
Compact Routing in Unit Disk Graphs1

Wolfgang Mulzer2

Institut für Informatik, Freie Universität Berlin, 14195 Berlin, Germany3

mulzer@inf.fu-berlin.de4

Max Willert5

Institut für Informatik, Freie Universität Berlin, 14195 Berlin, Germany6

willerma@inf.fu-berlin.de7

Abstract8

Let V ⊂ R2 be a set of n sites in the plane. The unit disk graph DG(V ) of V is the graph with9

vertex set V where two sites v and w are adjacent if and only if their Euclidean distance is at most 1.10

We develop a compact routing scheme R for DG(V ). The routing scheme R preprocesses DG(V )11

by assigning a label `(v) to every site v in V . After that, for any two sites s and t, the scheme R12

must be able to route a packet from s to t as follows: given the label of a current vertex r (initially,13

r = s), the label of the target vertex t, and additional information in the header of the packet, the14

scheme determines a neighbor r′ of r. Then, the packet is forwarded to r′, and the process continues15

until the packet reaches its desired target t. The resulting path between the source s and the target16

t is called the routing path of s and t. The stretch of the routing scheme is the maximum ratio of17

the total Euclidean length of the routing path and of the shortest path in DG(V ), between any two18

sites s, t ∈ V .19

We show that for any given ε > 0, we can construct a routing scheme for DG(V ) with diameter20

D that achieves stretch 1 + ε, has label size (1/ε)O(ε−2) logD log3 n/ log logn, and the header has at21

most O(log2 n/ log logn) bits. In the past, several routing schemes for unit disk graphs have been22

proposed. Our scheme achieves poly-logarithmic label and header size, small stretch and does not23

use any neighborhood oracles.24
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1 Introduction30

The routing problem is a well-known problem in distributed graph algorithms [13,17]. We31

are given a graph G and want to preprocces it by assigning labels to each node of G such32

that the following task can be solved: a data packet is located at a source node and has to33

be routed to a target node. A routing scheme should have several properties. First, routing34

must be local: a node use only the header of the packet (including the label of the target35

node) and its own local information to compute a neighbor to which the packet is sent next.36

Second, the routing should be efficient: the ratio of the routed path and the shortest path37

— the stretch factor — should be close to 1. Finally, the scheme should be compact: the38

size of the labels (in bits) and headers must be small. In the literature, one can find many39

different techniques and models for routing. A common tool is called the routing table. A40

routing table is a sequence of bits stored in a node. Typically, routing tables contain more41

information about the topology of the graph and are different from labels. In this article, we42

do not use routing tables, but store all the information in the labels. Moreover, the header43

moves with the data packet through the graph. It can be split into two different parts: the44
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40:2 Compact Routing in Unit Disk Graphs

first part is called static header and contains the target label. The static part of the header45

is immutable. On the other hand, the dynamic header contains mutable information. The46

existence of dynamic headers make it possible to implement recursive routing strategies or to47

remember information from past positions of the packet.48

Furthermore, the literature distinguishes two types of input models. In the fixed-port49

model, the given graph already has a complete list of ports for each node v, i.e., a fixed50

numbering of the neighbors of v used to identify the next hop of the packet. In particular,51

it is not possible to renumber the ports. In contrast, the designer-port model allows us to52

assign arbitrary port numbers during the preprocessing, see [11,12,22]. Below, we will briefly53

discuss the advantages and disadvantages of these two models.54

A trivial solution to solve the routing problem is to store the complete shortest path tree55

in every label. Then it is easy to route the data packets along a shortest path. However,56

such a routing scheme is not compact. Moreover, Peleg and Upfal [17] proved that in general57

graphs, any routing scheme that achieves a constant stretch factor must store at least a58

polynomial number of bits in some nodes.59

Nevertheless, there is a rich collection of routing schemes for general graphs [1, 3, 7, 9, 10,60

18,19]. For example, the scheme by Roditty and Tov [19] uses labels of size mnO(1/
√

logn)
61

and routes a packet from s to t on a path of length O
(
k∆ +m1/k), where ∆ is the shortest62

path distance between s and t, k > 2 is any fixed integer, n is the number of nodes, and m is63

the number of edges. Their routing scheme needs headers of poly-logarithmic size. The lower64

bound result by Peleg and Upfal [17] shows that it is hopeless to find efficient routing schemes65

for general graphs that are compact as well, meaning that at most a poly-logarithmic number66

of bits in the labels/tables are necessary. Thus, it is natural to investigate special interesting67

graph classes and to develop compact and efficient routing schemes for them. For example, it68

is possible to route in trees along a shortest path by using a poly-logarithmic number of bits69

in the label [11,20,22]. Moreover, in planar graphs, for any fixed ε > 0, we can find a routing70

scheme that achieves the stretch factor 1 + ε. Again, the number of bits for the labels is71

poly-logarithmic [21]. The same holds for visibility graphs of simple polygons [4]. Moreover,72

see [2, 15] for different compact routing schemes in networks with low doubling dimension.73

Our graph class of interest comes from the study of mobile and wireless networks. These74

networks are usually modeled as unit disk graphs [8]. Nodes in this network are points in the75

plane and two nodes are connected if their distance is at most one. This is equivalent to76

a disk intersection graph in which all disks have diameter one. For unit disk graphs there77

are known routing schemes. The first routing scheme is by Kaplan et al. [14] and uses the78

fixed-port model. They present a routing scheme with stretch 1 + ε and routing table size79

