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Abstract13

A family of k point sets in d dimensions is well-separated if the convex hulls of any two disjoint14

subfamilies can be separated by a hyperplane. Well-separation is a strong assumption that allows us15

to conclude that certain kinds of generalized ham-sandwich cuts for the point sets exist. But how16

hard is it to check if a given family of high-dimensional point sets has this property? Starting from17

this question, we study several algorithmic aspects of the existence of transversals and separations18

in high-dimensions.19

First, we give an explicit proof that k point sets are well-separated if and only if their convex20

hulls admit no (k − 2)-transversal, i.e., if there exists no (k − 2)-dimensional flat that intersects the21

convex hulls of all k sets. It follows that the task of checking well-separation lies in the complexity22

class coNP. Next, we show that it is NP-hard to decide whether there is a hyperplane-transversal23

(that is, a (d− 1)-transversal) of a family of d+ 1 line segments in Rd, where d is part of the input.24

As a consequence, it follows that the general problem of testing well-separation is coNP-complete.25

Furthermore, we show that finding a hyperplane that maximizes the number of intersected sets26

is NP-hard, but allows for an Ω
( log k

k log log k

)
-approximation algorithm that is polynomial in d and27

k, when each set consists of a single point. When all point sets are finite, we show that checking28

whether there exists a (k − 2)-transversal is in fact strongly NP-complete.29

Finally, we take the viewpoint of parametrized complexity, using the dimension d as a parameter:30

given k convex sets in Rd, checking whether there is a (k − 2)-transversal is FPT with respect to d.31

On the other hand, for k ≥ d+ 1 finite point sets in Rd, it turns out that checking whether there is32

a (d− 1)-transversal is W [1]-hard with respect to d.33
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15:2 Well-Separation and Hyperplane Transversals in High Dimensions

1 Introduction43

In the study of high-dimensional ham-sandwich cuts, the following notion has turned out to44

be fundamental: we call k sets S1, . . . , Sk in Rd are well-separated if for any proper index45

set I ⊂ [k] (i.e., I is neither empty nor all of [k]), the convex hulls of [k]) SI = ∪i∈ISi and46

of S[k]\I = ∪i∈[k]\ISi can be separated by a hyperplane. Since any two disjoint convex sets47

can be separated by a hyperplane [16], well-separation is equivalent to the fact that for48

any proper index set I, the convex hulls of SI and S[k]\I do not intersect. A hyperplane49

h is a transversal of S1, . . . , Sk if we have Si ∩ h 6= ∅, for all i ∈ [k]. More generally, for50

m ∈ {0, . . . , d − 1}, an m-transversal of S1, . . . , Sk is an m-flat (i.e., an m-dimensional51

affine subspace of Rd) that intersects all the Si. As we shall see below, it turns out that52

well-separation is intimately related to transversals: the sets S1, . . . , Sk are well-separated if53

and only if there is no (k − 2)-transversal of the convex hulls of S1, . . . , Sk.154

In the past, transversals have been studied extensively, mostly from a combinatorial, but55

also from a computational perspective. Arguably the most well-known such theorem is Helly’s56

theorem [12], which states that for any finite family of convex sets in Rd, it holds that if every57

d+ 1 of them have a point in common, then all of them do. In other words, Helly’s theorem58

gives a sufficient fingerprint condition for a family of convex sets to have a 0-transversal.59

In 1935, Vincensini asked whether such a statement holds for general k-transversals, that60

is, whether there is some number m(k, d) such that if any m(k, d) sets of a family have a61

k-transversal, then all of them do. This was disproved by Santaló, who showed that already62

the number m(1, 2) does not exist (cf. [13] for more details).63

One reason why 0-transversals differ significantly from k-transversals with k > 0 is that64

the space of 0-transversals of a family of convex sets is itself a convex set. In constrast, for65

k > 0, the space of k-transversals can be very complicated, even for pairwise disjoint convex66

sets. Thus, in order to generalize Helly’s theorem to k-transversals with k > 0, additional67

assumptions become necessary. For example, Hadwiger’s Transversal Theorem [11] states68

that for any family S of compact and convex sets in the plane, it holds that if there exists69

a linear ordering on S such that any three sets can be transversed by a directed line in70

accordance with this ordering, then there is a line transversal for S. This result has been71

extended to higher dimensions by Pollack and Wenger [18]. Note that to have a well-defined72

order in which a directed line intersects the sets, the sets should be pairwise disjoint. Now,73

well-separation is a way to extend this idea to transversals of higher dimensions: if no k + 174

sets in a family S of convex sets have a (k − 1)-transversal, then every k-transversal H75

intersects the set S in a well-defined k-ordering, that is, for every way of choosing a k-tuple76

of points from the intersections of H with S, one point from each set, the orientation of77

the resulting simplices is the same (that is, they all have the same order type) [18]. Under78

well-separation, the space of transversals becomes simpler, in particular for hyperplane79

transversals: it is now a union of contractible sets [21]. Note that in d dimensions, there can80

be no d+ 2 sets that are well-separated, due to Radon’s theorem which states that any set81

of d+ 2 points in d dimensions can be partitioned into two sets whose convex hulls intersect.82

For more background on transversals, we refer the interested readers to the relevant surveys,83

e.g., [2, 10,13].84

Thus, well-separation is a strong assumption on set-families, and it does not come as a85

