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—— Abstract

Let P C R2 be a set of points and T be a spanning tree of P. The stabbing number of T is the
maximum number of intersections any line in the plane determines with the edges of T'. The tree
stabbing number of P is the minimum stabbing number of any spanning tree of P. We prove that
the tree stabbing number is not a monotone parameter, i.e., there exist point sets P C P’ such
that TREE-STAB(P) > TREE-STAB(P’), answering a question by Eppstein [4, Open Problem 17.5].

1 Introduction

Let P C R? be a set of points in general position, i.e., no three points lie on a common line.
A geometric graph G = (P, E) is a graph equipped with a drawing where edges are realized
as straight-line segments. The stabbing number of G is the maximum number of proper
intersections that any line in the plane determines with the edges of G. Let G be a graph
class (e.g., trees, paths, triangulations, perfect matchings etc.). The G-stabbing number of P
is the minimum stabbing number of any geometric graph G = (P, F) belonging to G (as a
function of P).

Stabbing numbers are a classic topic in computational geometry and received a lot of
attention both from an algorithmic as well as from a combinatorial perspective. We mainly
focus on the stabbing number of spanning trees (see, e.g., [11] for more information), which
has numerous applications. For instance, Welzl [10] used spanning trees with low stabbing
number to efficiently answer triangle range searching queries, Agarwal [1] used them in the
context of ray shooting (also see [2, 3] for more examples). Furthermore, Fekete, Liibbecke
and Meijer [5] proved N'P-hardness of stabbing numbers for several graph classes, namely for
spanning trees, triangulations and matchings, though for paths this question remains open.

It is natural to ask whether stabbing numbers are monotone, i.e., does it hold for any
pointset P C R? that the G-stabbing number of P is not smaller than the G-stabbing number
of any proper subset P’ C P. Recently, Eppstein [4] gave a detailed analysis of several
parameters that are monotone and depend only on the point set’s order type. Clearly,
stabbing numbers depend only on the order type. Eppstein observed that the path stabbing
number is monotone [4, Observation 17.4] and asked whether this is also the case for the tree
stabbing number [4, Open Problem 17.5]. We prove that neither the tree stabbing number
(Corollary 3.4) nor the triangulation stabbing number (Corollary 4.2) nor the matching
stabbing number (Corollary 5.2) are monotone. A more detailed analysis can also be found
in the second author’s Master thesis [9]. Each of the following sections is dedicated to one
graph class.
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2 Path Stabbing Number

For completeness we repeat the main argument that the path stabbing number, denoted by
PATH-STAB(-), is monotone, which can be found in [4, Observation 17.4] for example.

» Lemma 2.1. Let G be a geometric graph. The following two operations do not increase
the stabbing number of G:

1. Removing a vertex of degree 1.
2. Replacing a vertex v of degree 2 with the segment connecting its two neighbours wy, ws.

Proof. Clearly, the first operation cannot increase the stabbing number, since it does not
add any new segments.

For the second part, let G’ be the geometric graph obtained from G by performing
operation 2 and let £ be an arbitrary line. If ¢ has strictly less than STABBING-NUMBER(G)
intersections in G, it has at most STABBING-NUMBER(G) intersections in G’, since we added
only one segment. Otherwise, if £ has STABBING-NUMBER(G) intersections in G, it clearly
does not pass through any vertex of G and if ¢ intersects the newly inserted segment wywy it
must have also intersected either wyiv or vws. <

» Corollary 2.2. PATH-STAB(:) is monotone.

3 Tree Stabbing Number

We construct point sets P; C P» of size n and n + 1 such that TREE-STAB(P;) > TREE-
STAB(P,). The point p € Py \ P; we want to remove, must, of course, have degree at least 3
in any spanning tree of minimum stabbing of P, since otherwise the arguments of Lemma 2.1
apply.

Our construction, which is depicted in Figure 1 (a), is as follows. Start with a unit
circle around the origin O and place 3 evenly distributed points 1,22, x5 on this circle (in
counterclockwise order). Next, add an “arm” consisting of 2 points y;,z; (i = 1,2,3) at
each of the x; (outside the circle) such that the points O, x;, y;, z; form a convex chain for
i =1,2,3 (which are all three oriented the same way). These arms need to be flat enough, i.e.,
the line supporting the segment T;7; must intersect the interior of the segment Ox;1 o (indices
are taken modulo 3), but also curved enough, i.e., the line supporting the segment 7;z; must
have the remaining 8 points on the same side. In particular, there are lines intersecting the
segments T;7;, U:z; and also Ox,;1o on the one hand and T;12z;72 on the other hand (the
red lines in Figure 1 (a)). If there is no danger of confusion, we might omit that indices are
taken modulo 3 (as in the previous sentence).