O(log2 n log2 D), where D is the diameter of the given unit disk graph. Their routing is80

recursive and needs an additional header of size O(logn logD). The second routing scheme is81

due to Yan, Xiang, and Dragan [24]. They present a routing scheme with label size O(log2 n)82

and show that a data packet routes along a path of length a most 5∆ + 13, where ∆ is the83

length of the optimal path. The designer-port model is used.84

Here, we present a compact routing scheme that achieves stretch 1 + ε. We obtain label85

size (1/ε)O(ε−2) logD log3 n/ log logn. We use the fixed-port model. Moreover, we do not86

use neighborhood oracles and the dynamic part of the header is empty except for the case87

that the current and target vertices are very close. Here, the dynamic header size is at most88

O(log2 n/ log logn). In the conclusion, we will discuss how our scheme compares to the other89

schemes.90
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2 Preliminaries91

We explain our graph-theoretic notation and discuss how the routing scheme can access the92

input graph. Then, we provide a precise definition of our notion of a routing scheme and93

give some background on unit disk graphs.94

We are given a simple and undirected graph G = (V,E) with n vertices. The edges are95

weighted by a non-negative weight function w : E → R+
0 . We write dG(s, t) for the (weighted)96

shortest path distance between the vertices s, t ∈ V and we omit the subscript G if it follows97

from the context. Throughout the whole article we assume that the graph is connected.98

Graph Access Model. Let Σ = {0, 1}, and [m] = {0, 1, . . . ,m}, for m ∈ N. We explain99

how the routing scheme may access the input graph G = (V,E). Every vertex v ∈ V has100

an identifier vid ∈ Σ+ of length |vid| = dlogne. We use the fixed-port model [11, 12,22]. In101

this model the port numbers are assigned arbitrarily. The neighbors of a vertex v ∈ V are102

accessed through ports. More precisely, there is a partial function node : V × [n− 1]→ V ,103

that assigns to every vertex v ∈ V and to every port number p ∈ [n − 1] the neighbor104

w = node(v, p) that can be reached through the port p at vertex v.105

Other authors also use the designer-port model [11, 22, 24]. In this model, the routing106

scheme can determine the assignment of port numbers to the incident edges of each vertex107

v ∈ V during the preprocessing phase. This additional power in the model can lead to108

more efficient routing schemes [11, 12, 22, 24]. However, a routing scheme that uses the109

designer-port cannot easily be used as a building block for more complicated routing schemes,110

since additional lookup tables become necessary in order to store the assignments of the port111

numbers.112

Routing Schemes. Let G be a graph class. A routing scheme R for G consists of a family113

of labeling functions `G : V (G) → Σ+, for each G ∈ G. The labeling function `G assigns114

a bit string `G(v) to every node v of G ∈ G. The label `G(v) serves as the address of the115

node v ∈ V in G. In contrast to the identifier of a node, the label usually contains the116

identifier, but some more information about the topology of the graph G. While the identifier117

is given as fixed input, the label is chosen by the routing scheme during the preprocessing.118

As before, we omit the index G if the context is clear. Furthermore, R has a routing function119

σ : Σ+ × Σ+ × Σ+ → N× Σ+. The routing function σ describes the behavior of the routing120

scheme, as follows: assume a data packet with dynamic header h is located at a vertex121

s ∈ V and must be routed to a destination t ∈ V . Then, σ(`(s), `(t), h) computes a port122

p ∈ N and a new header h′ so that the next hop of the data packet (attached with the new123

header h′) is from s to node(s, p). Now, let v0 = s, h0 = ε, (pi, hi+1) = σ(`(vi), `(t), hi)), and124

vi+1 = node(vi, pi) for i ≥ 0. The sequence (vi)i∈N is called the routing sequence. The routing125

scheme R is correct, for G ∈ G, if and only if for all distinct s, t ∈ V (G), there is a number126

m(s, t) ∈ N such that vj = t, for all j ≥ m(s, t), and vj 6= t, for all j = 0, . . . ,m(s, t)− 1. If127

R is correct for G = (V,E), then δG(s, t) =
∑m(s,t)
i=1 w(vi−1, vi) is called the routing length128

between s and t (in G). The stretch of the routing scheme is the largest ratio δG(s, t)/dG(s, t)129

over all distinct vertices s, t ∈ V . The goal is to achieve a routing scheme that minimizes the130

stretch factor as well as the number of bits stored in the labels and the headers.131

Unit Disk Graphs. Our graph class of interest are the unit disk graphs. Let V ⊂ R2 be a132

set of n points in the Euclidean plane. The unit disk graph DG(V ) of V has vertex set V133

and an edge between two vertices v, w ∈ V if and only if the Euclidean distance |vw| is at134

ISAAC 2020



40:4 Compact Routing in Unit Disk Graphs

Figure 1 The disks in the unit disk graph have diameter 1 and there is an edge between two
midpoints if and only if their corresponding disks intersect.

most 1, see Figure 1. The weight of the edge vw is |vw|. Throughout, we will assume that135

DG(V ) is connected, and we will use D to denote the diameter maxv,w∈V d(v, w) of DG(V ).136