1 Observe that for any k ≤ d sets in Rd, there is always a (k − 1)-transversal: choose one point from each
set, and consider a (k − 1)-flat that goes through these points. The (k − 1)-flat is unique if the chosen
points are in general position.
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surprise that for many problems it leads to stronger results and faster algorithms compared86

to the general case. One such example is obtained for Ham-Sandwich cuts, a well-studied87

notion that occurs in many places in discrete geometry and topology [16]. Given d point88

sets P1, . . . , Pd in Rd, a Ham-Sandwich cut is a hyperplane that simultaneously bisects all89

point sets. While a Ham-Sandwich cut exists for any family of d point sets [20], finding90

such a cut is PPA-complete when the dimension is not fixed [9], meaning that it is unlikely91

that there is an algorithm that runs in polynomial time in the dimension d. On the other92

hand, if P1, . . . , Pd are well-separated, not only do there exist bisecting hyperplanes, but93

the Ham-Sandwich theorem can be generalized to hyperplanes cutting off arbitrary given94

fractions from each point set [5, 19]. Further, the problem of finding such a hyperplane lies95

in the complexity class UEOPL [8], a subclass of PPA that is believed to be much smaller96

than PPA.97

From an algorithmic perspective, the main focus of the previous work have been an98

efficient algorithms for finding line transversals in two and three dimensions, e.g., see [1,4,17].99

To the authors’ knowledge, in higher dimensions only algorithms for hyperplane transversals100

have been studied, where the best known algorithm for deciding whether a set of n polyhedra101

with m edges has a hyperplane transversal runs in time O(nmd−1) [3]. In particular, there102

is an exponential dependence on the dimension d, and there are no non-trivial algorithmic103

results for the case that the dimension is part of the input. This curse of dimensionality104

appears in many geometric problems. For several problems, it has been shown that there is105

probably no hope to get rid of the exponential dependence in the dimension. As a relevant106

example, Knauer, Tiwary, and Werner [14] showed the following: given d point sets S1, . . . , Sd107

in Rd and a point p ∈ Rd, where d is part of the input, it is W [1]-hard (and thus NP-hard)108

to decide whether there is there a Ham-sandwich cut for the sets that passes through p.109

Our Results. First, we prove that a family of k sets in Rd is well-separated if and only if110

the convex hulls of the sets have no (k − 2)-transversal. This fact seems to be known, but111

we could only find some references without proofs, and some proofs of only one direction,112

for similar definitions of well-separation [6,7]. Therefore, for the sake of completeness, we113

present a short proof in Section 2. This immediately implies that testing well-separation is114

in coNP.115

In [8], the authors ask for the complexity of determining whether a family of point116

sets is well-separated when d is not fixed. We present several hardness results for finding117

(k − 2)-transversals in a family of k sets in Rd. We consider two cases: a) finite sets, and b)118

possibly infinite, but convex set.119

I Theorem 1. Given a set of k > d point sets in Rd, each with at most two points, it is120

NP-hard to check whether there is a (d− 1)-transversal, even in the special case k = d+ 1.121

Note that this decision problem is trivial for k ≤ d, as the answer is always yes. The122

assumption k = d+ 1 is of special interest to us since the transversals we are considering123

are hyperplanes in Rd, as in the Ham-sandwich cuts problem. Moreover, it shows that the124

problem becomes NP-hard for the first non-trivial value of k. We extend Theorem 1 to show125

the following:126

I Theorem 2. Given a set of k > d line segments in Rd, it is NP-hard to check whether127

there is a (d− 1)-transversal, even in the special case k = d+ 1.128

Theorem 2 implies that testing well-separation is coNP-complete even for d+ 1 segments129

in Rd, answering the question from [8]. Further, we show the following result, with a stronger130

hardness than Theorem 1; however, we remove the additional constraint that k = d+ 1.131
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15:4 Well-Separation and Hyperplane Transversals in High Dimensions

I Theorem 3. Given a set of k ≤ d+ 1 point sets in Rd, each with most two points, it is132

strongly NP-hard to check whether there is a (k − 2)-transversal.133

Observe that for the problem of Theorem 3, we consider (k − 2)-transversals instead of134

(d− 1)-transversals. In this context, the problem becomes trivial for k ≥ d+ 2, because all135

sets lie in Rd. On the positive side, we can show the existence of the following approximation136

algorithm. This can be seen as the special case where each point set consists of a single point.137

I Theorem 4. Given a set P of k points in Rd, it is possible to compute in polynomial138

time in d and k a hyperplane that contains Ω(OPT log k
k log log k ) points of P , where OPT denotes the139

maximum number of points in P that a hyperplane can contain.140

In Section 4, we study the problem through the lens of parametrized complexity. We141

show a significant difference between finite sets and convex sets.142

I Theorem 5. Checking whether a family of k convex sets in Rd has a (k − 2)-transversal143

(or equivalently, whether it is well-separated) is FPT with respect to d.144

I Theorem 6. Checking whether a family of k ≥ d + 1 finite point sets in Rd has a145

(d− 1)-transversal is W[1]-hard with respect to d.146

Observe that for finite point sets (and, more generally, for any non-convex sets), having147

no (k − 2)-transversal does not a priori imply well-separation. The result of Theorem 6148

bears a similarity with the following result, shown in [14]: given a point set P in Rd, is the149

origin contained in the affine hull of any d points? Indeed, in our reduction in the proof of150

