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2 Solution hints to the Exercises

Section 1.1
1. (a): xk is fictional in f iff ak = 0. (b): Because of the uniqueness,

2n+1 (= number of subsets of {0, . . . , n}) is the number sought for. (c):
induction on formulas in ¬,+ and p1, . . . , pn.

2. Consider on F the property Eϕ: ‘ϕ is prime or there are α, β ∈ F with
ϕ = ¬α or ϕ = (α ◦ β) where ◦ = ∧ or ◦ = ∨.’ Formula induction
shows Eϕ for all ϕ ∈ F.

3. Verify by induction on ϕ the property Eϕ: ‘no proper initial segment
of ϕ is a formula nor can ϕ be a proper initial segment of a formula’.
Induction step: Case ϕ = ¬α. Then a proper initial segment of ¬α
either equals ¬ (hence is not a formula), or has the form ¬ξ where ξ is
a proper initial segment of α. Thus ξ /∈ F by the induction hypotheses,
hence also ¬ξ /∈ F (since a formula starting with ¬ must have the form
¬β for some formula β by Exercise 2). Case ϕ = (α ◦ β). Let ξ be a
proper initial segment of ϕ or conversely. Assume that ξ is a formula
so that ξ = (α′ ◦′ β′), some α′, β′ ∈ F (Exercise 2). Then α 6= α′, for
otherwise necessarily ξ = ϕ. Hence α′ is a proper initial segment of α
or conversely, a contradiction to the induction hypothesis Eα.

4. Assume that (α ◦ β) = (α′ ◦′ β′), hence α ◦ β = α′ ◦′ β′. If α 6= α′ then
α is a proper initial segment of α′ or conversely. This is impossible by
Exercise 3. Consequently α = α′, hence ◦ = ◦′ and β = β′.

Section 1.2
1. w((p → q1)∧ (¬p → q2)) = 0 iff wp = 1, wq1 = 0 or wp = 0, wq2 = 0,

and the same condition holds for w(p∧ q1 ∨ ¬p∧ q2) = 0. In a similar
way the second equivalence is treated.

2. ¬p ≡ p+ 1, 1 ≡ p+ ¬p, p↔ q ≡ p+ ¬q, p+ q ≡ p↔ ¬q ≡ ¬(p↔ q).

3. Induction on the α ∈ Fn{0, 1, ∧ , ∨} (= set of formulas in 0, 1, ∧ , ∨ and
p1, . . . pn). If f, g ∈ Bn are monotonic then so is ~a 7→ f~a◦g~a, where ◦ is
∧ or ∨ . For simplicity, treat first the case n = 1. Converse: Induction
on the arity n. Clear for n = 0, with the formulas 0 and 1 representing
the two constants. With f ∈ Bn+1 also fk : ~x 7→ f(~x, k) is monotonic
(k = 0, 1). Let αk ∈ Fn{0, 1, ∧ , ∨} represent fk (induction hypothesis).
Then α0 ∨ (α1 ∧pn+1) represents f . Note that wα0 6 wα1 for all w.
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4. By Exercise 3, a not representable f ∈ Bn+1 is not monotonic in
the last argument, say. Then f(~a, 1) = 0 and f(~a, 0) = 1 for some
~a ∈ {0, 1}n, hence g :x 7→ f(~a, x) is negation. This proves the claim.

Section 1.3
1. (a): MP easily yields p → q → r, p → q, p � r. Apply (D) three times.

2. The deduction theorem yields � (α → β) → (γ →α) → (γ → β).

3. Assume that w � X,α ∨ β. Then clearly w � X,α or w � X,β.

5. Let X ` α /∈ X Then X,α ` β for each β. Thus, X ` β by (T).

Section 1.4
1. X∪{¬α |α ∈ Y } ` ⊥⇒ X∪{¬α0, . . . ,¬αn} ` ⊥, some α0, . . . , αn ∈ Y .

Hence X ` (
∧
i6n ¬αi) → ⊥, or equivalently, X `

∨
i6n ai. This all is

easily verified if ` is replaced by �.

2. Supplement Lemma 4.4 by proving X ` α ∨ β ⇔ X ` α or X ` β.

3. Choose X,ϕ such that X 0 ϕ and X `′ ϕ. Let Y ⊇ X ∪ {¬ϕ} be
maximally consistent in `. Define σ by pσ = > for p ∈ Y and pσ = ¬>
otherwise. Induction on α yields with the aid of (∧ ) and (¬) page 28

(∗) α ∈ Y ⇒ ` ασ ; α /∈ Y ⇒ ` ¬ασ.

In proving (∗), ` >, ` α ⇒ ` ¬¬α, ¬α ` ¬(α∧β), and ¬β ` ¬(α∧β)
are needed which easily follow from the ¬−rules. By (∗), ` ¬ϕσ, hence
`′ ¬ϕσ. Clearly ` Y σ (i.e., ` ασ for all α ∈ Y ), and so `′ Y σ. But
Y σ `′ ϕσ (substitution invariance). Thus, `′ ϕσ. Therefore `′ α for all
α by (¬1), so that ` is maximal by definition.