Clearly, we have D ≤ n− 1.137

3 Building Blocks138

The overall idea for our routing scheme is as follows: We use a hierarchy of sparse covers to139

cover the unit disk graph with O(logD logn) connected subgraphs. For the subgraphs with140

large diameter we use a recently developed distance oracle of Chan and Skrepetos and turn141

it into an efficient routing scheme with additive stretch. Here we use the fact, that we can142

route easily in trees. For the subgraphs with small diameter we use a routing scheme, that is143

used for graphs with low doubling dimension.144

In this section we review the routing schemes for trees and graphs with low doubling145

dimension and adapt the distance oracle to a new routing scheme. In the following section146

we combine these building blocks to obtain our result.147

3.1 Routing in Trees and Graphs with Low Doubling Dimension148

The first routing scheme is for trees. There are many different such schemes, based on similar149

ideas. We would like to point out that some of these routing schemes can achieve label150

size O(logn), see [11, 22]. However, these routing schemes work only in the designer-port151

model and therefore are not useful as building blocks for more complex routing schemes,152

especially if—as in our routing case—we need to be able to route in several subtrees of the153

input graph.1 The following lemma is due to Fraigniaud and Gavoille [11] as well as Thorup154

and Zwick [22].155

I Lemma 3.1. Let T be an n-vertex tree with arbitrary edge weights. There is a routing156

scheme for T with label size O(log2 n/ log logn) whose routing function σtree sends a data157

packet along a shortest path, for any pair of vertices. The dynamic part of the header is158

empty.159

1 In fact, there is a lower bound that shows that label size O(logn) cannot be achieved in the fixed-port
model [12].
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The second routing scheme is efficient for unit disk graphs with small diameter. Let160

G = (V,E) be a simple, undirected, weighted graph. For v ∈ V and r > 0, we define161

B(v, r) = {w ∈ V | d(v, w) ≤ r} as the ball of v with radius r. The doubling dimension of a162

graph is the smallest value α such that any ball B(v, r) can be covered by at most 2α balls163

of radius at most r/2. The following lemma is due to Konjevod, Richa, and Xia [15].164

I Lemma 3.2. Let G be an n-vertex graph with doubling dimension α. Furthermore, let165

ε > 0. There is a routing scheme with label size (1/ε)O(α) log3 n and dynamic header size166

O(log2 n/ log logn), whose routing function achieves stretch factor 1 + ε.167

The following lemma bounds the doubling dimension of a unit disk graph in terms of D.168

I Lemma 3.3. Let DG(V ) be a unit disk graph, v ∈ V a vertex, and r > 0. We can cover169

the ball B = B(v, r) with O(max(1, r2)) balls of diameter at most r/2.170

Proof. Let E ∈ R2 be the Euclidean disk of radius r centered at v. Obviously, B ⊂ E.171

Moreover, the Euclidean disk E can be covered by a set E of K = O(max(1, r2)) Euclidean172

disks each of radius r′ = min(r/4, 1/2). This follows from a simple covering argument. For173

each disk Ei ∈ E , we fix a vertex vi as follows: if Ei ∩B 6= ∅, then vi is an arbitrary vertex174

of Ei ∩B. Otherwise, if Ei ∩B = ∅, we let vi be an arbitrary vertex of B. Since r′ ≤ 1/2,175

the vertices in Ei form a clique in DG(V ). Hence, we have Ei ∩B ⊆ B(vi, 2r′). Next, from176

r′ ≤ r/4 we get B(vi, 2r′) ⊆ B(vi, r/2). Thus,177

B(v, r) ⊆
K⋃
i=1

(Ei ∩B) ⊆
K⋃
i=1

B(vi, 2ri) ⊆
K⋃
i=1

B(vi, r/2).178

This finishes the proof. J179

Finally, the routing scheme for unit disk graphs with small diameter follows from180

Lemma 3.2 and Lemma 3.3.181

I Lemma 3.4. Let DG(V ) be an n-vertex unit disk graph with diameter D. Furthermore,182

let ε > 0. There is a routing scheme with label size (1/ε)O(D2) log3 n and dynamic header183

size O(log2 n/ log logn), whose routing function σdiam achieves stretch factor 1 + ε.184

3.2 The Distance Oracle of Chan and Skrepetos185

Our routing scheme is based on the recent approximate distance oracle for unit disk graphs by186

Chan and Skrepetos [6]: we are given a set V ⊂ R2 of n points in the plane and a parameter187

ε ≥ D−1, where D is the diameter of DG(V ). Chan and Skrepetos show how to compute in188

O((1/ε)3n log2 n) time a data structure of size O((1/ε)n logn) that can answer approximate189

distance queries in DG(V ) in O((1/ε) logn) time: given two vertices s, t ∈ V , compute a190

number θ ∈ R with d(s, t) ≤ θ ≤ d(s, t) +O(εD). The main tool for this data structure is a191

suitable hierarchical decomposition of DG(V ). More precisely, Chan and Skrepetos show192

that given V , one can compute in O(n logn+ (1/ε)n) time a decomposition tree T for DG(V )193

with the following properties.2194

2 The reader familiar with the work of Chan and Skrepetos may notice that we have slightly extended the
notion of portals: while Chan and Skrepetos define portals only for inner nodes, we also define portals
for the leaves. This does not change the essence of the decomposition, but makes the presentation more
unified.