Theorem 6, one of the point sets contains only the origin. However, our proof uses a radically151

different technique, as we have several point sets instead of one, and more importantly the152

number of points one can choose from is k ≤ d+ 1, whereas in the proof in [14] the set P153

contains fairly more than d points.154

2 Well-separation and transversals155

Let us recall some definitions. Let S1, . . . , Sk ⊂ Rd be k sets in d dimensions. An m-156

transversal of S1, . . . , Sk is an m-flat h ⊂ Rd (that is, an affine subspace of dimension m)157

with h ∩ Si 6= ∅ for i = 1, . . . , k. Transversals are intimately related to well-separation: the158

sets S1, . . . , Sk ⊂ Rd are well-separated if and only if there is no (k − 2)-transversal of their159

convex hulls. As mentioned in the introduction, this fact seems to be well known, but as160

we could not find a reference with all details for it, we give a short proof for the sake of161

completeness. In particular, a (k − 2)-transversal of the convex hulls is a certificate that162

S1, . . . , Sk are not well-separated. For a given (k − 2)-flat h, it can be checked in polynomial163

time whether h is a (k − 2)-transversal, yielding a proof that checking well-separation is in164

coNP.165

I Lemma 7. Let S1, . . . , Sk ⊂ Rd be k sets in d dimensions. Then S1, . . . , Sk are well-166

separated if and only if their convex hulls have no (k − 2)-transversal.167

Proof. In the following, we assume without loss of generality that the sets are convex, that168

is, the are equal to their convex hulls. Assume first that S1, . . . , Sk have a (k− 2)-transversal169

h. Consider the intersection of the sets with h. This gives a collection of k sets S′1, . . . , S′k in170

a (k − 2)-dimensional space, thus by Radon’s theorem there is an index set I ⊂ [k] such that171

the convex hulls of S′I and of S′[k]\I intersect. But then also the convex hulls of SI and of172

S[k]\I intersect, and thus S1, . . . , Sk are not well-separated.173
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For the other direction, assume that S1, . . . , Sk are not well-separated, that is, there is174

an index set I ⊂ [k] such that the convex hulls of SI and of S[k]\I intersect. Let p be a point175

in this intersection. The point p can be written as a convex combination of points in SI .176

Note that not only can we write it as a convex combination of points in SI , but we can177

even ensure that in this combination, we use at most one point of each Si, for i ∈ I. This is178

because the sets Si are convex and so instead of taking two individual points we can take a179

convex combination of them. This means that in particular, there is a (|I| − 1)-transversal180

hI of SI which contains p. The same holds for S[k]\I , giving a (k − |I| − 1)-transversal h[k]\I181

of S[k]\I which contains p. Then the affine hull of hI and h[k]\I is a transversal of S1, . . . , Sk182

and has dimension at most |I| − 1 + k − |I| − 1 = k − 2. J183

3 Hyperplane Transversals in High Dimensions184

Let S1, . . . , Sk ⊂ Rd be k sets in d dimensions, where d is not fixed. Recall that a hyperplane185

transversal of S1, . . . , Sk is a (d − 1)-transversal. Note that we do not assume the sets to186

be convex. In particular, the sets can even be finite. We consider the decision problem187

HypTrans: Given sets S1, . . . , Sk, decide if there is a hyperplane transversal for them.188

There are different variants of HypTrans, depending on what we require from the sets Si.189

We consider the finite case and the case of line segments. We also consider the optimisation190

formulation of HypTrans, that we name MaxHyp: Given the sets S1, . . . , Sk, find a191

hyperplane that intersects as many of these sets as possible.192

3.1 Finite Case193

We begin with the case that all Si are finite point sets. We provide an approximation algorithm194

for MaxHyp in the situation where every Si contains a single point, for i = 1, . . . , k. Note195

that in this situation, HypTrans can be solved greedily. We also provide some hardness196

results for HypTrans even in the restricted setting where every Si contains at most two197

points, for i = 1, . . . , k.198

3.1.1 Singleton sets199

We assume that every Si contains a single point, for i = 1, . . . , k. We denote by P the point200

set that is the union of all Si. Let us denote by OPT the maximum number of points in P201

that a hyperplane may contain.202

I Theorem 8. It is possible to compute in polynomial time in d and k a hyperplane that203

contains Ω(OPT log k
k log log k ) points in P .204

Proof. If k ≤ d, we just output a hyperplane that contains all points of P . Otherwise, let205

f(k) = log k/ log log k. If f(k) < d, we pick d points from P , and we output a hyperplane206

through these points. If f(k) ≥ d, we partition P into disjoint groups of size f(k). In each207

group, we compute all hyperplanes that go through some d points from the group. Among208

all hyperplanes for all groups, we output the hyperplane that contains the most points in P .209

For each group, we have O(f(k)d) = O(f(k)f(k)) = O(k) hyperplanes to consider. Thus, the210

algorithm runs in polynomial time in d and k.211

We now analyze the approximation guarantee. If f(k) < d, then we output a hyperplane212

with at least d > f(k) ≥ f(k)OPT/k points, since OPT ≤ k. If f(k) ≥ d, we let h be an213

optimal hyperplane. If h contains at least d points in a single group, then we output an214

optimal solution. Otherwise, h contains less than d points in each group, so OPT ≤ d(k/f(k)).215
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15:6 Well-Separation and Hyperplane Transversals in High Dimensions

