 points.

For the general setting, we pursue two directions. On the one hand, we extend the proof
of Akl et al. [2] to point sets in wheel, ice cream cone, and double chain configuration, the
result for the double chains being the main contribution (see Theorem 6 in Section 2).

On the other hand, we show that it is sufficient to consider the flip-graph for paths where
the first edge is fixed. More precisely: for distinct p, q ∈ S, let P(S, p) be the set of all plane
spanning paths for S that start at p, and let P(S, p, q) be the set of all plane spanning paths
for S that start at p and have pq as their first edge. We conjecture:

I Conjecture 1 ([2]). For any finite set S ⊂ R2 in general position and any two paths
Ps, Pt ∈ P(S), there is a sequence of flips transforming Ps into Pt.

I Conjecture 2. For any finite set S ⊂ R2 in general position, any p ∈ S, and any two
paths Ps, Pt ∈ P(S, p), there is a sequence of flips transforming Ps into Pt such that all
intermediate paths are in P(S, p).

1 The corresponding flip at the other end of the path replaces an edge of the form pjpj+1, j < n− 1 by
the edge pjpn, resulting in the path p1, . . . , pj , pn, . . . , pj+1.
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Figure 2 Example where the flip graph is disconnected if the first three points of the paths are
fixed. The solid path cannot be flipped, but there is at least one other path (dotted) with the same
three starting points.

Figure 3 A double chain. Boundary edges are solid, bridge edges dashed, and chordal edges
dotted (not all edges are drawn).

I Conjecture 3. For any finite set S ⊂ R2 in general position, any distinct p, q ∈ S, and
any two paths Ps, Pt ∈ P(S, p, q), there is a sequence of flips transforming Ps into Pt such
that all intermediate paths are in P(S, p, q).

We show (Lemmas 8 and 9 in Section 3) that for any fixed n, a positive answer to
Conjecture 3 implies a positive answer to Conjecture 2, and similarly a positive answer to
Conjecture 2 implies a positive answer to Conjecture 1.

Given Conjectures 1–3, one might think that an analogous statement for paths with a
common starting sequence p1, p2, . . . , pk of k ≥ 3 points might also hold. Figure 2, however,
shows a counter-example with 7 points for k = 3.

2 Special classes of point sets

We prove the connectedness of the flip-graph for wheel sets, ice cream cones, and double
chains. Due to space constraints, however, we focus only on our main result, namely double
chains. Our strategy is always to transform some path to a canonical path (consisting only
of certain edges).

A double chain consists of two convex chains (each containing at least two points) with
opposed concavity such that (i) the convex hull forms a quadrilateral (where the left and
right endpoints of upper and lower chain form the extreme vertices) and (ii) no line through
two points of the same chain separates the other chain (see e.g. [5, 3]). We classify the edges
as follows: boundary edges are the edges between consecutive points on the upper and the
lower chain, as well as the two special boundary edges between the two left and between
the two right extreme points; bridge edges are the edges that connect the upper and the
lower chain (except for the leftmost and rightmost such edge); all the other edges are chordal
edges. A crucial property of double chains is the fact that boundary edges are uncrossed.
We denote the class of double chains by DC (see Figure 3 for an illustration).

We define a (combinatorial) distance on the boundary of S, the plane cycle formed by the
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Figure 4 Illustration of Observation 4 (left) and Observation 5 (right). Replacing the dashed
edge by the dotted forms a valid flip.

boundary edges2: let S ∈ DC, and let p, q ∈ S be two points on the boundary of S.3 Further,
let o ∈ {cw, ccw} be an orientation. We define the distance between p and q in direction o,
denoted by do(p, q), as the number of boundary edges along the boundary that lie between p

and q in direction o. Also, let the distance between p and q be

d(p, q) = min{dcw(p, q), dccw(p, q)}.

Note that neighboring vertices (along the boundary) have distance 1. Associating the pairs
of vertices with an edge, we may also speak of the distance of an edge, i.e., the distance of
an edge is just the distance between its endpoints. The total or overall distance (of a plane
spanning path) is just the sum of all distances of its edges.

Let S ∈ DC, and let P = p1, . . . , pn ∈ P(S). For i = 1, . . . , n− 1, we call the two vertices
pi, pi+1 consecutive along P , and we say that pi is the predecessor of pi+1 and that pi+1 is
the successor of pi. We emphasize that the terms consecutive, predecessor, and successor are
reserved for the order along paths, whereas the terms neighboring and neighbors always refer
to vertices that are incident to a common boundary edge of S.

The following observations will be useful to verify the validity of a flip (the first holds
because no boundary edge is crossed by another edge on S), see also Figure 4:

I Observation 4. Let S ∈ DC, and let P = p1, . . . , pn ∈ P(S) be a plane spanning path on S.
Let pi, i 6= 2, be a neighbor of p1. Then, the edge pi−1pi can be flipped to the edge p1pi, i.e.,
replacing pi−1pi by p1pi results in a valid plane spanning path for S.

I Observation 5. Let S ∈ DC, and let P = p1, . . . , pn ∈ P(S) be a plane spanning path on S.
Let p1, pi, i 6= n, be neighbors on the same chain. Then, the only edge of P that p1pi+1 may
cross is pi−1pi. In particular, if pi−1pi is a boundary edge, replacing pipi+1 by p1pi+1 forms
a valid flip.