4. There is a smallest consequence relation with the properties (∧1)–(¬2),
namely the calculus ` of this section. Since ` ⊆ � and ` is already
maximal according to Exercise 3, ` and � must coincide.

Section 1.5
1. For finite M easily shown by induction on the number of elements of
M . Note that M has a maximal element. General case: Add to the
formulas in Example 1 the set of formulas {pab | a 60 b}.
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2. ⇒: Assume M,N /∈ F . Then \(M ∪ N) = \M ∩ \N ∈ F , because
¬M,¬N ∈ F . Therefore M ∪N /∈ F . ⇐ : M ∈ F implies M ∪N ∈ F
by condition (b). For proving (¬) from (∩) observe that M ∪ \M ∈ F .

3. ⇒: Let U be trivial, i.e., E ∈ U for some finite E ⊆ I. Induction on
the number of elements in E and Exercise 2 easily show that {i0} ∈ U
for some i0 ∈ E. The converse is obvious.

Section 1.6

1. First verify the deduction theorem, which holds for each calculus with
MP as the only rule and A1, A2 among the axioms; cf. Lemma 6.3.
X is consistent iff X 0 ⊥, for X ` ⊥ ⇒ X ` (α → ⊥) → ⊥ = ¬¬α by
A1, hence X ` α by A3. Now prove X ` α → β iff X ` α ⇒ X ` β,
provided X is maximally consistent. This allows one to proceed along
the lines of Lemma 4.5 and Theorem 4.6.

2. Apply Zorn’s lemma to H := {Y ⊇ X | Y 0 α}. Note that if K ⊆ H is
a chain then

⋃
K ∈ H due to the finitarity of `.

3. (a): Such a set X satisfies (∗) : X ` ϕ →α for all α. For otherwise
X,ϕ →α ` ϕ, hence X ` (ϕ →α) →ϕ, and so X ` ϕ by Peirce’s
axiom. Suppose α /∈ X. Then X,α ` ϕ,ϕ → β by (∗), and so X,α ` β.
(b): With (a) easily follows X ` α → β iff X ` α ⇒ X ` β as in
Exercise 1. Proceed with an adaptation of Lemma 4.5.

4. Crucial for completeness is the proof of (m): α ` β ⇒ αγ ` βγ by
induction on the rules of `. (m) implies (M): X,α ` β ⇒ X,αγ ` βγ,
proving first that a calculus ` based solely on unary rules satisfies
X ` β ⇒ α ` β for some α ∈ X. E.g., α `αβ ⇒ αγ `γα `γαβ `αβγ.
Although α(βγ) ` (αβ)γ and conversely, it is still tricky to show that
α(βγ)δ ` (αβ)γδ. (M) implies X,α ` γ & X,β ` γ ⇒ X,αβ ` γ,
because X,α ` γ ⇒ X,αβ ` γβ ` βγ and X,βγ ` γγ ` γ, therefore
X,αβ ` γ. From this it follows [∨]: X ` αβ ⇔ X ` α or X ` β,
provided X is ϕ-maximal, for note that

X 0 α & X 0 β ⇒ X,α `ϕ & X,β `ϕ⇒ X,αβ `ϕ⇒ X 0 αβ.

Having [∨] one may proceed with a slight modification of Lemma 4.5.
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Section 2.1
1. There are 10 essentially binary Boolean functions f . The corresponding

algebras ({0, 1}, f) split into 5 pairs of isomorphic ones. For example,
({0, 1}, ∧ ) ' ({1, 0}, ∨).

2. ⇐ : Choose c = a in a ≈ b & a ≈ c⇒ b ≈ c to get a ≈ b⇒ b ≈ a.

3. For simplicity, treat first the case n = 2 using transitivity.

5. For simplicity, let the signature contain only the symbols r, f , both
unary. Then ra⇒ raj ⇒ rha and hfa = h(fai)i∈I = faj = fha.

Section 2.2
1. Trivial if t is a prime term. A terminal segment of f~t either equals
f~t or has the form t′ktk+1 · · · tn for some k 6 n (t′ktk+1 · · · tn means t′n
in case k = n), where t′k a terminal segment of tk. By the induction
hypotheses, t′k is a term concatenation, hence so is t′ktk+1 · · · tn.

2. It suffices to prove (a’) tξ = t′ξ′ ⇒ t = t′, for all t, t′ ∈ T , all ξ, ξ′ ∈ SL
by induction on t. This is obvious for prime t. Let t = ft1 · · · tn and
tξ = t′ξ′ with t′ = f ′t′1 · · · t′m. Then clearly f = f ′ and m = n, hence
t1 · · · tnξ = t′1 · · · t′nξ′. Thus t1 = t′1 and t2 · · · tnξ = t′2 · · · t′nξ′ by the
induction hypothesis for t1. Similarly, t2 = t′2 . . . , tn = t′n and also
ξ = ξ′. This proves (a’).

3. (a): Similar to Exercise 3 in 1.1. (b) follows readily from (a). (c): If
¬ξ ∈ L then by (b), ¬ξ = ¬α for some α ∈ L. Hence ξ = α. Similarly,
α, α∧ ξ ∈ L ⇒ α∧ ξ = β ∧γ, some β, γ ∈ L, hence α = β and ξ = γ.

