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Abstract

For non-zero Froude numbers the shallow water equations are a hyperbolic system

of partial differential equations. In the zero Froude number limit, they are of mixed

hyperbolic-elliptic type, and the velocity field is subject to a divergence constraint.

A new semi-implicit projection method for the zero Froude number shallow wa-

ter equations is presented. This method enforces the divergence constraint on the

velocity field, in two steps. First, the numerical fluxes of an auxiliary hyperbolic

system are computed with a standard second order method. Then, these fluxes are

corrected by solving two Poisson-type equations. These corrections guarantee that

the new velocity field satisfies a discrete form of the above-mentioned divergence con-

straint. The main feature of the new method is a unified discretization of the two

Poisson-type equations, which rests on a Petrov-Galerkin finite element formulation

with piecewise bilinear ansatz functions for the unknown variable. This discretization

naturally leads to piecewise linear ansatz functions for the momentum components.

The projection method is derived from a semi-implicit finite volume method for the

zero Mach number Euler equations, which uses standard discretizations for the solu-

tion of the Poisson-type equations.

The new scheme can be formulated as an approximate as well as an exact projec-

tion method. In the former case, the divergence constraint is not exactly satisfied.

The “approximateness” of the method can be estimated with an asymptotic upper

bound of the velocity divergence at the new time level, which is consistent with the

method’s second-order accuracy. In the exact projection method, the piecewise linear

components of the momentum are employed for the computation of the numerical

fluxes of the auxiliary system at the new time level.

In order to show the stability of the new projection step, a primal-dual mixed finite

element formulation is derived, which is equivalent to the Poisson-type equations of

the new scheme. Using the abstract theory of Nicoläıdes for generalized saddle
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Abstract

point problems, existence and uniqueness of the continuous problem are proven. Fur-

thermore, preliminary results regarding the stability of the discrete method are pre-

sented.

The numerical results obtained with the new exact method show significant accu-

racy improvements over the version that uses standard discretizations for the solution

of the Poisson-type equations. In the L2 as well as the L∞ norm, the global error is

about four times smaller for smooth solutions. Simulating the advection of a vortex

with discontinuous vorticity field, the new method yields a more accurate position of

the center of the vortex.
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Zusammenfassung

Die Flachwassergleichungen bilden für positive Froude-Zahlen ein hyperbolisches Sys-

tem von Differentialgleichungen. Im Limes Froude-Zahl gegen Null wechseln sie ih-

ren Typ zu einem elliptisch-hyperbolischen System. Darüber hinaus unterliegt das

Geschwindigkeitsfeld einer Divergenzbedingung.

Im Rahmen dieser Arbeit wird eine neue semi-implizite Projektionsmethode zur

Lösung der Flachwassergleichungen im Limes einer verschwindenden Froude-Zahl

präsentiert. In diesem Verfahren wird die Divergenzbedingung an das Geschwindig-

keitsfeld in zwei Schritten erzwungen: Zuerst werden die numerischen Flüsse eines

hyperbolischen Hilfssystems mit einer Standardmethode zweiter Ordnung berechnet.

Im zweiten Schritt werden diese durch die Lösung zweier Poisson-Typ-Gleichungen

korrigiert. Die Korrekturen garantieren, dass das Geschwindigkeitsfeld eine diskre-

te Form der oben genannten Divergenzbedingung erfüllt. Das Hauptmerkmal der

neuen Methode ist ein vereinheitlichter Ansatz bei der Diskretisierung der Poisson-

Typ-Gleichungen, die auf einer Petrov-Galerkin Finite-Elemente-Formulierung mit

stückweise bilinearen Ansatzfunktionen für die Unbekannte basiert. Diese Diskre-

tisierung führt in natürlicher Weise zu stückweise linearen Ansatzfunktionen für

die Impuls-Variable. Die vorgestellte Projektionsmethode beruht auf einem semi-

impliziten Finite-Volumen-Verfahren zur Lösung der Euler-Gleichungen im Limes

einer verschwindenden Mach-Zahl, welches klassische Diskretisierungen zur Lösung

der Poisson-Typ-Gleichungen verwendet.