This means that d ≥ f(k)OPT/k, and the claim follows from the fact that our solution216

contains at least d points. J217

3.1.2 Sets of at most two points218

Here, we restrict ourselves to the situation that every Si contains at most two points, for219

i = 1, . . . , k. We prove that this version of HypTrans is NP-hard, with a reduction from220

SubsetSum. In SubsetSum, we are given n+ 1 integers a1, . . . , an, b ∈ Z, and the goal is to221

decide whether there exists an index set I ⊆ {1, . . . , n} with
∑
i∈I ai = b. It is well-known222

that SubsetSum is (weakly) NP-complete.223

Given an input a1, . . . , an, b ∈ Z for SubsetSum, we create an input S1, . . . , Sn+2 ⊂ Rn+1
224

for HypTrans, as follows. Note that the number of sets and the dimension are differing by225

exactly one. First, we define 2n+ 1 vectors u, v1, . . . , vn, w1, . . . , wn ∈ Rn+1, by setting226

u(1) = −b and u(j) = −1, for j = 2, . . . , n+ 1,227

vi(1) = ai and vi(j) = δi+1,j , for j = 2, . . . , n+ 1, i = 1, . . . , n, and228

wi(1) = 0 and wi(j) = δi+1,j , for j = 2, . . . , n+ 1, i = 1, . . . , n.229
230

Here, for i, j ∈ Z,231

δi,j =
{

1, if i = j,

0, if i 6= j,
232

denotes the Kronecker delta. Using these vectors, we define the input for HypTrans as233

S1 = {v1, w1}, . . . , Sn = {vn, wn}, Sn+1 = {u}, and Sn+2 = {0}, where 0 is the origin of234

Rn+1.235

B Claim 9. We have that a1, . . . , an, b is a yes-input for SubsetSum if and only if S1, . . . , Sn+2236

is a yes-input for HypTrans.237

Proof. First, suppose that a1, . . . , an, b is a yes-input for SubsetSum, and let I ⊂ [n] be an238

index set with
∑
i∈I ai = b. Then, we define a point set x1, . . . , xn+2 with xi ∈ Si as follows:239

for i = 1, . . . , n, if i ∈ I, we set xi = vi, and if i 6∈ I, we set xi = wi. Furthermore, we set240

xn+1 = u and xn+2 = 0. Then, the points x1, . . . , xn+2 lie on a common hyperplane. For241

this, it suffices to check that242

0 =
n+1∑
i=1

1
n+ 1xi,243

which follows immediately from the definitions and the choice of the xi. Thus, there is a244

hyperplane transversal for S1, . . . , Sn+2, as desired.245

Conversely, suppose that S1, . . . , Sn+2 is a yes-input for HypTrans. Thus, there is a246

choice xi ∈ Si, for i = 1, . . . , n + 2, such that x1, . . . , xn+2, lie on a common hyperplane.247

Obviously, we have xn+1 = u and xn+2 = 0, so we can conclude that 0 is in the affine span248

of x1, . . . , xn, u and can be written as249

0 =
n∑
i=1

λixi + λn+1u,250

where λi ∈ R with
∑n+1
i=1 λi = 1. Let I ⊆ [n] be the set of those indices i for which xi = vi.251

By inspecting the coordinates and applying the definitions, we get the following system of252
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equations:253 ∑
i∈I

λiai = λn+1b, and254

λi = λn+1, for i = 1, . . . , n.255
256

From this, it now follows that λ1 = · · · = λn+1. Since
∑n+1
i=1 λi = 1, this implies that257

λi = 1/(n+ 1), for i = 1, . . . , n+ 1. Thus, the first equation implies that a1, . . . , an, b is a258

yes-input for SubsetSum, with I as the certifying index set. J259

3.1.3 A second reduction260

Now, we prove that HypTrans is strongly NP-hard, by reducing from BinPacking. Our261

reduction will pass through two intermediate problems EqualBinPacking and FlatTrans.262

We start by defining all the involved problems.263

In BinPacking, we are given a sequence w1, . . . , wn ∈ Z+ of weights, a number k of264

bins and a capacity b ∈ Z+. The goal is to decide whether there is a partition of n items265

with weights w1, . . . , wn into k bins such that in each bin the total weight of the items266

does not exceed the capacity b. It is known that BinPacking is strongly NP-hard. In267

EqualBinPacking, we are given the same input, but now the goal is to decide whether268

there exists a partition of the items into the bins such that in each bin the total weight269

of the items equals exactly the capacity. Note that BinPacking can easily be reduced270

to EqualBinPacking by adding the appropriate number of elements of weight 1, so271

EqualBinPacking is strongly NP-hard as well.272

Finally, in FlatTrans, we are given m sets S0, . . . , Sm−1 in Rd, where m and d are both273

part of the input, and the goal is to decide whether there is an (m− 2)-transversal. In other274

words, the question is whether there exists an (m− 2)-dimensional affine subspace h such275

that for all i ∈ {0, . . . ,m− 1}, we have Si ∩ h 6= ∅. Note that HypTrans with k = d+ 1 is276

the same as FlatTrans with m = d+ 1.277

I Theorem 10. FlatTrans is strongly NP-hard even when S0 = {0} and any other Si278

consists of at most two points.279

Proof. We reduce from EqualBinPacking. Given an input w1, . . . , wn, k, b for to Equal-280

BinPacking, we construct an instance of FlatTrans as follows: we set the dimension281

d = k + n+ kn and the number of sets m = kn+ 2. For every pair (i, j) ∈ [n]× [k], define282

the vectors283

vi,j(x) :=


wi, if x = j,

1, if x = k + i,

1, if x = n+ k + (i− 1)k + j,

0, otherwise,

, ui,j(x) :=


0, if x = j,

0, if x = k + i,

1, if x = n+ k + (i− 1)k + j,

0, otherwise.