ISAAC 2020



40:6 Compact Routing in Unit Disk Graphs

Every node µ of T is assigned two sets V (µ) and port(µ) satisfying port(µ) ⊆ V (µ) ⊆ V .195

The subgraph of DG(V ) induced by V (µ) is connected and the vertices in port(µ) are196

called portals.197

If µ is the root, then V (µ) = V .198

If µ is an inner node with k children σ1, . . . , σk, the sets port(µ), V (σ1), . . . , V (σk) are199

pairwise disjoint, and we have V (σi) ⊆ V (µ), for 1 ≤ i ≤ k.200

If µ is a leaf, then V (µ) = port(µ).201

The height of T is in O(logn), and for every node µ of T , we have |port(µ)| ∈ O(1/ε).202

To state the final (and most important) property of T , we first need to introduce some203

additional notation. The properties of T so far imply that the portal sets of two different204

nodes in T are disjoint. For every portal p, we let µ(p) be the unique node in T with205

p ∈ port(µ(p)). Next, let P (s, t) = {p ∈ port(µ) | s, t ∈ V (µ)}, be the set of all portals p206

satisfying s, t ∈ V (µ(p)). Moreover, let µ be a node of T and s, t ∈ V (µ). We denote by207

dµ(s, t) the shortest path distance between s and t in the subgraph of DG(V ) induced by208

V (µ). Now, the decomposition tree of Chan and Skrepetos has the property that for every209

pair of vertices s, t ∈ V , if we set210

θ(s, t) = min
p∈P (s,t)

dµ(p)(s, p) + dµ(p)(p, t)211

then212

θ(s, t) ≤ d(s, t) +O(εD). (1)213

3.3 A Routing Scheme with Additive Stretch214

In Section 3.1, we presented a routing scheme that is efficient for unit disk graphs with low215

diameter. In this section we present a routing scheme that is efficient for unit disk graphs216

with large diameter. Let DG(V ) be an n-vertex unit disk graph with diameter D, and let217

ε > D−1. We set c = n · (εD)−1 and define xc = bx · cc, for each x ∈ R+
0 .218

The labels. For the labels, we first compute the decomposition tree T , as explained in219

Section 3.2. Next, let v ∈ V , and let p be a portal with v ∈ V (µ(p)). We compute the220

shortest path tree Tp of V (µ(p)) rooted at p and enumerate its vertices in postorder. The221

postorder number of v in Tp is denoted by rp(v). Next, the subtree of Tp rooted at v is222

called Tp(v) and we use lp(v) to denote the smallest postorder number in Tp(v). Since we223

enumerated the vertices in postorder, we get the following observation.224

I Observation 3.5. Let w ∈ V (µ(p)). Then we have:225

w ∈ Tp(v)⇔ rp(w) ∈ [lp(v), rp(v)].226
227

Finally, we apply the tree routing from Lemma 3.1 to Tp and denote by `p(v) the corresponding228

label of v. We store (pid, dµ(p)(v, p)c, lp(v), rp(v), `p(v)) in `(v) and get the following lemma.229

I Lemma 3.6. For every vertex v ∈ V , we have | `(v)| ∈ O
(

log3 n

ε log logn

)
.230

Proof. Since T has height O(logn), we know that v is in O(logn) different sets V (µ).231

Moreover, for every node µ, there are at most O(1/ε) portals. Thus, the label of v contains232
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V (µ(p))

Tp(s)

V (µ(p))

p p

s s

t

t

Tp(s)

V (µ(p))

p

s t

Tp(s)

Figure 2 Left: If t is in Tp(s), i.e., θ(s, t; p) = dµ(p)(t, p) − dµ(p)(p, s), we route away from p.
Middle and Right: If t is not in Tp(s), i.e., θ(s, t; p) = dµ(p)(t, p) + dµ(p)(p, s), we route towards p.
The right picture suggests to define θ(s, t; p) as dµ(p)(s, p)− dµ(p)(t, p). This does not influence the
guarantees of our routing scheme but would lead to more cases.

O(ε−1 · logn) different entries. The value dµ(p)(v, p)c is a natural number, and since c ≤ n,233

we have234

dµ(p)(v, p)c = bdµ(p)(v, p) · cc ≤ n2.235

Thus, we need O(logn) bits for the number dµ(p)(v, p)c. Moreover, the identifier pid as well236

as the postorder numbers stored in one entry only need O(logn) bits. Finally, we apply237

Lemma 3.1 to conclude that one entry of the routing label has size O(log2 n/ log logn). The238

claim follows. J239

The routing function. Next, we describe the routing function. We are given the labels `(s)240

and `(t) for the current vertex s and the target vertex t. The dynamic part of the header241

will always be empty. First, we identify all portals p with s, t ∈ V (µ(p)). We can do this by242

identifying all vertices p such that the entry (pid, dµ(p)(s, p)c, lp(s), rp(s), `p(s)) is in `(s) and243

the entry (pid, dµ(p)(t, p)c, lp(t), rp(t), `p(t)) is in `(t). Next, let244

θ(s, t; p) =
{
dµ(p)(t, p)− dµ(p)(p, s), if t ∈ Tp(s)
dµ(p)(t, p) + dµ(p)(p, s), otherwise.