The following theorem constitutes the main result of this section. We illustrate the main
ideas and structure of the proof, but postpone the most involved cases to the full version.

I Theorem 6. Let S ∈ DC, and let P, Q ∈ P(S) be two plane spanning paths on S. Then,
P can be transformed to Q in O(n2) flips.

Proof. Let P = p1, . . . , pn ∈ P(S), and consider the edge e = p1p2. Let pi, i 6= 2 be a
neighbor of p1 and whenever we have the choice, we pick pi to be a neighbor such that
p1pi does not form a special boundary edge (if both neighbors fulfill this property, pick one
arbitrary). We denote f = pi−1pi. We describe a process where in each iteration we either:

2 We emphasize that the boundary of S is distinct from the convex hull of S.
3 Note, in the setting of double chains, any vertex is on the boundary.
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Figure 5 Illustration of the three cases of Theorem 6. The solid paths together with the dashed
edges form the initial path. Then, the dashed edges are replaced by the dotted (in (b), pay attention
to the order of the flips). (c) illustrates some of the intricacies, if the starting edge is a boundary
edge. None of the flips in the previous cases are valid here (no matter from which endpoint the path
is viewed).

(i) increase the number of boundary edges (while not increasing the overall distance of P ), or
(ii) decrease the overall distance of P (while not decreasing the number of boundary edges).

We can assume, w.l.o.g., that the endpoints of P are not neighbors, since otherwise
we add the edge p1pn and remove an arbitrary (non-boundary) edge. We distinguish the
following cases:

Case 1 f is not a boundary edge.
Then, we can simply replace f by p1pi (forming a proper flip by Observation 4). This
increases the number of boundary edges and decreases the overall distance (recall that
boundary edges have distance one and all other edges distance at least two).

Case 2 f is a boundary edge.
Then, the edge pipi+1 is not a boundary edge, since pi already has the two neighbors p1
and pi−1.

Case 2.1 e is not a boundary edge.
Note that, since e is not a boundary edge, p1pi is not a special boundary edge.
We apply the following flips:

replace pipi+1 by p1pi+1 and
replace e by p1pi.

The first flip is valid by Observation 5 and the second flip by Observation 4. The first
flip may increase the overall distance by at most one, but the second flip decreases the
overall distance by at least one. Hence, the overall distance does not increase. On the
other hand, we increase the number of boundary edges.

Case 2.2 e is a boundary edge.
The case where e and f are both boundary edges is surprisingly intricate (especially
when p1 and pi lie on different chains). It is easy to see that either d(p1, pi+1) < d(pi, pi+1)
or d(pi−1, pi+1) < d(pi, pi+1) holds and our goal is to perform the corresponding flip
that decreases the distance. However, if p1 and pi lie on different chains, we need to be
very careful in order to preserve planarity (the details can be found in the full version
of this paper).

Recursively applying above process, we will eventually transform P to a canonical path
that consists only of boundary edges (the only paths with minimum overall distance). Doing
the same for Q and noting that any pair of canonical paths can be transformed into each
other by a single flip, the connectedness of the flip-graph follows.
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Concerning the required number of flips, note that any edge has distance at most n
2 − 1

and the path has n− 1 edges. Hence, the total number of iterations to transform P into a
canonical path is at most (

(n− 1) ·
(n

2 − 2
)

+ (n− 1)
)
∈ O(n2)

Furthermore, any iteration requires at most two flips and hence, the total number of flips to
transform P into Q is still in O(n2). J

3 A sufficient condition

In this section, we prove the sufficient condition of considering only paths with a fixed starting
edge (recall that we consider point sets in general position now). We need one preliminary
lemma, whose proof can be found in the full version of this paper:

I Lemma 7. For any two points p1 and p2 of S there exists a path P ∈ P(S) which has p1
as starting and p2 as target point.

I Lemma 8. A positive answer to Conjecture 2 implies a positive answer to Conjecture 1.

Proof. Let Ps and Pt be the two paths of Conjecture 1. If they have a common endpoint, we
can directly use Conjecture 2 and the statement follows. So assume that Ps has the endpoints
pa and pb, and Pt has the endpoints pc and pd, which are all distinct. By Lemma 7 there
exists a path Pm having the two endpoints pa and pc. By Conjecture 2 there is a flip sequence
from Ps to Pm with the common endpoint pa, and again by Conjecture 2 there is a further
flip sequence from Pm to Pt with the common endpoint pc. This implies the statement. J

I Lemma 9. A positive answer to Conjecture 3 implies a positive answer to Conjecture 2.

The general strategy to prove Lemma 9 is similar to the one of Lemma 8, but of course
more involved as we also need to handle the position of the common starting point (again,
we defer the details to the full version).

4 Conclusion

In this paper, we made progress towards a positive answer of Conjecture 1, though it still
remains open. A natural way to prove Conjecture 1 would be to prove Conjecture 3 by
induction. We can assume all three conjectures to hold for all sets of size at most n− 1 and
only need to show that Conjecture 3 holds for n.

Concerning the approach of special classes of point sets, of course one can try to further
adapt the ideas to other classes.

Lastly, there are several other directions for further research conceivable, e.g. considering
simple drawings (or other types of drawings) instead of straight-line drawings.
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