5. Can completely be reduced to Corollary 1.2.2 by some bijection from
X onto a set V of propositional variables.

Section 2.3
1. IfM � X and x /∈ freeX thenMa

x � X for each a (Theorem 2.3.1).

2. ∀x(α → β), ∀xα � α → β, α � β and Exercise 1.

3. The Theorems 3.1 and 3.5 yield A � α [a]⇔ A′ � α [a]⇔ A′ � αx(a).

4. (a): ∃n ∧∃m ≡ ∃m for n 6 m, and ∃n ∧¬∃m ≡ ∃0 (≡ ⊥) for n > m.
(b): Exercise 5 in 2.2, and ∃n ∧¬∃m ≡

∨
n6k<m ∃=k for n < m.
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Section 2.4

1. α ≡ β ⇒ � ∀~x (α↔ β) ⇒ � (α↔ β) ~t~x
(

= α
~t
~x ↔ β

~t
~x

)
.

3. W.l.o.g. α ≡ ∀~yα′(~x, ~y) and β ≡ ∀~zβ′(~x, ~z) with disjoint tuples ~x, ~y, ~z.

4. Simultaneous induction on ϕ and ¬ϕ. Clear if ϕ is prime. If the claim
holds for α, β then also for (α∧β) and ¬(α∧β) (≡ ¬α∨¬β). The step
for ∨ is similar. Step for ¬: Simply observe that ¬¬α ≡ α.

5. ∃x(Px → ∀yPy) ≡ ∀xPx → ∀yPy according to (10) in 2.4.

Section 2.5

1. Proof very similar to that of Exercise 6 in 2.4

2. ⇒: S � α t
x → β ⇔ S, α t

x � β and (e) page 79. ⇐: (9) in 2.4.

3. β ∈ T + α⇔ T, α � β ⇔ T � α → β by the deduction theorem.

Section 2.6

1. The “if” part follows as Theorem 6.1 because y==== f~t ≡Tf
δf (~t , y)). The

“only if” part: y==== f~t ≡Tf
δf (~t , y) and Tf � ∀~x∃!y y==== f~x. Hence also

Tf � ∀~x∃!y δ(~x, y).

2. N � x==== 0 ↔ ∀y x 6==== Sy. Careful calculation confirms the definition
x + y==== z ↔ x==== y==== z==== 0 ∨ z 6= 0∧S(x · z) · S(y · z)==== S(z2 · S(x · y)).
Therein z2 denotes the term z · z.

3. Let xy==== xz==== e (◦ not written). Choose some y′ with yy′==== e. Then
yx==== (yx)(yy′)==== y(xy)y′==== yey′==== e and so ex==== (xy)x==== x(yx)==== xe==== x

for all x. In other words, e is a left and right unit element. We hence
obtain y==== ye==== y(xz)==== (yx)z==== ez==== z. For the additional claim derive
the axioms of T ====

G from those of TG and conversely.

4. If < were definable then < would be invariant under automorphisms
of (Z, 0,+). This is not the case for the automorphism n 7→ −n. This
approach to the problem is also called Padoa’s method.
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Section 3.1
1. Let X ` α t

x . Then X,∀x¬α ` α t
x ,¬α t

x . Hence X,∀x¬α ` ∃xα.
Also X,¬∀x¬α ` ∃xα (= ¬∀x¬α). Thus X ` ∃xα according to (¬2).

2. Let α′ := α y
x , u /∈ varα, u 6= y. Then ∀xα ` α′ uy (= α u

x) by (∀1).
Hence ∀xα ` ∀yα′ by (∀2), with X = {∀xα}, α′ for α, and y for x.

3. ∀y(α yx) ` ∀xα ` ∀z(α zx) according to Exercise 2.

4. ⇒: X 0 ϕ⇒ X,ϕ ` ⊥⇒ X ` ¬ϕ. ⇐: X 0 α⇒ X ` ¬α⇒ X,α ` ⊥.

Section 3.2
1. First prove (∗) T � ∀~xϕ iff T � ϕ ~t

~x for all ~t ∈ T n0 (ϕ ∈ L open); use
Theorem 2.3.5. Next prove

(∗
∗
)
X ` α ⇔ T � α (α ∈ L0 open) by

induction on ∧ ,¬ ; observe that L is ==== -free. Let X ` ∀~xϕ (ϕ open)
and ~t ∈ T n0 . Then also X ` α := ϕ

~t
~x , hence T � α by

(∗
∗
)
. Thus,

T � ∀xϕ by (∗), and so T � U .

2. K ` α ⇒ T ` α for some T ∈ K (finiteness theorem)

4. (i)⇒(ii): (12) in 2.4. Observe also (x==== t →α) t
x ≡ α t

x .

Section 3.3
1. Prove `PA ∀z(x+ y) + z==== x+ (y + z) by induction on z. Obvious for
z = 0. The induction step follows easily from `PA x + Sy==== S(x + y).
Most proofs of the arithmetical laws in PA need much patience.

2. z + x==== x → z==== 0 (induction on x) readily yields x 6 y 6 x → x==== y.