Das neue Verfahren kann sowohl als approximative als auch als exakte Methode for-

muliert werden. Im ersten Fall wird die Divergenzbedingung nicht exakt erfüllt. Die

”
Approximiertheit“ der Methode ist durch eine asymptotische obere Schranke der Ge-

schwindigkeitsdivergenz zu Beginn des neuen Zeitschrittes abschätzbar. Damit wird

gewährleistet, dass die zweite Ordnung des Verfahrens erhalten bleibt. In der exak-

ten Projektionsmethode werden die stückweise linearen Verteilungen des Impulses zur
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Zusammenfassung

Berechnung der numerischen Flüsse des Hilfssystems im darauf folgenden Zeitschritt

verwendet.

Für den Beweis der Stabilität des neuen Projektionsschrittes wird eine primal-duale

gemischte Finite-Elemente-Formulierung hergeleitet, die äquivalent zu der zweiten

Poisson-Typ-Gleichung des neuen Verfahrens ist. Unter Benutzung der abstrakten

Theorie von Nicoläıdes für generalisierte Sattelpunkt-Probleme wird die Existenz

und Eindeutigkeit des kontinuierlichen Problems gezeigt. Außerdem werden erste

Ergebnisse in Bezug auf die Stabilität der diskreten Methode vorgestellt.

Die numerischen Resultate der neuen exakten Methode weisen signifikante Verbes-

serungen in der Genauigkeit gegenüber der Version auf, die klassische Diskretisierun-

gen zur Lösung der Poisson-Typ-Gleichungen benutzt. Für glatte Lösungen ist der

globale Fehler in der L2- sowie der L∞-Norm um das Vierfache geringer. Bei der

Simulation eines Wirbels mit unstetigem Wirbelstärke-Feld ergibt die neue Methode

eine wesentlich genauere Position des Wirbelzentrums.
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1 Introduction

Many phenomena of interest in geophysical fluid mechanics can be modeled with the

shallow water equations. This system of equations is an appropriate approximation

of processes acting on large horizontal length scales in relation to the considered

vertical length scale. It describes flows of an incompressible fluid with a free surface.

The shallow water equations are interesting not only from the geophysical, but also

from the numerical point of view. On the one hand, they can describe the important

aspects of atmospheric and oceanic phenomena. While ignoring the presence of

stratification, the shallow water equations incorporate the effects of gravity and can

account for the earth’s rotation and for bottom topography. They are, for instance,

a suitable approximation for large scale midlatitude motions [Majda, 2003]. On the

other hand, the shallow water system is characterized as a hyperbolic system of only

two equations. Its nonlinear structure is fairly simple, but it is similar to those of

more complex examples, such as the Euler equations of gas dynamics [LeVeque,

2002].

The physical processes in the ocean act on very different spatial and temporal scales.

Gravity waves on the surface of the ocean, which carry energy and momentum over

large distances, are among the fastest of these kind of processes [Le Mâıtre et al.,

2001]. These waves can travel at speeds exceeding 200 meters per second in deep

waters, whereas the advection velocity of the water is normally less than 5 meters

per second. Obviously, there are two different scales within one system, and the

great disparity between the scales is expressed by a small Froude number, the ratio

between the velocity of flow and the speed of gravity waves.

In the zero Froude number shallow water equations, we consider the case in which

the ratio between the gravity wave speed and the characteristic advection velocity

of the fluid becomes infinitely large. This limit process brings with it considerable

changes to the mathematical properties of the governing equations: While the shal-
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1 Introduction

low water equations are a hyperbolic system of partial differential equations, they

are of mixed hyperbolic-elliptic type in the limit of a vanishing Froude number. Fur-

thermore, the velocity field of the fluid has to satisfy, in the limit, a divergence

constraint (e.g. ∇ · v = 0 for cases with no flux across the boundary). Clearly, these

circumstances require different numerical methods for the computation of approxi-

mate solutions in both regimes.

