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Abstract We are interested in the numerical simulation of large scale phenomena
in geophysical flows. In these cases, Coriolis forces play an important role and the
circulations are often perturbations of the so-called geostrophic equilibrium. Hence,
it is essential to design a numerical strategy that preserves a discrete version of
this equilibrium. In this article we work on the shallow water equations in a finite
volume framework and we propose a first step in this direction by introducing an
auxiliary pressure that is in geostrophic equilibrium with the velocity field and that is
computed thanks to the solution of an elliptic problem. Then the complete solution is
obtained by working on the deviating part of the pressure. Some numerical examples
illustrate the improvement through comparisons with classical discretizations.
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1 Introduction

We are interested in the numerical simulation of large scale phenomena in geophysi-
cal flows. At these scales, Coriolis forces play an important role and the atmospheric
or oceanic circulations are frequently observed near geostrophic equilibrium situa-
tions, see for example [11, 12]. For this reason it is essential to design a numerical
strategy that preserves a discrete version of this geostrophic equilibrium: if numer-
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ical spurious waves are created, they quickly become higher than the physical ones
we want to capture. This phenomenon is well known but its solution in the context
of finite volume methods is still an open problem. We address this question in this
article.

One of the most popular systems that is used to model such quasi-geostrophic
flows are the shallow water equations with β -plane approximation

ht +∇ · (hu) = 0, (1)

(hu)t +∇ · (hu⊗u)+∇(
gh2

2
) = − f ez× (hu), (2)

The shallow water system is the simplest form of equations of motion that can be
used to model Rossby and Kelvin waves in the atmosphere or ocean, and the use of
the β -plane approximation allows the model to take into account a non-constant
Coriolis parameter f that varies linearly with the latitude without considering a
spherical domain. We choose to work in a finite volume framework to discretize
the equations because of its ability to deal with complex geometries and its inher-
ent conservation property, see [4, 9]. In this context, the discrete preservation of the
geostrophic equilibrium, which is mainly the balance between pressure gradient and
Coriolis forces in (2), is a hard touch: the main reason is that the fluxes are upwinded
for stability reasons while the source terms are usually discretized in a centered way.

The question of the preservation of non-trivial equilibria in geophysical fluid
models has received great attention in the area of numerical modeling in the last
decade. Many studies were devoted to the preservation of the so-called hydrostatic
and also lake-at-rest equilibria, see [2, 3, 4] and references therein. More recently
some authors investigated the problem of the geostrophic equilibrium [5, 6, 8, 10].
However, this question is more delicate for two reasons: it is an essentially 2d prob-
lem, and it involves a non-zero velocity field. It follows that its solution is still
incomplete. In this work we propose a solution to this problem by introducing an
auxiliary water depth which is in geostrophic balance with the velocity field and
then by working on the deviation between the actual and auxiliary water depths in-
stead of considering the water depth itself. The auxiliary water depth is computed
through the solution of a Poisson problem on a dual grid [13].

2 Position of the problem

In this short note we present the method by considering a constant Coriolis parame-
ter. In order to exhibit the importance of the geostrophic equilibrium, we introduce
the non-dimensional version of the shallow water equations (1)–(2) written in non-
conservative form

ht +∇ · (hu) = 0,

ut +u ·∇u+
1

Fr2 ∇h+
1

Ro
2ez×u = 0.
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Here, h and u are the unknown dimensionless depth and velocity fields and

Fr =
U√
gH

, Ro =
U

ΩL

are the Froude and Rossby numbers, respectively, with U , L and H some charac-
teristic velocity, length and depth for the flow, g the gravity coefficient and Ω the
angular velocity of the earth. For large scale phenomena typical values for these
numbers are

Fr≈ Ro≈ ε = 10−2,

We then expand the unknowns in term of ε

h = h0 + εh1 + ε
2h2 + . . . , u = u0 + εu1 + ε

2u2 + . . .

and we keep the leading order terms to exhibit the following stationary state

O
(
ε
−2) : ∇h0 = 0 (3)

O
(
ε
−1) : ∇h1 +2ez×u0 = 0 (4)

O
(
ε

0) : ∇ ·u0 = 0, (5)

This set of equations is called the geostrophic equilibrium. It follows from equation
(3) that the water depth is constant at the leading order and from equation (5) that
the main part of the velocity field is divergence free. Equation (4) is nothing but
the fact that the pressure gradient and the Coriolis term are in balance for leading
varying terms h1 and u0. Let’s now turn to the numerical point of view. Preservation
of the discrete equilibrium (3) is obvious. The divergence free condition (5) is much
more delicate to deal with but it has been widely investigated for Stokes or Navier-
Stokes equations, mostly in the framework of finite element methods. It is also the
subject of a recent work [13], where the authors study the zero Froude number limit
of the shallow water equations. In this note we focus on a proper way to preserve
the balance in equation (4).