3. Informally: x < y ⇒ ∃z Sz + x==== y ⇒ ∃z z + Sx==== y ⇒ Sx 6 y.
The converse Sx 6 y → x < y follows from `PA x < Sx. The induction
hypothesis of x 6 y ∨ y 6 x may be written as x < y ∨ y 6 x. If x < y

then Sx 6 y, hence Sx 6 y ∨ y 6 Sx (induction claim). We get the
same in the case y 6 x, since then y 6 Sx (6 is transitive).

4. (a): Put ϕ := (∀y<x)α y
x . It suffices to prove (i) ∀x(ϕ →α) `PA ϕ 0

x

(which is trivial) and (ii) ∀x(ϕ →α) `PA ϕ →ϕ Sx
x since by IS then

∀x(ϕ →α) `PA ∀xϕ `PA ∀xα. Now, ϕ,ϕ →α `PA ϕ∧α ≡PA ϕSx
x ,

hence ∀x(ϕ →α) `PA ϕ →ϕSx
x which confirms (ii). (b): Follows from



8 Solution hints to the Exercises

(a) by contraposition. (c): For ϕ := (∀x<v)∃yγ → ∃z(∀x<v)(∃y<z)γ
holds `PA ϕ

0
v , and ϕ `PA ϕ

Sv
v . This yields the claim by IS.

Section 3.4

1. T ∪ {vi 6====vj | i 6= j} is satisfiable because each finite subset is.

2. ThA ∪ {vn+1 < vn | n ∈ N} has a model with a descending ω-chain.

3. If α /∈ T then T has a completion T ′ with ¬α ∈ T ′, hence α /∈ T ′.

4. Consider the identical operator on the universe V and restrict it to a
given set u in AS.

5. Informally: Suppose fin(a), ϕx(∅), and ∀u∀e(ϕx(u) →ϕx(u ∪ {e})).
Then holds also ∅∈ s∧ (∀u∈ s)(a\u 6==== ∅ → (∃e∈ a\u)u ∪ {e}∈ s) for the
set s := {u∈Pa |ϕx(u)}. Hence a∈ s, i.e. ϕx(a).

Section 3.5

2. Let T + {αi | i ∈ N} be an infinite extension of T . We may assume∧
i6n αi 0T αn+1. Hence, T +

∧
i6n αi ∧¬αn+1 is consistent. Let Tn be

a completion of T +
∧
i6n αi ∧¬αn+1. Then Tn 6= Tm. Thus, a theory

with finitely many completions cannot have an infinite extension and,
in particular, no infinite completion.

3. Let T0, . . . , Tn be the completions of T . According to Exercise 3 in 3.4,
α ∈ T iff α ∈ Ti for all i 6 n. Thus, T is decidable provided each Ti
is, and this follows from Theorem 5.2, for each Ti is a finite extension
of T according to Exercise 2, hence is axiomatizable as well.

4. Starting with a effective enumeration (αn)n∈N of L0, a Lindenbaum
completion of T as constructed in 1.4 is effectively enumerable.

5. According to Exercise 3 in 3.4, there is a bijection between the set
of consistent extensions of T (including T ) and the set of nonempty
subsets of the collection {T1, . . . , Tn} of all completions of T .
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Section 3.6

1. x==== y 2 ∀xx==== y. The same holds for |∼ , since |∼ ⊆ �.

2. (a): Let (ϕn)n∈N and (An)n∈N be effective enumerations of all sentences
and of all finite T -models (up to isomorphism). In step n write down all
ϕi for i 6 n with An 2 ϕi. (b): Let (αn)n∈N and (βn)n∈N be effective
enumerations of sentences provable or refutable in T , respectively. Each
α ∈ L0 occurs in one of these sequences. In the first case is α ∈ T .

3. Condition (ii) from Exercise 2 is then granted because the validity of
only finitely many axioms has to be tested in a finite structure.

Section 3.7

1. For H: Let B = hA be a homomorphic image of A, w : Var → A, and
define hw : Var → B by xhw := hxw. Then htA,w = tB,hw for all
terms t and there is some w : Var → A with hw = w′ for any given
w′ : Var → B. For S: (3) in 2.3 page 66. For P: Set B =

∏
i∈I Ai.

Then tB,w = (tAi,wi)i∈I with xw = (xwi)i∈I .

Section 3.8

1. (a): Let αunc in LII formalize the sentence ‘there is a continuous order’.
αunc has no countable model. In L1

Q one may take ∼Oxx==== x for αunc.
(b): X = {i 6==== j | i, j ∈ I, i 6= j} ∪ {¬∼Oxx==== x} has no model if I is
uncountable, although each finite subset of X has a model.

2. Define R as a continuously ordered set with a countable dense subset.

4. Let x be a variable not in P,Q. A possible definition is provided by

x :==== 0 ; WHILE α ∨ x==== 0 DO P ; x :==== S0 END.

Section 4.1

1. Note that t̄ in case k = 0 is defined for ground terms only.

2. The most important case is k = 0. It deals with ground terms only.
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Section 4.2

1. First prove (a) (∀i∈I)Ai � π [wi]⇔ B � π [w] (xw = (xwi)i∈I), π prime
and B =

∏
i∈I Ai. Then prove (b) (∀i∈I)Ai � α [wi] ⇒ B � α [w] by

induction over basic Horn formulas α as in Theorem 2.1. (b) yields the
induction steps over ∧ , ∀,∃. Observe tB,w = (tAi,wi)i∈I . For a universal
Horn theory apply (ii)⇒(i) of Theorem 2.3.2.