245

246

See Figure 2 for an illustration of the two cases. Let popt be the portal that minimizes247

θ(s, t; p) among all portals p. Then, it is easy to see, that θ(s, t; popt) ≤ θ(s, t) (recall from248

Section 3.2 that θ(·, ·) denotes the result of the distance oracle by Chan and Skrepetos).249

Hence, θ(s, t; popt) is a good approximation for the distance between s and t. However,250

the routing function cannot compute the optimal portal popt, since we do not have direct251

access to the real value dµ(p)(s, popt). Instead, we use the values dµ(p)(·, p)c to compute a252

near-optimal portal. Analogously to θ(s, t; p), we define253

θc(s, t; p) =
{
dµ(p)(t, p)c − dµ(p)(p, s)c, if t ∈ Tp(s)
dµ(p)(t, p)c + dµ(p)(p, s)c, otherwise.

254

255

Let p0 be the portal that lexicographically minimizes (θc(s, t; p), pid), among all portals p.256

We call p0 the s-t-portal and set θc(s, t) = θc(s, t; p0). Observe that the s-t-portal can be257

computed by using only the labels of s and t as well as Observation 3.5. The routing function258

now uses the labels `p0(s) and `p0(t) to compute the next vertex in Tp0 and forwards the259

data packet to this vertex (the dynamic part of the header remains empty).260

ISAAC 2020
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The stretch. Finally, we have to show that the routing scheme is correct and routes along261

a short (not necessarily shortest) path. For this, we first show that the routing process262

terminates.263

I Lemma 3.7. Let s be the current vertex, t the target vertex, and suppose that the routing264

scheme sends the packet from s to v. Moreover, let p0 be the s-t-portal. Then, p0 is a possible265

candidate for the v-t-portal, and we have θc(s, t; p0) ≥ θc(v, t; p0) + |sv|c.266

Proof. First, let µ = µ(p0). Since sv is an edge of the shortest path tree Tp0 , it follows that267

v ∈ V (µ(p0)). This gives the first part of the claim. For the second part, we distinguish two268

cases:269

Case 1: t ∈ Tp0(s). In this case, we have t ∈ Tp0(v), and thus θc(v, t; p0) = dµ(t, p0)c −270

dµ(p0, v)c. Moreover, we have271

dµ(p0, v)c = bdµ(p0, v)·cc = bdµ(p0, s)·c+|sv|·cc ≥ bdµ(p0, s)·cc+b|sv|·cc = dµ(p0, s)c+|sv|c,272

since s is on the path in Tp0 from p0 to v. Hence,273

θc(s, t; p0) = dµ(t, p0)c − dµ(p0, s)c ≥ dµ(t, p0)c − dµ(p0, v)c + |sv|c = θc(v, t; p0) + |sv|c,274

as desired.275

Case 2: t /∈ Tp0(s). Similarly to the first case, we have dµ(p0, s)c ≥ dµ(p0, v)c + |sv|c and276

θc(v, t; p0) ≤ dµ(t, p0)c + dµ(p0, v)c. Thus, we get277

θc(s, t; p0) = dµ(t, p0)c + dµ(p0, s)c ≥ dµ(t, p0)c + dµ(p0, v)c + |sv|c ≥ θc(v, t; p0) + |sv|c,278

and the claim follows. J279

I Corollary 3.8. Let s, t, and v be as in Lemma 3.7. Then, θc(s, t) ≥ θc(v, t) + |sv|c.280

Proof. Let p0 be the s-t-portal. From Lemma 3.7, we get281

θc(s, t) = θc(s, t; p0) ≥ θc(v, t; p0) + |sv|c ≥ θc(v, t) + |sv|c. J282

I Lemma 3.9. Let s, t and v be as in Lemma 3.7. Let p be the s-t-portal and q be the283

v-t-portal. Then, if θc(s, t) = θc(v, t), it follows that pid ≥ qid.284

Proof. From Lemma 3.7, we have285

θc(v, t; q) = θc(v, t) = θc(s, t) = θc(s, t; p) ≥ θc(v, t; p) + |sv|c ≥ θc(v, t; p) ≥ θ(v, t; q).286

Hence, θc(v, t; p) = θc(v, t; q). Furthermore, by construction, we have (θc(v, t; p), pid) ≥287

(θc(v, t; q), qid). Thus, the claim follows. J288

I Lemma 3.10. The routing scheme is correct.289

Proof. Let s be the current vertex and t the desired target vertex, and let p be the s-t-portal.290

To measure the progress towards t, we consider the triple (θc(s, t), pid, hp(s, t)), where hp(s, t)291

denotes the hop distance in Tp between s and t. i.e., the number of edges on the path between292

s and t in Tp.293

Suppose that the routing scheme sends the packet from s to v, and let q be the v-t-294

portal. We argue that (θc(v, t), qid, hq(v, t)) < (θc(s, t), pid, hp(s, t))). By Corollary 3.8 and295
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Lemma 3.9, it suffices to show that if θc(s, t) = θc(v, t) and p = q, then hp(s, t) > hq(v, t).296

However, this is clear, because by Lemma 3.1, sv is an edge of Tp that leads from s towards297

t, and Tq = Tp.298

Now, since the triples (θc(s, t), pid, hp(s, t)) lie in N3 and since (0, 0, 0) is a global minimum,299

it follows that the data packet eventually arrives at the target vertex t. J300

I Lemma 3.11. For any two vertices s and t, we have δ(s, t) ≤ d(s, t) +O(εD).301

Proof. First, we show that θc(s, t) ≤ c · θ(s, t) + 1: let p0 be the s-t-portal, and let popt be302

the portal minimizing θ(s, t; ·) among all portals. Let µ = µ(popt). We obtain.303

θc(s, t) = θc(s, t; p0) ≤ θc(s, t; popt) = bc · dµ(t, popt)c ± bc · dµ(popt, s)c304