3 The well-balanced finite volume scheme

We choose to discretize the shallow water equations (1)–(2) in a finite volume frame-
work [9, 4]. The reason to consider this particular method is related to its inher-
ent conservation properties that are interesting for geophysical applications and in
particular for long time simulations [1]. A second reason is that the finite volume
method is also able to deal with sharp fronts that can occur in geophysical applica-
tions. We first recall the formulation of the finite volume method and the classical
centered discretization of the Coriolis source term. Then, we derive the new well-
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balanced scheme by introducing an auxiliary pressure that is computed through the
solution of a Laplace equation on a dual grid.

System (1)–(2) is a particular case of a 2d conservation law with source term:

Ut +(F(U))x +(G(U))y = S(U), (6)

in which U = (h,hu,hv)T and

F(U) =

 hu
hu2 + 1

2 gh2

huv

 , G(U) =

 hv
huv

hv2 + 1
2 gh2

 , S(U) =

 0
2Ωhv
−2Ωhu

 .

In this note we only consider Cartesian grids. Then, the finite volume discretization
of equation (6) leads to the computation of approximated solutions Un

i, j through the
discrete formula

Un+1
i, j =Un

i, j−
δ t
δx

(
Fn

i+ 1
2 , j
−Fn

i− 1
2 , j

)
− δ t

δy

(
Gn

i, j+ 1
2
−Gn

i, j− 1
2

)
+δ t Sn

i. j,

where Fn
i+ 1

2 , j
is a discrete approximation of the flux F(U) along the interface be-

tween cells Ci, j and Ci+1, j that is constructed through a three points formula

Fn
i+ 1

2 , j
= F

(
(hn

i, j,u
n
i, j,v

n
i, j),(h

n
i+1, j,u

n
i+1, j,v

n
i+1, j)

)
. (7)

Here we use the HLL solver [7] to compute these approximations.
The classical discretization of the source term Sn

i. j is computed through the cen-
tered formula

Sn
i. j =

(
0

−2Ωz× (hn
i, ju

n
i, j)

)
where hn

i, j denotes the approximated value at time tn on cell Ci, j. We will exhibit
in the last section that this approach suffers from important drawbacks when we
consider applications for small Froude and Rossby numbers.

The main idea of our method to overcome this problem is to introduce an aux-
iliary water depth hc that is in balance with Coriolis forces related to the actual
velocity field. This idea is an extension of the notion of hydrostatic reconstruction
that was introduced in [3] for the Euler equations and in [2] for shallow water flows.
Here, hc will satisfy the equation

g∇hc =−2Ω ×u. (8)

In our approach, hc is discretized as a grid function, which is piecewise bilinear on
each grid cell and continuous at the interfaces. The second ingredient of the well-
balanced scheme is the representation of the Coriolis forces by the gradient of this
quantity. Furthermore, the fluxes in the conservative part of the scheme are modified
in the following way: For each cell, we introduce a deviation in the water depth by
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∆hn
i, j = hn

i, j−hn
c(xi,y j)

Then, the interface water depths are computed by

ĥn,k,x
i+ 1

2 , j
=

1
2

[
hn

c

(
xi+ 1

2 , j+
1
2

)
+hn

c

(
xi+ 1

2 , j−
1
2

)]
+∆hn

k, j, for k = i, i+1.

and the original three points formula (7) for the flux is replaced by

Fn
i+ 1

2 , j
= F

(
(ĥn,i,x

i+ 1
2 , j

,un
i, j,v

n
i, j),(ĥ

n,i+1,x
i+ 1

2 , j
,un

i+1, j,v
n
i+1, j)

)
,

If the flow satisfies the geostrophic equilibrium, ĥ and hc are equal. The consistency
of the flux will then provide some numerical balance between the conservative part
and the source term that will directly impact the results. Note also that the time
step is now related to the interface water depths. Nevertheless, in the numerical
applications, the numerical values remain very close for both methods.

It remains to explain the computation of the auxiliary water depth hc that is the
solution of a discrete equivalent of equation (8). We first take the divergence of this
equation and then search for the solution of a Poisson equation

−∆φ = ∇ ·
(
k×u

)
.