2. A set of positive Horn formulas has the trivial (one-element) model.

Section 4.4

1. With w1 � p1, p3,¬p2 and w2 � p2, p3,¬p1 we have w1, w2 � P. Since
w � P implies w � p3 and either w � p1 or w � p2, there is no valuation
w 6 w1, w2 such that w � P.

2. For arbitrary w � P, w � pm,n,m+n follows inductively on n. Hence
ws 6 wP, and consequently ws = wP.

3. (a): Theorem 4.2. (b): wP 2 pn,m,k if k 6= n+m, so P,¬pn,m,k 0HR .

Section 4.5

2. ⇒: xi ∈ var tj ⇒ xσj = tj 6= tσj = xσ
2

j , hence σ 6= σ2. ⇐: tσi = ti since
necessarily xσ = x for all x ∈ var ti.

3. Let ω be a unifier of K0 ∪ K1. Then Kω
0 = Kω

1 is a singleton. Put
xω

′
= xρω for x ∈ varKρ

0 and xω′ = xω else. Then Kρω′

0 = Kρ2ω
0 = Kω

0

since ρ2 = ι, and Kω′
1 = Kω

1 . Thus, Kρ
0 ∪ K1 is unified by ω′. The

converse need not hold. Let r2 be a binary relation symbol, f a unary
operation symbol, and 0 a constant. K0 = {r2fvfx} andK1 = {r2f0v}
are not unifiable, but Kρ

0 and K1 are, with ρ =
(
v
u

)
. Indeed, for

ω = 0
u
fx
v we get Kρω

0 = {r2fufx}ω = {r2f0fx} = Kω
1 .

Section 4.6

1. Join Pg and Ph and add to the resulting program the rules
rf (~x, 0, u) :− rg(~x, u) and rf (~x, Sy, u) :− rf (~x, y, v), rh(~x, y, v, u).

2. Add to the programs the rule rf~xu :− rg1~xy1, . . . , rgm~xym, rh~yu.
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Section 5.1
1. Let α = α(~x), ~a ∈ An, and A � α(~a). Then C � α(~a) as well, and since
B 4 C, also B � α(~a).

3. Prove first the following simple lemma: Let 0 < b < c < 1. Then there
is a strictly monotonic bijection f : [0, 1] → [0, 1] (an automorphism of
the closed interval [0, 1]) such that fb = c. W.l.o.g. a1 < · · · < an,
n > 2, and b ∈ [a1, an] irrational. Let ak < b < ak+1. W.l.o.g. we may
assume ak = 0 and ak+1 = 1. Choose some c ∈ Q with b < c < 1 and
an automorphism f : [0, 1] → [0, 1] with fb = c according to the above
lemma. f can be extended in a trivial way to an automorphism of the
whole of (R, <) by setting fx = x outside [0, 1].

4. W.l.o.g. A∩B = ∅. It suffices to show that DelA∪Del B is consistent.
Assume the contrary. Then there is some conjunction γ(~b) of members
of Del B and some ~b ∈ Bn such that DelA, γ(~b) ` ⊥. Thus, DelA `
¬γ(~b). Since A ∩ B = ∅, the b1, . . . , bn do not occur in A, hence
constant quantification yields DelA ` ∀~x¬γ and so A � ∀~x¬γ. But
clearly B � ∃~xγ. a contradiction to A ≡ B.

5. (a): {tA | t ∈ TG} is closed with respect to all fA. It is the smallest
such set and hence exhausts A. (b): By (a), we may choose to each
a ∈ A\G some ta ∈ TG such that DA ` a==== ta. Thus, T +DA can be
regarded as a definitorial and hence conservative extension of T+DGA,
so that DA `T α⇔ DAE `T α for all sentences α ∈ LG.

Section 5.2
2. Tsuc ` IS because (N, 0, S) � IS and Tsuc is complete. To prove the

“no circle” scheme which is equivalent to (∗) ∀x Snx 6==== x (n > 1), we
start from (#) Sn+1x = Sn(Sx) for every n. (#) is easily verified by
metainduction on n, while the induction schema IS is needed in order
to prove (∗) by induction on x. Clearly, Sn0 6====0 by the axiom ∀x0 6====Sx.
From the induction hypothesis Snx 6==== x we get the induction claim
Sn(Sx)==== S(Snx) 6====Sx by applying (#) and the second axiom of Tsuc.

3. Let a ∈ G � T and a
n the element with n a

n = a, and m
n : a 7→ m a

n for
m
n ∈ Q. Then G becomes the vector group of a Q-vector space. This
group is easily shown to be ℵ1-categorical.
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4. Each consistent T ′ ⊇ T is the intersection of its completions in L.

5. Each A � T has a countable elementary substructure (Theorem 1.5).

Section 5.3

1. For SO00: In the first round player II may play arbitrarily, then ac-
cording to the winning strategies for models of SO01 or SO10 in the
decomposed segments.