≤ bc · (dµ(t, popt)± dµ(popt, s))c+ 1 ≤ bc · θ(s, t)c+ 1 ≤ c · θ(s, t) + 1,305
306

where the ±-operator is used to cover the two possible cases in the definition of θc, and307

because bac+ bbc ≤ ba+ bc and bac − bbc ≤ ba− bc+ 1, for all a, b ≥ 0. By Lemma 3.10, we308

know that the routing terminates. Let π : s = w0, . . . , wm = t be the routing path. From309

Corollary 3.8, we get |wiwi+1|c ≤ θc(wi, t)− θc(wi+1, t), and thus310

δ(s, t) =
m−1∑
i=0
|wiwi+1| ≤

m−1∑
i=0

|wiwi+1|c + 1
c

= m

c
+ 1
c

m−1∑
i=0
|wiwi+1|c311

≤ m

c
+ 1
c

m−1∑
i=0

(θc(wi, t)− θc(wi+1, t)) = m

c
+ θc(s, t)

c
312

≤ m

c
+ c · θ(s, t) + 1

c
= m+ 1

c
+ θ(s, t)313

314

Now, using Equation (1) from Section 3.2, the choice of c = n · (εD)−1, and the fact that315

m ≤ n− 1, we get316

m+ 1
c

+ θ(s, t) ≤ n

n · (εD)−1 + d(s, t) +O(εD) = d(s, t) +O(εD),317

as claimed. J318

We can now conclude with our first theorem.319

I Theorem 3.12. Let DG(V ) be an n-vertex unit disk graph with diameter D. Furthermore,320

let ε > D−1. There is a routing scheme with label size O
(
ε−1 log3 n/ log logn

)
whose routing321

function σadd routes any data packet on a path with additive stretch O(εD).322

4 A Routing Scheme with Stretch 1 + ε323

Let DG(V ) be an n-vertex unit disk graph with diameter D, and let ε > 0. Furthermore,324

without loss of generality, we can assume that ε ≤ 1. For our routing scheme, we need the325

following two ingredients from the literature.326

Planar spanners. Let c ≥ 1. A c-spanner for DG(V ) is a subgraph H of DG(V ) with vertex327

set V such that for any s, t ∈ V , we have dH(s, t) ≤ c · d(s, t). The following lemma shows328

the existence of good planar spanners for unit disk graphs and was proven by Li, Calinescu,329

and Wan [16].330
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I Lemma 4.1. For any n-vertex unit disk graph DG(V ), there exists a planar 4-spanner331

H ⊆ DG(V ). The spanner H can be found in O(n logn) time.3332

Sparse covers. Let H = (V,E) be a weighted planar graph, and let r ∈ N. A sparse r-cover333

for H is a collection of connected subgraphs H1, H2, . . . of H with the following properties:334

(i) for each vertex v ∈ V , there is at least one subgraph Hi that contains all the vertices335

w ∈ V with dH(v, w) ≤ r;336

(ii) each vertex v ∈ V is contained in O(1) subgraphs Hi; and337

(iii) diam(Hi) ≤ 25 · r, for every subgraph Hi, where diam(Hi) is the diameter of Hi.338

The following lemma establishes the existence of sparse covers for planar graphs and has339

been proven by Busch, LaFortune, and Tirthapura [5].340

I Lemma 4.2. For any weighted planar graph H with n vertices and for any r ∈ N, we can341

compute a sparse r-cover for H in polynomial time.342

The labels. Now we have all ingredients for our final routing scheme. We start with the343

description of the labels. In the preprocessing phase, we compute a planar 4-spanner H344

of DG(V ), as in Lemma 4.1. Then, we have diam(H) ≤ 4D. Next, for each k ∈ I =345

{dlog 8
εe, dlog 8

εe+ 1, . . . , dlog(diam(H))e}, we use Lemma 4.2 to construct a sparse 2k-cover346

(Hk
1 , H

k
2 , . . . ) of H. Let Gki be the induced unit disk graph on the vertex set of Hk

i . Let347

k0 = dlog 8
εe, for each G

k0
i , we apply the preprocessing mechanism of the low diameter routing348

scheme from Lemma 3.4. For each k ∈ I \ {k0}, we apply to each Gki the preprocessing step349

of the routing scheme with additive stretch from Theorem 3.12. We use `k,i to denote the350

resulting labeling for the graph Gki , for k ∈ I.351

Now, we describe how to obtain the labels for our routing scheme. Let v be a vertex of352

DG(V ) and let k ∈ I. Since Hk
1 , H

k
2 , . . . is a sparse 2k-cover, there exists an index i(v, k)353

such that Hk
i(v,k) contains all vertices w ∈ V with dH(v, w) ≤ 2k. Now, for each v ∈ V , the354

label `(v) is the concatenation of the tuples
(
k, i, b(i, k, v), `k,i(v)

)
, for each k ∈ I and each i355

with v ∈ V (Gki ). Here b(i, k, v) is a Boolean value that is true if and only if i = i(v, k). The356

following lemma bounds the maximum label size.357

I Lemma 4.3. For every v ∈ V , we have | `(v)| ∈ O
(

logD log3 n

ε log logn + (1/ε)O(ε−2) log3 n

)
.358

Proof. Since there are O(logD) different values for k, and since for each k, the vertex v359

appears in O(1) subgraphs Gki , we have that v lies in O(logD) different subgraphs Gki . For360

the subgraphs Gk0
i , the label `k0,i(v) comes from the low diameter routing scheme. Since361

diam(Gk0
i ) ∈ O(1/ε), Lemma 3.4 implies that `k0,i(v) needs (1/ε)O(ε−2) log3 n bits. Since v362

lies in O(1) subgraphs Gk0
i , we can conclude that the corresponding tuples in `(v) require363