1.1 The shallow water equations

The following assumptions form the basis for the derivation of the shallow water

equations. We consider an incompressible, inviscid fluid, which is shallow and homo-

geneous. Given a characteristic depth d′ref and a characteristic length scale for the

horizontal motion `′ref , the “shallowness” of the fluid can be expressed by the ratio

d′ref/`
′
ref � 1. Its homogeneity is manifested in a constant and uniform density %′.1

Moreover, the hydrostatic approximation

∂p′

∂z′
= −%′ g′

is assumed to be valid. Here, p′ is the pressure, z′ the vertical coordinate and g′ the

gravitational constant. The axis of rotation of the fluid is considered to coincide with

the vertical axis, and the frequency of rotation is given by the (Coriolis) parameter

f ′. With these assumptions, the quasilinear form of the two-dimensional rotating

shallow water equations is given by [Majda, 2003, Chapter 4]

Dh′

Dt′
+ h′∇′ · v′ = 0

Dv′

Dt′
+ f ′ v′⊥ = −g′∇′h′ .

(1.1)

In these equations, v′ = (u′(x′, t′), v′(x′, t′)) is the horizontal component of the fluid

velocity, and v′⊥ = (−v′, u′) is the “orthogonal velocity”. The total depth h′ = h′T−h′B
is given as the difference between the top of the fluid h′T(x′, t′) and the bottom

1Variables with primes are always dimensional, while those without primes are nondimensional.
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1.1 The shallow water equations

`′

ref

d′

ref

h′

T
(x′, t′)

h′

B
(x′)

h′(x′, t′)

x
′

z′

Figure 1.1: The shallow water model.

topography h′B(x′) (see Figure 1.1). Furthermore, D
Dt′
�

∂
∂t′

+ v′ · ∇′ is the material

derivative. For a complete derivation of the shallow water equations from the three-

dimensional incompressible Euler equations, the reader is referred to Pedlosky

[1987, pp. 59-63].

The shallow water equations are a system of first order partial differential equations.

The system (1.1) can be also written in conservation form, which is given by

∂h′

∂t′
+ ∇′ · (h′v′) = 0

∂(h′v′)

∂t′
+ ∇′ ·

(
h′v′ ◦ v′ +

g′

2
h′2 I

)
= −(f ′ v′

⊥
+ g′∇′h′B)h′ ,

(1.2)

where I is the 2× 2 identity matrix. In the conservation of “momentum” (1.2)2, we

have written the contributions made by rotation and bottom topography as source

terms on the right hand side of the equation. In this thesis, bottom topography and

rotational effects are not considered. Therefore, we omit the right hand side of (1.2)2

in the following.

Remark 1.1 The shallow water equations have the same mathematical structure as

the Euler equations of compressible isentropic gas dynamics [Majda, 2003, p. 50].
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In fact, the latter are given by

∂%′

∂t′
+ ∇′ · (%′v′) = 0

∂(%′v′)

∂t′
+ ∇′ · (%′v′ ◦ v′ + κ̂ (%′)γ I) = 0

with constants κ̂ and γ > 1. By replacing %′ with h′, κ̂ with g′/2, and setting γ = 2,

the shallow water equations without source terms are recovered. /

Therefore, similar numerical methods can be used for the approximate solution of

both systems of equations.

1.1.1 Dimensional analysis

The aim of any concrete (experimental or theoretical) physical study is to understand

the relationship between the characterizing quantities of the problem under consid-

eration. To measure the relative importance of the different terms in the shallow

water equations, we undertake a dimensional analysis. In this analysis, reference

quantities of the dependent and independent variables in the problem have to be

identified. By taking the ratio between these parameters, a well defined number of

nondimensional characteristic numbers can be deduced, which specify the problem’s

nature. This connection is described by the so-called Π-theorem [Barenblatt, 1996,

Section 1.2]2.

Let us introduce, besides the length scale `′ref , a typical time scale t′ref of the problem

under consideration, and denote by h′ref and v′ref reference units for the height and

velocity, respectively (e.g. given by the initial conditions). Then, we can define the

nondimensional variables

x�
x′

`′ref
, t�

t′

t′ref
, h�

h′

h′ref
and v �

v′

v′ref
.

The substitution of the dimensional variables by their nondimensional counterparts

2For an introduction to this topic, the reader is also referred to Klein and Vater [2003, Section
2.1.2 and Chapter 3].
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1.1 The shallow water equations

in (1.2) leads to

h′ref
t′ref

∂h

∂t
+

h′ref v
′
ref

`′ref
∇ · (hv) = 0

h′ref v
′
ref

t′ref

∂(hv)

∂t
+

h′ref v
′2
ref

`′ref
∇ ·
(
hv ◦ v +

g′ h′ref
2 v′2ref

h2 I

)
= 0 .