Integration of this equation on the dual cell Ci+ 1
2 , j+

1
2

and application of the Gauss
theorem leads to ∫

∂C
i+ 1

2 , j+ 1
2

∇φ ·ndσ = −
∫

∂C
i+ 1

2 , j+ 1
2

kzu · t dσ ,

where n (resp. t) is a normal (resp. tangential) vector to the interface of the dual cell.
We solve this equation by using the technique presented in [13] for the solution of
a similar problem. We refer the reader to this article for the details of the method
that is in particular proved to provide an inf-sup-stable projection. We finally obtain
a linear system with a nine point stencil. The boundary conditions for this auxiliary
problem are prescribed by using the fact that the computed pressure (or height) field
is equivalent to a stream function for the associated balanced geostrophic flow. For
example a rigid wall type boundary condition for the flow translates into a Dirichlet
type boundary condition for the stream function. Similar types of equivalences can
be used to prescribe other types of boundary conidtions.

4 Numerical results

In order to test the new scheme, we consider a stationary vortex in the square domain
[0,1]× [0,1]. We consider periodic boundary conditions, and as initial conditions we
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Fig. 1 Error in time for both classical and well-balanced schemes (30×30 grid cells) and for four
different Froude numbers

choose a velocity field of the form

u0(r,θ) = vθ (r)eθ , vθ (r) = ε

[
5r χ

(
r <

1
5

)
+(2−5r)χ

(
1
5
≤ r <

2
5

)]
,

where r is the distance to the center of the domain and χ denotes the characteristic
function of a given interval. Some computations show that the vortex is a stationary
solution of the shallow water equations (1)- (2), if the initial water depth h0(r) is a
radial solution of the ODE

h′0(r) =
1
g

(
2Ωvθ +

v2
θ

r

)
.

Note that if we choose a water depth and an angular velocity of order O(1), the
Froude and Rossby numbers are of order O(ε). It follows that our interest is for
small values of the parameter ε .

We first work on a regular grid with 30× 30 cells and we consider four Froude
resp. Rossby numbers: 0.05,0.1,0.5 and 1. The numerical solution is computed by
using both schemes described in the previous section. In order to compare the accu-
racy of the schemes, we compute the relative L2 error in the water depth. In Figure
1 we present the time evolution of this error for the four values of ε . It appears
that for both schemes the error is increasing with time before reaching a stationary
value. More interesting is that for the classical (resp. well-balanced) scheme the er-
ror is increasing (resp. decreasing), when the Froude number is decreasing. While
the error is of the same order for both schemes when ε = 1, for other values of ε the
well-balanced scheme is always more precise than the classical one.

We then consider a finer grid with 100×100 cells and we present the water depth
for both schemes and for two values of ε: 0.95 (large) and 0.1 (small). In Figure 2
we present the 2d contour of the water depth. The results look similar and quite
close to the initial solution when ε is large (top row). But when ε is small (bottom
row), the classical scheme totally fails to compute the right solution, whereas the
water depth computed by the well-balanced scheme stays close to the initial one. In
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Fig. 2 Contour of the computed fluid depth with 100×100 grid cells. Fr = 0.95 (Top), Fr = 0.1
(bottom)

Figure 3 we give more quantitative results by presenting a cut of the solution along
x–axis at y = 0.5. These pictures clearly exhibit that the results are very close when
ε is large, but very different when ε is small. In this last case the classical scheme
is not able to maintain the vortex, whereas the well-balanced scheme preserves the
shape of the free surface. Note that the small diffusion that is observed even for the
well-balanced scheme is due to the fact that we consider only first order schemes in
this work. We end this short note by some words on the CPU time. We first notice
that for the last numerical test case, the time steps are very close for both methods,
as it is reported in the table below. We then consider the CPU time for both methods
and conclude that it is four times larger for the well-balanced scheme. It is obviously
due to the solution of the linear system related to the elliptic problem at each time
step. This observation leads to two comments. First, and since the solution of the
linear system is only required for the computation of the auxiliary water depth, it
is possible to obtain a compromise between accuracy and efficiency of the whole
process by considering iterative methods with a small number of iterations. Second
we recall that our final objective is to couple the presented process with a numerical
scheme adapted for small Froude number flows and then to generalize the method
presented in [13] to rotating flows. Since the technique introduced in [13] already
requires for the solution of a related linear system, the additional computational cost
of the well-balanced process presented here is very small.
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Classical scheme Well-balanced scheme
Time Step 9.7702e-005 9.7464e-005
CPU Time 1547 s 5564 s
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Fig. 3 Fluid depth profiles – cut along the x–axis at y= 0.5 with 100×100 grid cells. R line: Initial
solution, W line: Well-balanced scheme, C line: Classical scheme
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