Define the two point sets P;, P» (which are both in general position) to be

Py = {z1,y1, 21, T2, Y2, 22, 23, Y3, 23}, Py =P U{0}.
» Lemma 3.1. It holds that TREE-STAB(P;) = 4 and TREE-STAB(P;) < 3.

Proof. This result was obtained by a computer-aided brute-force search (the source code
is available on github [8]). In order to compute the stabbing number of a given geometric
graph spanning some point set, it is enough to consider a representative set Hp of lines. For
any line ¢ that partitions the point set into two non-empty subsets, there is a line in the
representative set inducing the same partitioning. For an n-point set in general position,

the size of a representative set is (72’) (see the full version of this paper [7]). Hence, we
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Figure 1 Illustration of a set of (a) 9 points and (b) n points such that removing the point O
increases the tree stabbing number.

have |Hp,| = 36 and |Hp,| = 45. The sets Hp, and Hp, were also obtained by computer
assistance. Any pair of points induces four distinct representative lines, computing these and
removing duplicates yields Hp, and Hp, (as in [6] for example).

Now, it is enough to compute — for all 97 = 4782969 possible spanning trees on P; — their
intersections with the lines in Hp,, yielding TREE-STAB(P;) = 4.

On the other hand, for P, the spanning tree depicted in Figure 1 has stabbing number 3
(again by computing all intersections with lines in Hp,) implying TREE-STAB(P;)< 3. <«

Next, we generalize this construction to arbitrarily large point sets. We simply replace
one of the z; (say z1) by a convex chain C' consisting of k points py, ..., px (see Figure 1 (b)).
Denote the convex chains z1y1C, x2y222 and x3y3z3 by Cq, Co and Cs.

Our goal will be to remove all but two points of C U {y;} to get back to our 9-point
setting. Of course, it is crucial to keep the relative position of the points as it is in the 9-point
set. Thus, place the points pq, ..., pr such that:

1. O,z1,y1,p1,---,px forms a convex chain.

2. close enough to y1, so that the order type of the resulting point set is the same no matter
which k& — 1 of the points in C'U {y;} we remove. In particular, no line through any two
points not belonging to y1,p1, ..., pr may separate these points.

3. for any two segments formed by any triple of points in C (consecutively along the convex
chain) there is a line intersecting these two segments and also y3z3. To achieve this, C'
needs to be sufficiently flat and z3 needs to be pushed further away.

Note that Lemma 3.1 has been verified to still hold after the modification of pushing z3
further out. Before proving that this construction fulfills the desired properties, we need one
more preliminary lemma (see Figure 2).
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Figure 2 Illustration of Lemma 3.2. Special vertices are depicted as squares. Other vertices of
degree 1 or 2 are successively removed.

Figure 3 There is no line that intersects more than 3 segments in this spanning tree.

» Lemma 3.2. Let G = (V, E) be a forest with ¢ connected components and |V| > 4. Mark
three of the vertices as special (call them vy, vy, v3) and iteratively remove/replace vertices
of degree 1 and 2 (as in Lemma 2.1) until no non-special vertex of degree < 2 remains.
Then the resulting graph is a forest and consists of the three special vertices and at most one
non-special vertez.

The proof is straightforward and can be found in the full version of this paper [7]. Now,
we are prepared to prove our main lemma.

» Lemma 3.3. For any integer n > 9, there exist (planar) point sets P| C P} of size |P{| = n
and |Ps| = n+ 1 such that TREE-STAB(P;]) > TREE-STAB (P} ).

Proof. Let k = n—8 and define P| and Py as above (Figure 1 (b)), replacing z1 by p1, ..., px:

P{ = {x1,y1,p1,. .., Dk, T2, Y2, 22, 3, Y3, 23}, Py =P U{O}.

On the one hand, it is straightforward to see that the spanning tree depicted in Figure 1 (b)
has stabbing number 3 (see Figure 3 for an illustration) and hence TREE-STAB(Py) < 3.