284

Here, we denote by x ∈ {1, . . . , n+k+kn} the entries of the vector, e.g., the first entry of vi,j285

is denoted by vi,j(1). Furthermore, let c be the vector whose entries are −b, for 1 ≤ x ≤ k,286

and −1 everywhere else. Now set S0 = {0}, and Sl = {vi,j , ui,j}, for l = (i − 1)k + j,287

i = 1, . . . , n, j = 1, . . . , k (note that this choice of l just gives that the order of the l’s288

corresponds to the lexicographic order of the (i, j)’s) and Skn+1 = {c}. All these vectors can289

be constructed in polynomial time.290

We claim that there is a kn-transversal of the sets S0, . . . , Skn+1, if and only if there is a291

valid solution for the EqualBinPacking instance.292
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15:8 Well-Separation and Hyperplane Transversals in High Dimensions

Assume first that there is a solution for EqualBinPacking. For each Sl, 1 ≤ l ≤ kn,293

l = (i− 1)k + j, choose pl = vi,j , if item i is placed in bin j, and choose pl = ui,j , otherwise.294

Furthermore, set p0 = 0, pkn+1 = c. We claim that there exist coefficients λl such that295

kn+1∑
l=1

λlpl = 0 (1)296

and297

kn+1∑
l=1

λl = kn+ 1. (2)298

This implies the claim, because then 0 can be written as a non-trivial linear combination of299

the other points. Set λl := 1, for all l. Then, (2) is certainly satisfied. Consider the x’th row300

of (1), where 1 ≤ x ≤ k. By construction, and since we assumed a valid solution for the bin301

packing problem, this row evaluates to302 ( ∑
i:item i in bin x

wi

)
− b = 0.303

Similarly, for k+ 1 ≤ x ≤ k+n, the x’th row evaluates to 1− 1 = 0, since each item is placed304

in exactly one bin. All remaining rows evaluate to 1− 1 = 0, and thus (2) is also satisfied.305

Assume now that there exist coefficients λl that satisfy (1) and (2) (which must be the306

case of 0 can be written as a non-trivial linear combination of the other points). From307

the x’th rows in (1) with x > k + n, we get λl − λkn+1 = 0, for 1 ≤ l ≤ kn, and thus308

λ1 = · · · = λkn+1. Together with (2), we thus get λl = 1, for all l. Put item i into bin j if309

and only if pl = vi,j for l = (i− 1)k + j. Analogous to above we get from the x’th rows of310

(1), for k + 1 ≤ x ≤ k + n, that each item is placed into exactly one bin. Further, we get311

from the x’th rows of (1), for 1 ≤ x ≤ k, that each bin is filled exactly to capacity. Thus, we312

have a valid solution for EqualBinPacking, as desired. J313

Now, there is only one reduction remaining:314

I Theorem 11. HypTrans is strongly NP-hard even when S0 = {0} and Si consists of at315

most two points for all i = 1, . . . ,m− 1.316

Proof. We reduce from FlatTrans. Let us assume that S0 = {0} and let S0, S1, . . . , Sm−1 ⊂317

Rd be the sets in the instance of FlatTrans, and assume that m− 1 < d. We construct318

sets in Rd+2 as follows: First, for each point p in some set Si we define the point p′ = (p, 0, 0)319

and place it in the set S′i. For m ≤ i ≤ d+ 2, define S′i as the set consisting only of the point320

s′i = (0, . . . , 0, 1, i). Additionally, let S′0 := {0}.321

We claim that S0, S1, . . . , Sm−1 ⊂ Rd have an (m − 2)-transversal, if and only if322

S′0, S
′
1, . . . , S

′
d+2 ⊂ Rd+2 can be transversed by a hyperplane.323

Assume first that S0, S1, . . . , Sm−1 ⊂ Rd indeed have an (m−2)-transversal, that is, there324

are points pi ∈ Si and parameters λi such that
∑m−1
i=1 λipi = 0 and

∑m−1
i=1 λi = 1. Choosing325

the corresponding points p′i and setting λ′i = λi for i ≤ m− 1 and λ′i = 0 for i > m− 1 we326

get
∑d+2
i=1 λ

′
ip
′
i = 0 and

∑d+2
i=1 λ

′
i = 1, that is, S′0, S′1, . . . , S′d+2 ⊂ Rd+2 can be transversed by327

a hyperplane.328

Assume now that S′0, S′1, . . . , S′d+2 ⊂ Rd+2 can be transversed by a hyperplane, that is,329

there are points p′i ∈ S′i and parameters λ′i, such that
∑d+2
i=1 λ

′
ip
′
i = 0 and

∑d+2
i=1 λ

′
i = 1.330

The second to last row of the first equation evaluates to
∑d+2
i=m λ

′
i = 0, and we thus have331
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∑m−1
i=1 λ′i = 1. Set pi = p′i and λi = λ′i. Then