2. If player I starts with a ∈ A and to the right and the left of a remain at
least 2k−1 elements, player II should choose correspondingly. Otherwise
he should answer with the elements of the same distance from the left
or right edge element, respectively.

3. SO11 ⊆ FO is obvious. FO ⊆ SO11: If A � SO11 then for each k > 0
there is some finite B � SO11 such that A ∼k B.

4. Prove first that SO11∪{∃i | i > 0} is complete. Then apply Theorem 2.3.

Section 5.4

1. Let h :A → B be a homomorphism, M = (A, w), M′ = (B, w′) with
xw

′
= hxw. VerifyM � ϕ [~a]⇒M′ � ϕ [h~a] by induction on ϕ.

2. Let A = (A,<) be ordered. Replacing each a ∈ A by a copy of (Z, <)
or of (Q, <) results in a discrete or a dense order B ⊇ A, respectively.

3. Let A0 � T0. Choose A1 with A0 ⊆ A1 � T1, A2 with A1 ⊆ A2 � T0

etc. This results in a chain A0 ⊆ A1 ⊆ A2 ⊆ · · · such that A2i � T0

and A2i+1 � T1. Then A∗ :=
⋃
i∈NA2i =

⋃
i∈NA2i+1 � T0, T1 and

hence A∗ � T := T0 + T1. This shows that T is consistent and model
compatible with T0 (hence likewise with T1). Clearly, T is an ∀∃-theory
and therefore also inductive.

4. The union S of a chain of inductive theories model compatible with T
has again these properties. By Zorn’s lemma there exists a maximal,
hence in view of Exercise 3 a largest theory of this kind.
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Section 5.5

1. Let (i, j) 6= (0, 0). Then DOij has models A ⊆ B with A 64 B. To show
that DO00 is the model completion of DO note first that T := DO00+DA
is model complete for each A � DO. Moreover, T is complete since T
has a prime model: For instance, let A � DO10. Then the ordered sum
Q +A (i.e., (∀x∈Q)(∀y∈A)x < y) is a prime model of T .

2. (a) Lindström’s criterion. T is ℵ1-categorical because a T -model can be
understood as a Q-vector space. (b) Each T0-model G is embeddable
in a T -model H. One gains such H by defining a suitable equivalence
relation on the set of all pairs a

n with a ∈ G and n ∈ Z\{0}.

3. Uniqueness follows similarly to uniqueness of the model completion. If
A � T ∗ and A ⊆ B � T then B ⊆ C � T ∗ for some C, hence A 4 C in
view of A ⊆ C, and therefore A ⊆ec B according to Lemma 4.8.

4. The algebraic closure Fp of the prime field Fp is equal to
⋃
n>1Fpn ,

where Fpn is the finite field of pn elements. Thus, an ∀∃-sentence valid
in all finite fields is valid in all a.c. fields of prime characteristics and
hence in all a.c. fields (proof indirectly with (1) in 3.3).

Section 5.6

1. Let A,B � ZG, A ⊆ B. Then also A′ ⊆ B′ for the ZGE-expansions A′
and B′ of A and B, respectively, because m has in ZG both an ∀- and
an ∃-Definition. Thus A′ 4 B′ and hence A 4 B.

2. Similiar to quantifier elimination in ZGE but somewhat more simple.

3. Inductively over quantifier-free ϕ = ϕ(x) follows: either ϕA or (¬ϕ)A

is finite for each A � RCF◦. This is not the case for α(x).

4. CS holds in the real closed field R, hence in each A ∈ RCF. The proofs
from CS of (∀x>0)∃y x==== y · y, and that each polynomial of odd degree
has a zero must be carried out without a theory of continuous functions,
which is very instructive.
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Section 5.7

1. If F is trivial then there is some i0 ∈ I with i0 ∈ J for each J ∈ F
by Exercise 3 in 1.5. Then a ≈F b ⇔ i0 ∈ Ia=b ⇔ ai0 = bi0 , for all
a, b ∈

∏
i∈I Ai. This implies

∏F
i∈I Ai ' Ai0 .

2. x 7→ xI/F (x ∈ A) is an embedding (to be checked in detail) and
moreover an elementary embedding.

3. Let X �K ϕ and I, Jα F defined as in the proof of Theorem 7.3 and
assume that for each i ∈ I there is some Ai ∈K and wi : Var→ Ai such
that wiα ∈ DAi for all α ∈ i but wiϕ /∈ DAi . Put C :=

∏F
i∈I Ai (∈K)

and w = (wi)i∈I . Then wX ⊆ DC and wϕ /∈ DC , hence X 2C ϕ, a
contradiction to X �K ϕ.

4. W.l.o.g.A = 2 and 2 ⊆ B ⊆ 2 I for some set I by Stone’s representation
theorem. 2 � α⇒ 2 I � α⇒ B � α according to Theorem 7.5.

Section 6.1

1. b ∈ ran f ⇔ (∃a6b)fa = b (this predicate is p.r. iff f is p.r.).