(1/ε)O(ε−2) log3 n bits in total. For the remaining O(logD) subgraphs, we derive the label364

`k,i(v) from the additive stretch routing scheme from Theorem 3.12. Hence, the corresponding365

tuples take O(ε−1 logD log3 n/ log logn) bits in total. The claim follows. J366

The routing function. The idea of the routing function is visualized in Figure 3. Suppose367

we are given the labels `(s) and `(t) of the current vertex s and the target t, together with the368

dynamic part h of the header. The routing function works as follows: We find the smallest369

3 Li, Calinescu, and Wan actually proved that there is a planar 2.42-spanner [16]. Since we do not care
about the exact constant, we use a power of 2 to simplify later calculations.
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number k = k(s, t) ∈ I such that there is an index i for which the tuple (k, i, true, `k,i(t)) is370

in `(t) and the tuple (k, i, ∗, `k,i(s)) is in `(s).4 We can now derive the following observation:371

I Observation 4.4. Let s, t be vertices of Gki with k = k(s, t). Then we have d(s, t) ≤ 2k+5.372

Moreover, if k > k0 we have d(s, t) ≥ 2k−3.373

Proof. By property (iii) of a sparse cover we get d(s, t) ≤ diam(Gki ) ≤ diam(Hk
i ) ≤ 2k+5.374

This proves the first inequality.375

Next, let k > k0. The minimality of k and property (i) of a sparse cover show that376

dH(s, t) ≥ 2k−1 Finally, since H is a 4-spanner of G we derive d(s, t) ≥ 2k−3 and the claim377

follows. J378

Once we have k and i, we can distinguish three cases.379

If k > k0, we ignore the dynamic header (it will be empty) and use the function σadd of380

the additive stretch routing scheme to route within Gki . For this, we take the labels `k,i(s)381

and `k,i(t) from `(s) and `(t) to compute the next port. The dynamic part of the header382

remains empty. We use the computed port to route to the next vertex.383

If k = k0, we first check the dynamic header. If it is empty, we use the function σdiam of384

the low diameter routing scheme to route within Gk0
i . Again, we can take the labels `k0,i(s)385

and `k0,i(t) from `(s) and `(t) to compute the next port. This time the routing function386

σdiam also outputs a new string h of length O(log2 n/ log logn). Without loss of generality387

we assume that h 6= ε. We store h in the dynamic header and route the data packet along388

the computed port.389

If k = k0 and the dynamic header contains the non-empty string h, we use `k0,i(s), `k0,i(t)390

and h to route in Gk0
i , while updating the dynamic header according to σdiam.391

The stretch. It remains to show the correctness and to analyze the stretch factor. We start392

with the correctness. Its proof is quite similar to the correctness proof of σadd.393

I Lemma 4.5. The routing scheme is correct.394

Proof. Let s be the current vertex, t the desired target vertex and suppose that the routing395

scheme sends the packet from s to the vertex t. Moreover, let k = k(s, t) and i = i(s, t) be396

the indices that were used by the routing function to determine v. Since the routing step397

from s to v takes place in the graph Gki , we know that k is a potential candidate for k(v, t).398

Thus, k(v, t) ≤ k. If k(v, t) < k, we have made progress. However, if k(v, t) = k, it must be399

that i(s, t) = i(v, t), since we defined `(t) such that for each k > k0, there is exactly one i400

with b(i, k, t) = true. This means that if k does not change, the routing continues in the401

subgraph Gki . We already proved in Lemma 3.4 and Lemma 3.10 that the underlying routing402

schemes for this task are correct. Hence, after a finite number of steps, we either reach t,403

or we decrease the value k. Since there is only a finite number of values for k, correctness404

follows. J405

The next lemma bounds the additive stretch as a function of k.406

I Lemma 4.6. There is a constant c > 0 with the following property: let s and t be two407

vertices and let k = k(s, t). Then, we have δ(s, t) ≤ d(s, t) + cε · 2k.408

4 The ∗ is a placeholder for an arbitrary value. Note that `(s) and `(t) each contain at most one tuple
that starts with k, i
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Gk′

i(t,k′)

Figure 3 It holds 2k−3 ≤ diam
(
Gki(t,k)

)
≤ 2k+5. We use the additive stretch routing scheme to

route within Gki(t,k) until we find a vertex v that is in Gk
′

i(t,k′) for k′ < k. This process continues until
we find a vertex that is in Gk0

i(t,k0), here we use the low diameter routing scheme until we reach t.