If the first equation is multiplied by `′ref/(h
′
refv

′
ref) and the second one by `′ref/(h

′
refv

′2
ref),

the nondimensional shallow water equations are obtained:

Sr
∂h

∂t
+ ∇ · (hv) = 0

Sr
∂(hv)

∂t
+ ∇ ·

(
hv ◦ v +

1

2 Fr2
h2 I

)
= 0 .

(1.3)

Here, we have introduced the dimensionless characteristic numbers

Sr �
`′ref

t′ref v
′
ref

and Fr �
v′ref√
g′ h′ref

,

which are known as the Strouhal and the Froude number, respectively. In this thesis,

we do not consider external forces which could assign an additional time scale to the

problem. Thus, we are interested in a reference time scale equal to the advection

time scale of the fluid, so that t′ref = `′ref/v
′
ref and the Strouhal number becomes one

(Sr = 1).

In Remark 1.1, we saw that the shallow water system is equivalent to a special

case of the Euler equations of gas dynamics. The importance of compressibility in

the Euler equations is given by the Mach number, which is defined by the ratio

between the representative fluid velocity v′ref and the speed of sound c′ref �
√
p′ref/%

′
ref .

As mentioned earlier, in the shallow water model we consider an incompressible

fluid, but the analogue of the Mach number is given by the Froude number. Thus,

the associated “compressibility” effects are given by the ratio of the typical fluid

velocity v′ref and the gravity wave speed
√
g′ h′ref , that is the speed at which long wave

perturbations of the depth travel [Pedlosky, 1987].
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1 Introduction

For two-dimensional velocity fields, the vorticity ω is given by

ω �
∂v

∂x
− ∂u

∂y
.

An evolution equation for this quantity can be derived by taking the curl of the

quasilinear form of the momentum equation in (1.3), which is given by

Sr
∂v

∂t
+ v · ∇v +

1

Fr2
∇h = 0 .

By these means, we obtain

Sr
∂ω

∂t
+∇ · (ω v) = 0 . (1.4)

1.1.2 Characteristic structure

The introduction of the shallow water equations is completed with a characteristic

analysis. By integrating the governing equations (1.3) over an arbitrary bounded

volume Ω ⊂ R2 and using the divergence theorem, we obtain a conservation law of

the form
∂

∂t

∫
Ω

u dx +

∫
∂Ω

f(u,n; Fr) dσ = 0 ∀ t > 0 .

It describes the interplay between the density function of conserved variables

u : Ω× [0,∞) → R
3 with u(x, t)�

(
h

hv

)

and the flux function f : U × Ω × [0,∞) → R
3, where U ⊂ R3 is an open set (see

Figure 1.2). The flux function is given by

f(u(x, t),n(x); Fr)�

(
h(v · n)

hv(v · n) + 1
2Fr2

h2 n

)
.

The Jacobian matrix d
du

f(u,n) has real eigenvalues v · n and v · n ±
√
h/Fr and

a complete set of eigenvectors. Therefore, the matrix is diagonalizable, and the
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1.2 Purpose and objectives

f

f

fu

Figure 1.2: Density u of conserved variables and flux f(u,n) (denoted by arrows) on
the boundary of a control volume.

shallow water equations are a hyperbolic system of partial differential equations.

These eigenvalues become singular in the limit Fr → 0.

1.2 Purpose and objectives

The main objective of this thesis is to derive a new semi-implicit projection method

for the zero Froude number shallow water equations. This method is based on a

finite volume method for the zero Mach number Euler equations, originally proposed

in Schneider et al. [1999]. The new scheme features two elliptic projections, which

are based on a Petrov-Galerkin finite element formulation. In the course of this work,

the following questions will be addressed:

• Which modifications of the original scheme have to be done to implement the

new projection method?

• Is it possible to utilize the finite element formulation of the new projection to

show analytically the stability of this part of the method?

• What is the behavior of the new projection method compared to the original

scheme?

• Numerical methods for the solution of hyperbolic problems typically consist of

a reconstruction step followed by the computation of numerical fluxes. Can
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the numerical solution be improved, when the reconstruction is constrained by

auxiliary equations?