2. Injectivity : Let ℘(a, b) = ℘(c, d). In order to prove a = c and b = d

assume first that a + b < c + d. This leads to a contradiction since
℘(a, b) < ℘(a, b) + b + 1 = ta+b + a + b + 1 = ta+b+1 6 tc+d 6 ℘(c, d).
Thus a + b = c + d. But then a = ℘(a, b) − ta+b = ℘(c, d) − tc+d = c,
hence also b = d. Surjectivity : Since ℘(0, 0) = 0 ∈ ran℘ it suffices
to prove ℘(a, b) + 1 ∈ ran℘, for all a, b. Clear for b = 0 because
℘(a, 0) + 1 = ta + a + 1 = ta+1 = ℘(0, a + 1). In case b 6= 0 is
℘(a, b) + 1 = ta+b + a + 1 = ta+1+b−1 + a + 1 = ℘(a + 1, b − 1). This
proof also confirms the correctness of the diagram for ℘, that is, the
arrows truly reflect the successively growing values of ℘.

3. κ1n = (µk 6 n)[(∃m 6 n)℘(k,m) = n].

4. lcm{fν| ν6n} = µk 6
∏
ν6n fν[k 6= 0 & (∀ν 6 n)fν k].

5. ⇒: Let R be recursive, M = {a ∈ N | ∃bRab}, and c ∈ M fixed. Put
fn = k in case (∃m6n)n = ℘(m, k) & Rkm, and fn = c otherwise.
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Section 6.2
1. Let α0, α1, . . . be a recursive enumeration of X, βn = αn ∧ . . . ∧αn︸ ︷︷ ︸

n

. By

Exercise 1 in 6.1, {βn | n ∈ N} is recursive and axiomatizes T as well.

2. Follow the proof of the unique term reconstruction property.

3. Similar to Exercise 2 with the unique formula reconstruction.

4. (a): A proof Φ = (ϕ0, . . . , ϕn) of ϕ = ϕn from an axiom system
X in T + α can easily and in a p.r. manner be converted into a
somewhat longer proof Φ′ of α →ϕ in T , following the case distinc-
tion in Lemma 1.6.3: ϕi ∈ Φ should in case ϕi = α be replaced
by a proof of α →α in T , and in case ϕi ∈ X ∪ Λ by a proof of
ϕi →α →ϕi in T followed by ϕi and α →ϕi. If ϕk ∈ Φ results from
ϕi ∈ Φ and ϕj = ϕi →ϕk ∈ Φ by applying MP, then the axiom
(α →ϕi →ϕk) → (α →ϕi) →α →ϕk, followed by (α →ϕi) →α →ϕk
and α →ϕk should replace ϕk. One may also proceed inductively on
the length of Φ in constructing Φ′.

Section 6.3
1. ∃x∃yα ≡N ∃z(∃x6z)(∃y6z)(z====℘(x, y)∧α) where z /∈ varα. Simi-

larly for ∀x∀yα. Note also that ∃x∃yα ≡N ∃z(∃x6z)(∃y6z)α. In all
these equivalences, ≡N can be replaced by ≡PA.

2. (∀z<y)∃xα ≡PA ∃u(∀z<y)(∃x<u)α. Contraposition and renaming of
α readily yields (∃z<y)∀xα ≡PA ∀u(∃z<y)(∀x<u)α.

3. Prove R= by case distinction.

4. Prove by induction on ϕ that both ϕ and ¬ϕ satisfy the claim.

Section 6.4
1. (a): p6 a ⇒ a⊥p ⇒ ∃xy xa+ 1==== yp (Euclid’s lemma)

⇒ ∃xy b==== ypb− xab ⇒ p b.

(b): Let m := lcm{aν|ν6n}, so that m = aνcν for suitable cν . Assume
that (∀ν6n)p6 aν . Then (∀ν6n)p cν by (a). Thus m = pm′ and
cν = pc′ν for suitablem′, c′ν . This leads to contradiction to the definition
of m. (c) easily follows from (b).
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2. ∃u[betau02 ∧ (∀v<x)(∃w,w′6y)(betauvw ∧ betauSvw′ ∧w < w′

∧ primw ∧ primw′ ∧ (∀z<w′)(prim z → z6w) ∧ betauxy)].

3. (a): Prove this first for x instead of ~x. (b): It suffices to show that
sbx(ϕ̇, x) = ϕ̇ for x /∈ freeϕ. (sbx((∀xα)·, x) = (∀xα)· for closed α).

Section 6.5

2. (ii)⇒(i): If T is complete and T ′+T is consistent then T ′ ⊆ T provided
T and T ′ belong to the same language.

4. Trivial if T + ∆ is inconsistent. Otherwise let κ be the conjunction
of all sentences ∀~x ∃!yα(~x, y), α running through all defining formulas
for operations from ∆. If T is decidable than so is T + κ. Moreover
`T+∆ α⇔ `T+κ αrd.

5. Set fa = (((Φ̇)))last if there is a proof Φ in Q with a = Φ̇, and fa = 0
otherwise. ran f = {0} ∪ {ϕ̇ | `Q ϕ} is not recursive, since otherwise Q̇

would be recursive which is not the case.

Section 6.6

1. Let T ⊇ T1 be consistent. S = {α ∈ L0 | αP ∈ T∆ + CA} is a
theory, see the proof of Theorem 6.2. S extends T0 consistently, hence
is undecidable. The same then holds for T∆ +CA, hence for T∆ (since
CA is finite), and therefore also for T .