∑m−1
i=1 λi = 1 by the observation above. Further,332 ∑m−1

i=1 λipi = 0 by the first m rows of the first equation. Thus, S0, S1, . . . , Sm−1 ⊂ Rd can333

be transversed by a (m− 2)-flat. J334

3.2 Line segments335

In this section, we will show that deciding whether there is a hyperplane transversal for d336

line segments and the origin in Rd, where d is not fixed, is NP-hard.337

We will reduce this to one of the previous cases shown, that is, to the restricted version338

of HypTrans where the sets Si contain at most two points, see Section 3.1.2. This is done339

with the help of a gadget that enforces that every hyperplane transversal must use one of340

the two endpoints of a given line segment. The gadget is shown in Figure 1.

s1 s2

s3

Figure 1 Every hyperplane transversal through s1, s2, s3 must choose an endpoint of s1 (and of
s2).

341

Given a collection of sets of size at most two, for each set we take the line segment formed342

by its points as s1, the origin as point s3, and we construct the corresponding new segment343

s2 using the gadget presented in Figure 1. This gives a family S of 2k line segments that all344

lie in a k-dimensional space. In order to prove our result, we need to lift our construction to345

R2k. Let Ai,Bi in Rk denote the endpoints of the i’th original segment (s1 in Figure 1) and346

let Gi,Hi in Rk denote the endpoints of the i’th gadget segment (s2 in Figure 1). Denote by347

εj the vector in Rk which is 0 everywhere except in the j’th entry, where it is ε. Further, we348

write 0k for the zero vector in Rk. We now lift the points Ai, Bi, Gi, Hi to R2k as follows:349

A′i :=
(
Ai
0k

)
, B′i :=

(
Bi
0k

)
, G′i :=

(
Gi
εi

)
, H ′i :=

(
Hi

εi

)
.350

We denote the corresponding set of line segments A′iB′i and G′iH ′i in R2k by S′.351

I Lemma 12. S ⊂ Rk has a hyperplane transversal if and only if S′ ⊂ R2k does.352

Proof. We will prove this by explicitly computing affine combinations of points on the line353

segments that give us the required transversals. In this setting, S ⊂ Rk has a hyperplane354

transversal if and only if there are real numbers λi, γi, µ(i)
j , with i ∈ [k], j ∈ {0, . . . , k} and355

the following properties356

k∑
i=1

µ
(i)
0
(
λiAi + (1− λi)Bi

)
= 0,

k∑
i=1

µ
(i)
0 = 1; (3)357

and for all j ∈ {1, . . . , k}358

k∑
i=1

µ
(i)
j

(
λiAi + (1− λi)Bi

)
= γjGj + (1− γj)Hj ,

k∑
i=1

µ
(i)
j = 1. (4)359
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15:10 Well-Separation and Hyperplane Transversals in High Dimensions

Here, the λi and γi fix points on the segments, and the µ(i)
j write the origin (Equation360

(3)) and the points on the gadget segments (Equation (4)) as affine combinations of the361

points on the reduction segments.362

Similarly, S′ ⊂ R2k has a hyperplane transversal if and only if there are real li, gi,m(i), n(i),363

with i ∈ [k] with the following property:364

k∑
i=1

m(i)(liA′i + (1− li)B′i
)

+
k∑
i=1

n(i)(giG′i + (1− gi)H ′i
)

= 0,

k∑
i=1

m(i) + n(i) = 1. (5)365

Here, the li and gi fix points on the segments and the m(i) and n(i) write the origin as366

an affine combination of these points.367

Assume first that S ⊂ Rk has a hyperplane transversal. Then Equation (5) can be368

satisfied by setting li = λi,m
(i) := µ

(i)
0 , n(i) := 0, gi := 0. Thus, if S ⊂ Rk has a hyperplane369

transversal then so does S′ ⊂ R2k.370

As for the other direction, assume that S′ ⊂ R2k has a hyperplane transversal. Note that371

the (k+ i)’th row of Equation (5) reduces to n(i)ε = 0, so in particular we must have n(i) = 0372

for every i ∈ {1, . . . , k}. Thus, we may set λi := li and µ(i)
0 := m(i) and Equation (3) follows.373

As for Equation (4), fix some j ∈ {1, . . . , k} and note that by the construction of the gadget374

segments there exist real numbers αj and βj such that Gj = αjAj and Hj = βjBj . Pick real375

numbers γj and xj that satisfy the following two equations:376

xjλj = (1 + xj)γjαj , and xj(1− λj) = (1 + xj)(1− γj)βj . (6)377

It is straightforward to show that such numbers always exist, for the sake of readability we378

will not prove this here. Now, define µ(i)
j := m(i)

1+xj
for j 6= i and µ(j)

j := m(j)+xj

1+xj
. Then379

k∑
i=1

µ
(i)
j

(
λiAi+(1−λi)Bi

)
= 1

1 + xj

k∑
i=1

m(i)(liAi+(1− li)Bi
)