Proof. We use induction on k ≥ k0. First, suppose that k = k0 = dlog(8/ε)e and let s, t be409

two vertices with k(s, t) = k0. Let Gki be the graph that is used to determine the next vertex410

after s. Since k can only decrease while routing, and since k0 is the minimum possible value411

of k, we route within Gki , using the low diameter routing scheme, until we reach t. Moreover,412

by Lemma 3.4 and Observation 4.4, and for c ≥ 25 we get413

δ(s, t) ≤ (1 + ε)d(s, t) ≤ d(s, t) + ε · 2k+5 ≤ d(s, t) + cε · 2k.414

Next, assume that k > k0. Let s, t be two vertices with k(s, t) = k, and assume that for415

every vertex w with k(w, t) < k, we have δ(w, t) ≤ d(w, t) + cε · 2k(w,t). Let Gki be the416

graph in which our scheme chooses to route the data packet from s to the next node. Let417

v be the first node on the routing path from s to t for which k(v, t) < k, see Figure 3.418

Moreover, let δ′(·, ·) measure the length of the routing path within the subgraph Gki , using419

the additive stretch routing scheme. Next, by the definition of k0 and since k > k0 we420

get diam(Gki ) ≥ d(s, t) ≥ 2k−3 ≥ 1/ε from Observation 4.4. Furthermore, we know that421

d(v, t) ≤ δ′(v, t), since t is a vertex in Gki . Finally, we use the inductive hypothesis as well as422

Theorem 3.12 to derive423

δ(s, t) = δ′(s, v) + δ(v, t) ≤ δ′(s, v) + d(v, t) + cε · 2k(v,t) ≤ δ′(s, v) + δ′(v, t) + cε · 2k−1
424

= δ′(s, t) + cε · 2k−1 ≤ d(s, t) + c0ε · 2k+5 + cε · 2k−1 ≤ d(s, t) + cε · 2k,425
426

for c ≥ c026, where c0 is the constant from the O-notation of the stretch in Theorem 3.12.427

Hence, the claim follows. J428

Finally, we can put everything together to obtain our main theorem.429

I Theorem 4.7. Let DG(V ) be an n-vertex unit disk graph and D its diameter. Furthermore,430

let ε > 0. There is a routing scheme with (1/ε)O(ε−2) logD log3 n/ log logn label size and431

O(log2 n/ log logn) dynamic header size whose routing function achieves the stretch factor432

1 + ε.433

Proof. It remains to show the stretch factor. Here, it suffices to show that the stretch434

factor is 1 +O(ε). Let s and t be two vertices and k = k(s, t). If k = k0 the stretch factor435
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immediately follows from Lemma 3.4. Thus, assume k 6= k0. On the one hand we know from436

Observation 4.4 that 2k−3 ≤ d(s, t), and on the other hand we know from Lemma 4.6 that437

δ(s, t) ≤ d(s, t) + cε · 2k. Putting everything together, we get the desired stretch as follows:438

δ(s, t) ≤ d(s, t) + cε · 2k ≤ d(s, t) + c23ε · d(s, t) = (1 + c23ε)d(s, t). J439

5 Conclusion440

We presented an efficient and compact routing scheme for unit disk graphs. It achieves stretch441

1 + ε and uses (1/ε)O(ε−2) logD log3 n/ log logn bits in the label. The dynamic header size is442

bounded by O(log2 n/ log logn). It would be interesting to see if this result can be extended443

to disk graphs in general. If the radii of the disks are unbounded, the decomposition of Chan444

and Skrepetos cannot be applied immediately. However, the case of bounded radii is still445

interesting, and even there, it is not clear how the method by Chan and Skrepetos generalizes.446

If we want to decrease the size of the dynamic header and analyse the preprocessing time we447

have to take a closer look into the routing scheme of Konjevod et al. [15] which we used as448

blackbox.449

Finally, let us compare our routing scheme to the known schemes. The model of the450

routing scheme of Kaplan et al. [14] is very close to ours. The routing scheme can be451

implemented using the fixed-port model. We achieve the same stretch factor and still use452

additional information of poly-logarithmic size. Their scheme was generalized to non-unit453

disk graphs with constant bounded radii [23]. Our main advantage is, that we do not use454

neighborhood oracles: Kaplan et al. assumes that it can be checked locally by the routing455

function (without using label, table or header) whether two vertices are neighbors or not, see456

Section 5.4 in [14]. The existence of such a neighborhood oracle makes the routing much457

easier, since it is a crucial problem to efficiently route in the neighborhood. However, it is458

not clear how their scheme can be implemented without such an oracle.459

The idea of the routing scheme of Yan et al. [24] is similar to ours: the graph is covered460

by O(logn) different trees. When the routing starts, the labels of the source and the target461

are used to determine the identity of a tree and an O(logn)-bit label of the target within462

this tree. Finally, they completely forget the original labels and route within this tree until463

they reach the target. For any two vertices s, t ∈ V , the routing path between s and t has464

length at most 5 · d(s, t) + 13. Our routing scheme can also be turned into this model, but we465

have O(logD logn) different trees that cover the unit disk graph and the label of a vertex466

in one of the trees has size O(log2 n/ log logn). Nevertheless, we achieve the near optimal467

stretch 1 + ε. Moreover, Yan et al. use the designer-port model and thus, they can route468

within a tree using labels of size O(logn). But since nodes are contained in more than one469

tree, there have to be lookup-tables for the port assignments. Their routing scheme can470

easily be turned into the fixed-port model: the stretch would not change and the label size471

would increase to O(log3 n/ log logn). Last but not least, their routing scheme also achieves472

constant hop stretch. It is unlikely that the hop stretch of our routing scheme is bounded by473

a constant. In conclusion, our routing scheme needs an O(logD)-factor more in the label size474

but achieves a better stretch if ε < 4. Moreover, our underlying routing model is specified475

more clearly.476
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