2. Identify P with ω and define for arbitrary n,m, k ∈ ω

n+m==== k ↔ ∃ab(a ∼ n∧ b ∼ m∧a ∩ b==== ∅∧k ∼ a ∪ b).

For an explicit definition of multiplication on ω the cross product has
to be used. These definitions reflect the naive set-theoretic standard
definitions of addition and multiplication in N.

Section 6.7

2. ∆0 is r.e. but not ∆1 (Remark 2 in 6.4). Q̇ is Σ1 but not ∆1.

3. T is ω-inconsistent iff (∃ϕ∈L1)(∀n bwbT ¬ϕ(n) & bwbT ∃xϕ).
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Section 7.1

1. Prove `PA ∃rδrem(a, b, r) for b 6= 0 by induction on a.

2. (a): Follow the proof of Euclid’s lemma in 6.4. (b): Use <-induction.
(c): Let p ab. p6 a⇒ ∃x,y xa+1 = yp⇒ ∃x,y xab+b = ybp⇒ p b.

3. Similar to part (c) of Exercise 1 in 6.4.

4. Existence: <-induction. Uniqueness: Prove first p6 qk (p, q prime) by
induction on k, applying Exercise 2(c).

5. (a): �T+αϕ `T �T (α →ϕ) formalizes part (b) of Exercise 4 in 6.2.

Section 7.3

1. `T �α →α ⇒ `T ′ ¬�α ⇒ `T ′ ConT ′ , since ConT ′ ≡T ¬�α by (5).
Thus, T ′ is inconsistent by (1), hence `T α.

3. Clear if n = 0. Let Tn = T + ¬�n⊥ and ConTn ≡T ¬�n+1⊥ (the
induction hypothesis). Now, �n⊥ `T �n+1⊥ by D3. Hence, we obtain
Tn+1 = (T+¬�n⊥)+¬�n+1⊥ = T+¬�n+1⊥. Further, by (5) page 281,
ConTn+1 ≡T ¬�¬(¬�n+1⊥) ≡T ¬�n+2⊥.

4. For arithmetical sentences α the statement ‘If α is provable in PA then
α is true in N ’ is provable in ZFC. Formalized: `ZFC �PAα →α.

Section 7.4

1. �p →��p is responsible for transitivity, Löb’s formula for irreflexivity.

2. `G p →�p → p ⇒ `G �(p →�p → p) ⇒ `G �p →�(�p → p).

Section 7.5

1. Prove first (∗) `Gn H ⇔ `G �n⊥ →H for all H ∈ F�. The direction
⇒ in (∗) follows by induction on `Gn H. Then continue as follows:

`Gn H ⇔ `G �n⊥ →H (by(∗))
⇔ `PA (�n⊥ →H)ı for all ı (Theorem 5.2)
⇔ `PA �n⊥ →H ı for all ı (property of ı)
⇔ `PAn H

ı for all ı (PAn = PA +�n⊥).
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2. The first claim follows immediately from Exercise 3 in 7.3. For deter-
mining the provability logic of PAn⊥, use (6) in 7.3 and Theorem 5.3.

4. Prove that 0GS ¬[¬�(p → q)∧¬�(p →¬q)∧¬�(q → p)∧¬�(q →¬p)]
and observe Theorem 5.4.

Section 7.7
1. We show there is some π : g → n with P < Q⇔ πP < πQ for n := lh g

(the length of a longest path in g). Trivial for lh g = 0, with πP = 0 for
all P ∈ g. Let lh g = n+1 and g′ := g \ max g where max g denotes the
set of all maximal points in g. Then lh g′ = n and g′ has property (p) as
well as is readily checked. Hence g′ is a preference order with a mapping
π′ : g′ → n by the induction hypothesis. Extend π′ to π : g → n+ 1 by
putting πP = n for all P ∈ max g. Obviously, P < Q ⇒ πP < πQ.
For proving the converse let πP < πQ with Q ∈ max g. Then certainly
P ′ ∈ max g for some P ′ > P . Hence, by (p), either P < Q or Q < P ′.
The latter is impossible since Q ∈ max g. Thus P < Q.

2. If (i) is falsified in g (that is, if 3(�p∧3¬q)∧3(�q ∧¬p) is satisfiable
in some point O ∈ g) then g contains the diagram from page 296 as a
subdiagram, with no arrow from P to Q and from Q to P ′. It easily
follows that the finite poset g cannot be a preference order.

3. It is a matter of routine to check that �(�p∧p → q) ∨ �(�q → p) is
satisfied in an ordered G-frame. For the converse assume that g is initial
but not (totally) ordered. Then g contains the “fork” from page 298 as
a subframe, in which the Gj-axiom can easily be refuted.

4. Soundness of the G-axioms and rules is shown as the soundness part
of Theorem 7.3 which was given in the text. Soundness of the Gj-
axiom follows by contraposition. Assume that there are cardinals κ, λ
such that Vκ � �α∧α∧¬β, and Vλ � �β ∧¬α. Then each of the
assumptions κ < λ, κ > λ, or κ = λ yields a contradiction.