On the other hand, we show TREE-STAB(P]) > 4 next. Assume for the sake of contradiction
that there is a spanning tree T' of P; with stabbing number at most 3. Our goal will be to
carefully remove points from P; such that the stabbing number of T cannot increase until
there are only 9 points left in exactly the same relative position as in Lemma 3.1. Clearly,
this would be a contradiction.

Consider the set of edges of T' with at least one endpoint among the points in C. There
are at most 3 edges having only one endpoint in Cy (we call them bridges). If there would
be more than 3 bridges, there is a line that intersects at least 4 line segments, namely a line
that separates Cy from the rest. Because of the same reason, not all three bridges can go to
the same other component (Cy or Cs).
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Figure 4 Illustration of Case 2. If a non-special vertex v survives the removal process, the red
line has too many intersections.

There are at most 3 points in C; that are incident to a bridge and if they are distinct,
one of them needs to be x1, otherwise the line separating z; from the rest of C; has 4
intersections. Pick three vertices vy, v2,v3 in C7 such that x; and any point incident to a
bridge is among them and mark them as special.

Next, we apply Lemma 3.2 to the subforest induced by Ci:

Case 1: No non-special vertex in Cy survives the removal process.
Then 9 points with the same order type as in Lemma 3.1 and a spanning tree with
stabbing number 3 remain, which is a contradiction to Lemma 3.1.

Case 2: One non-special vertex v in C survives the removal process.

Then v is incident to all special vertices vy, v, v3. If v is the last vertex along C7, there
is obviously a line having more than three intersections. Otherwise, by construction, there is
a line £ that separates v from vy, vs, v3 and at the same time z3 from the rest of the point
set (see Figure 4). In particular, £ has only z3 and v on one side and all other points on the
other. z3 cannot be adjacent to v, since v is not incident to a bridge and therefore contributes
another intersection to . This is a contradiction to the assumption that T' was a spanning
tree of stabbing number 3. |

» Corollary 3.4. TREE-STAB(-) is not monotone.

4  Triangulation Stabbing Number

We denote the triangulation stabbing number by TRI-STAB(:). Proving non-monotonicity
of TRI-STAB(-) is much simpler, only exploiting the additional structure enforced by trian-
gulations. Consider two symmetric convex chains C1 = {p1,...,p,} and Cy = {p},...,p.}
(sufficiently flat) each consisting of n points and facing each other as depicted in Figure 5 (a).
These points constitute the point set P. P’ consists of the same 2n points and two more
(slightly perturbed) points added on the line segment connecting the two middle points of C;
and Cy (as in Figure 5 (b)). Then the following holds:

» Lemma 4.1. TRI-STAB(P) > 2n — 1 and TRI-STAB(P’) < n+ 4logn + 3.

EuroCG’20
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Figure 5 Two symmetric chains in (a) might have a larger triangulation stabbing number
compared to the same point set with additional points inbetween (b).

The proof of Lemma 4.1 is straightforward and can be found in the full version of this
paper [7].

» Corollary 4.2. TRI-STAB(-) is not monotone.

5 Matching Stabbing Number

First note that the point sets in the case of matchings have to be of even size and all
matchings are perfect. Again, we only illustrate the construction, which simply exploits the
structure of matchings (again, the proof can be found in the full version [7]).

Take k points p1,...,pr in convex position and one point x inside such that any segment
Tp; is intersected by some p;pi. Next, double all points within a small enough e-radius
(preserving general position) and for a point p name the partner point p’ (see Figure 6).

Define the point sets P; and P; to be:

P2 = {‘T?I/apla ce 7pk7p/17 S 5p;ca }a Pl = P2 \ {x/’pll}'
» Lemma 5.1. It holds that MAT-STAB(P;) > 3 and MAT-STAB(P;) < 2.

» Corollary 5.2. The matching stabbing number, MAT-STAB(-), is not monotone.

6 Conclusion

Our proof of Lemma 3.1 relies on computer assistance and of course it would be interesting
to turn this into a pen-and-paper proof.

Furthermore, it is easy to generalize stabbing numbers to the context of range spaces
(X,R), where X is a set and R a set of subsets of X, called ranges. A spanning path then
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Figure 6 A point set with matching stabbing number 2 in (a) and removing p; and x’ results in

a point set with larger matching stabbing number, illustrated in (b) and (c).

corresponds to a permutation of X and a set A C X is stabbed by a range r € R if there

are x,y € A such that € r and y ¢ r. Tt is straightforward to prove Corollary 2.2 in this

context, but we don’t know how to apply this for other graph classes.
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