For the investigation of the zero Froude number limit of the shallow water equa-

tions, we undertake an asymptotic analysis in Chapter 2. This analysis results in

a divergence constraint for the velocity field, which is a major ingredient of the nu-

merical method presented in Chapter 3. The finite element formulation of the new

projection rests on bilinear ansatz functions for the nonuniform component of the

height. Two different versions of the new method are presented.

The divergence constraint, in conjunction with the momentum update, leads to

the formulation of a saddle point problem, which is equivalent to the new projection.

This formulation is derived in Chapter 4 and provides the basis for the subsequent

stability analysis of the new projection. Numerical results, which are obtained with

the original method as well as the new projection method are presented in Chapter 5.

In the final part, open questions are discussed and we outline possible approaches for

their solution.
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2 Asymptotic Analysis

In asymptotic analysis we exploit the fact that the problem under consideration in-

corporates at least one very small or very large dimensionless characteristic quantity.

Often, such circumstances can be used to simplify the equations describing the physi-

cal system considerably. In this chapter, the shallow water equations are investigated

in their “incompressible” limit. Thus, the Froude number has the role of the small

parameter, in which the asymptotic analysis is undertaken. The analysis of the shal-

low water equations in the low Froude number limit is done in analogy to the study

of the low Mach number Euler equations by Klein [1995], using a two space scale,

single time scale ansatz.

First, we shortly introduce the most important principles of asymptotic analysis,

and the required properties for the multiple scales ansatz are proven in analogy to

the work of Meister [1997].1 After the identification of the small parameter and the

formulation of the asymptotic ansatz, an analysis of the asymptotic limit equations is

performed. Two different regimes of flow are investigated. In the first one, only one

space scale is considered, while in the second regime two space scales are taken into

account. In the final part of this chapter the results for the single scale regime, which

coincides with the zero Froude number shallow water equations, are summarized.

2.1 Basic principles

For the discussion of the basic principles in asymptotic analysis let us define an

interval I � (0, ε′], in which ε′ > 0 is a positive real number. Also, we consider an

1See also Schneider [1978] and Kevorkian and Cole [1996] for an introduction to asymptotic
analysis.
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2 Asymptotic Analysis

n-dimensional set D ⊂ Rn and a scalar real valued function

u : D × I → R with (x1, . . . , xn; ε) 7→ u(x1, . . . , xn; ε) .

The basis for any asymptotic analysis is an asymptotic sequence, which is defined

as follows.

Definition 2.1 A sequence of functions {φn(ε)}n∈N with φn : R+ → R for all n is

called an asymptotic sequence, if

φn+1(ε) = O(φn(ε)) as ε→ 0

is valid for all n ∈ N.

A simple example of such a sequence is {εn}n∈N. In general, asymptotic sequences

can also consist of fractional powers, logarithmic functions, etc. With a given asymp-

totic sequence the notion of an asymptotic expansion can be defined.

Definition 2.2 Let u : D × I → R with (x; ε) 7→ u(x; ε) and {φn(ε)}n∈N be an

asymptotic sequence. We define for N ∈ N a series of the form

N∑
i=0

φi(ε)u
(i)(x) (2.1)

to be an asymptotic N -term expansion of u, if for each x ∈ D

u(x; ε)−
N∑

i=0

φi(ε)u
(i)(x) = O(φN(ε)) as ε→ 0 .

The functions u(i) : D̃ → R (D̃ ∈ Rn) are called asymptotic functions.

The idea is then, to replace the unknown of the problem under consideration by an

asymptotic expansion, and to find subsequently solutions for the asymptotic functions

u(i). This (hopefully) leads to an approximate solution of the problem. An asymptotic

expansion we get for a given problem strongly depends on the prescribed asymptotic

sequence. Additionally, such an expansion might not even exist. For example, let us

10



2.1 Basic principles

assume that u(x; ε) = 1+
√
ε is the exact solution of a given differential equation and

that we have used {εn}n∈N as asymptotic sequence. In this case, we could not expect

to obtain an adequate asymptotic expansion, because u cannot be represented by a

series of the form (2.1). On the other hand, the sequence {εn/2}n∈N would clearly

reproduce the exact solution for N = 1.