+ xj
1 + xj

(
liAi+(1− li)Bi

)
.380

By Equation 5, we have
∑k
i=1 m

(i)(liAi + (1− li)Bi
)

= 0 (recall that n(i) = 0), thus we have381

k∑
i=1

µ
(i)
j

(
λiAi + (1− λi)Bi

)
= 1

1 + xj

(
xj liAi + xj(1− li)Bi

)
.382

From our choice of γj and xj , we thus get383

1
1 + xj

(
xj liAi + xj(1− li)Bi

)
= γjαjAj + (1− γj)βjBj = γjGj + (1− γj)Hj ,384

which is what we want. Further, we have385

k∑
i=1

µ
(i)
j = 1

1 + xj

(
k∑
i=1

m(i) + xj

)
= 1 + xj

1 + xj
= 1,386

so Equation (4) is indeed satisfied. J387
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4 Parametrized complexity388

4.1 An FPT algorithm for d sets389

Recall that our original motivation comes from determining whether d sets in Rd are well-390

separated. Let us consider those d sets, and let us denote by n the total number of extreme391

vertices on their respective convex hulls (for general convex sets, this might be infninte, but392

we consider only the finite case). We say that n is the convex hull complexity of the set393

family. We assume that we are given the extreme points of the convex hull of every set and394

hence have a finite number of points for every set.395

I Theorem 13. Checking whether a family of k sets in Rd with convex hull complexity n is396

well-separated is FPT with parameter d.397

Proof. For the O(2d) choices of index sets I ⊂ [k], we check whether the convex hulls of398

SI and S[k]\I intersect. For each I, we check with an LP whether there is a hyperplane399

separating the points from SI from the points in S[k]\I . This can be done by a linear program400

with d+1 variables a0, a1, . . . , ad describing a hyperplane in Rd. The hyperplane is separating401

if the constraints402

a0 +
d∑
i=1

aipi ≥ 0 for all p = (p1, . . . , pd) ∈ SI and403

404

a0 +
d∑
i=1

aiqi ≤ 0 for all q = (q1, . . . , qd) ∈ S[k]\I405

In total we have O(n) constraints.406

If there exists a hyperplane for every I, we output that the family is well-separated.407

Thus, there exists a constant c > 0 such that the total running time of the algorithm is in408

O(2d(nd)cL), where L is the number of input bits.409

J410

4.2 A W[1]-hardness proof411

I Theorem 14. FlatTrans is W [1]-hard with respect to the dimension.412

Proof. We use a framework similar to the one introduced by Marx [15]. The reduction is413

from the following problem: Given a graph G = (V,E) with n vertices, is there a clique of414

size k in G?415

Before describing the point sets, we first explain the framework. We define a set of k2
416

gadgets, that we call the encoding gadgets. To help defining them, we assume that these417

gadgets lie on k rows and k columns. Note that this representation is purely a help for the418

definition, but does not correspond to any geometric structure of the point sets we define419

later. To each gadget we assign a set of admissible tuples (i, j), with 1 ≤ i, j ≤ n. Let us420

assume that we are considering the gadget in row α and column β, with 1 ≤ α, β ≤ k. If421

α = β, the set of admissible tuples is {(i, i) | 1 ≤ i ≤ n}. Otherwise, the set of admissible422

tuples is {(i, j) | {i, j} ∈ E}. We have in addition the row gadgets and the column gadgets.423

A row gadget forces the left value of each encoding gadget from the same row to be the same.424

Similarly, a column gadget forces the right value of every encoding gadget from the same425

column to be the same. There is a row gadget for each row, and a column gadget for each426

column. We say that an encoding is valid if each encoding gadget is assigned an admissible427
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15:12 Well-Separation and Hyperplane Transversals in High Dimensions

tuple, and if all the row and column gadgets are satisfied. As shown by Marx [15], G has a428

clique of size k if and only if there exists a valid encoding. First let us assume that v1, . . . , vk429

form a clique. Then we assign to the encoding gadget in row α and column β the tuple430

(vα, vβ). Observe that this is an admissible tuple (as there is an edge between vα and vβ),431

and that the encoding is valid since all rows have the same left value, and all columns have432

the same right value. Reciprocally, let us assume that we have a valid encoding. Assume433

that the left value of row α is i, and that the left value of row β 6= α is j. Then the encoding434

gadget in row α and column α is assigned the tuple (i, i), thus column α is assigned right435

value i, which implies that the encoding gadget in row β and column α is assigned the tuple436

(j, i). We have shown that vertices i and j in G are adjacent.437

We now describe how to reduce the valid encoding problem to FlatTrans. We define438

k2 + 2k + 2 point sets in Rk2+4k. Let k′ denote k2 + 2k and let k′′ denote k2 + 3k. We439

consider the k′ gadgets from the framework described above, that is, k2 encoding gadgets440

as well as k row and k column gadgets, respectively. Let f denote a bijective function441

from the set of gadgets to [k′]. For each encoding gadget g in row α and column β,442

1 ≤ α, β ≤ k we have a point set Pα,β that contains O(n2) points. First let us assume443

α = β. The point set Pα,α contains the points pα,αi , for 1 ≤ i ≤ n, where the coordinates444

of pα,αi are: pα,αi (x) = δf(g),x + kiδk′+α,x + kiδk′′+α,x. Now let us assume that α 6= β.445

The point set Pα,β contains the points pα,βi,j , for 1 ≤ i, j ≤ n and {i, j} ∈ E, where the446

coordinates of pα,βi,j are: pα,βi (x) = δf(g),x + kiδk′+α,x + kjδk′′+β,x. Now let g be a row447

gadget, say for row α. The point set Pα,· contains the points pα,·i , for 1 ≤ i ≤ n, where448

pα,·i (x) = δf(g),x − ki+1δk′+α,x. Similarly, we have a point set P ·,β for the column gadget g449

in column β, and p·,βi (x) = δf(g),x− ki+1δk′′+β,x for 1 ≤ i ≤ n. Finally, we have the point set450

P0 = {0} and the point set P1 = {p1}, where for all 1 ≤ x ≤ k′, p1(x) = −1, and p1(x) = 0451

otherwise. Observe that we have indeed k2 + 2k + 2 point sets of size O(n2) in Rk2+4k. The452

absolute values of all point coordinates are at most kn+1. Thus, we can describe it with453

log(kn+1) = (n+ 1) log(k) bits. We claim that there is a (k2 + 2k)-transversal if and only if454

G has a clique of size k. From the reduction, this immediately implies that FlatTrans is455

W [1]-hard with respect to the dimension.456

First let us assume that there is a clique of size k in G. From what we argued, it implies457

that there is a valid encoding of the gadgets. We define a set of k′+ 1 points as follows. First458

we take the point p1. If the tuple assigned to gadget in row α and column β 6= α is (i, j),459

then we take the point pα,βi,j . If the gadget in row α and column α is assigned the tuple (i, i),460

then we take the point pα,αi . Likewise, if the left value of row α is i, we take the point pα,·i .461

Finally, if the right value of column β is j, we take the point p·,βj . We denote those k′ + 1462

points by p1, . . . , pk′+1 and claim that they lie on a common hyperplane which contains 0. It463

suffices to show that464

∑
1≤`≤k′+1

1
k′ + 1p` = 0.465

Consider the first k′ coordinates. Recall that f is a bijection between the set of gadgets466

and [k′] and recall that by definition, the points p` have exactly one entry 1 in the first k′467

coordinates. Therefore in this sum, we have exactly one entry 1 from exactly one of the468

gadgets and exactly one entry −1 from the point p1 in each of these coordinates. So it is clear469

that this equation is satisfied in the first k′ coordinates. Now let us consider the coordinate470

k′ + α, for some 1 ≤ α ≤ k. As the encoding is valid, it implies that the left value in row α471
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of all encoding gadgets is the same. Let us denote by i this left value. We have indeed472

∑
1≤`≤k′+1

1
k′ + 1p`(k

′ + α) = 1
k′ + 1

 ∑
1≤β≤k

ki

− ki+1

 = 0.473

Likewise if the coordinate is of the form k′′ + β for some 1 ≤ β ≤ k, we argue using the fact474

that the right value of all encoding gadgets in column β is the same. This completes the first475

direction of our proof.476

For the second direction, let us assume that there is a hyperplane h that contains at least477

one point from each point set. By assumption one of these points is 0, another is p1, and we478

denote the others by p2, . . . , pk′+1. This implies that we have 0 = λ1p1 +
∑

2≤`≤k′+1 λ`p`,479

where λ` ∈ R and
∑

1≤`≤k′+1 λ` = 1. By looking at the k′ first coordinates, we immediately480

obtain λ1 = λi = 1
k′+1 , for all 2 ≤ i ≤ k′ + 1. Let assume that in point set Pα,β with481

1 ≤ α, β ≤ k, the point pα,βi,j is contained in h, for some 1 ≤ i, j ≤ n. Note that by definition,482

(i, j) is an admissible tuple of the encoding gadget in row α and column β. We assign this483

tuple to this gadget, and do likewise with all other encoding gadgets. It remains to show484

that the left value of all encoding gadgets in the same row is the same, and that the same485

holds with the right value of encoding gadgets from the same column. Let us consider row α.486

We consider the points contained in h that belong to Pα,β , for some 1 ≤ β ≤ k. Let us487

denote by Y the set of their (k′ + α)-th coordinate. Let z be equal to max{logk(y) | y ∈ Y }.488

By assumption, we know that
∑
y∈Y y = ki for some 2 ≤ i ≤ n + 1. This is because the489

coefficients λ` for these point sets are equal to the coefficient for the point in Pα,· contained490

in h. As the elements in Y are non-negative, we obtain i ≥ z+ 1. Assume for a contradiction491

that not all elements in Y are equal. Then we have
∑
y∈Y y <

∑
y∈Y k

z = kz+1 ≤ ki. As this492

is not possible, we know that all elements in Y are equal, which implies that the left value of493

all encoding gadgets in row α is the same. We can argue likewise for the columns. J494

5 Conclusion and Open Problems495

We showed that the problem of testing well-separability of k sets in Rd is hard. However,496

it may be that there exist some algorithms which solve the problem in a smarter way than497

simply testing the 2k choices of index set. This question is still open.498

It would be interesting to have some inapproximability results, or some better approxi-499

mation algorithms, for the problem of finding a hyperplane that intersects as many points as500

possible in a point set P in Rd, where d is not fixed.501
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