If N approaches infinity, the asymptotic expansion might converge for ε being

in a certain range. However, in many circumstances we lack information about

the convergence properties of the calculated asymptotic expansion, and it is only

reasonable to compute the first one or two terms of the expansion. Thus, in most cases

it is irrelevant how the series behaves for N → ∞ and ε finite; the more important

question is how the expansion behaves for ε→ 0 given a fixed N [Schneider, 1978,

p. 67]. The usefulness of an asymptotic expansion is given by the property that ε

has only to be chosen small enough to approximate the unknown solution sufficiently

well.

Any N -term expansion of a given function u incorporates the k-term expansions of

u with k ∈ N, k < N [cf. Meister, 1997]. Using the following fundamental property

of asymptotic analysis, we will outline how to use the tool of asymptotic analysis in

solving differential equations, at least up to a certain order of accuracy.

Proposition 2.1 Let {φn(ε)}n∈N be an asymptotic sequence and L(i), i = 0, . . . , N

arbitrary terms independent of ε (e.g. real valued functions on D). Then

N∑
i=0

φi(ε)L
(i) = O(φN(ε)) as ε→ 0 (2.2)

is equivalent to

L(i) = 0 for i = 0, . . . , N .

Proof. Assuming L(i) = 0 for i = 0, . . . , N we immediately get the first statement.

For the opposite direction let us assume that there is at least one L(n) 6= 0, 0 ≤ n ≤ N .

W.l.o.g. we can assume that L(m) = 0 for 0 ≤ m < n to obtain with (2.2)

n∑
i=0

φi(ε)L
(i) = O(φn(ε)) as ε→ 0 .

11



2 Asymptotic Analysis

This leads to

0 = lim
ε→0

∑n
i=0 φi(ε)L

(i)

φn(ε)
= lim

ε→0

∑n−1
i=0 φi(ε)L

(i)

φn(ε)
+ L(n) = L(n)

and thus, contradicts our assumption L(n) 6= 0. �

Using this idea, the following steps have to be performed in the analysis of a

given homogeneous differential equation. First, an asymptotic sequence {φn(ε)}n∈N

is chosen and an ansatz of the form

u(x; ε) =
N∑

i=0

φi(ε)u
(i)(x) + O(φN(ε)) as ε→ 0 (2.3)

is specified for the unknown u. By inserting this ansatz into the differential equation,

the problem is reformulated to obtain

M∑
j=0

ψj(ε)L
(j)(u(0), . . . , u(N)) = O(ψM(ε)) as ε→ 0 (2.4)

with ψj+1(ε) = O(ψj(ε)) for j = 0, . . . ,M − 1. In each L(j)(u(0), . . . , u(N)) we have

merged terms, which are multiplied by equal powers in ε. The L(j) are independent

of ε. Thus, Proposition 2.1 can be applied, and by solving the system of differential

equations

L(m)(u(0), . . . , u(N)) = 0 for m = 0, . . . ,M , (2.5)

we finally obtain an (approximate) solution in the form (2.3) for u.

A lot of applications include phenomena, which act on different scales in time or

space. In this case, even a well chosen asymptotic sequence might not result in a

satisfying expansion. Often, this happens if the associated differential equation under

consideration loses an order or changes its type in the limit ε→ 0 [Meister, 1997].

An example for such a behavior is a linear oscillator with small mass which is driven

by a sinusoidal background force2. This system can be described by the initial value

2For a description of the weakly damped case, the reader is referred to [Klein and Vater, 2003,
Chapter 2].
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2.1 Basic principles

problem

εy′′ + y = cos τ, y(0) = y0, y
′(0) = y′0 (2.6)

and has for y0 = 1 + ε and y′0 = 0 the exact solution

y(τ ; ε) =
1

1− ε

(
cos τ − ε2 cos

τ√
ε

)
. (2.7)

For a fixed ε, two well defined frequencies are present in this solution. Although

the limit equation of (2.6) looses two orders, the boundedness of the cosine function

implies uniform convergence of (2.7) towards the solution of the unperturbed problem.

Using {εn}n∈N as asymptotic sequence, an asymptotic analysis as described above

would result in the (single scale) solution

yss(τ ; ε) = (1 + ε+ ε2) cos τ + O
(
ε2
)

. (2.8)

Despite the fact that yss also converges to the solution of the unperturbed problem

as ε → 0, this is not an asymptotic expansion in the sense of Definition 2.2. The

asymptotic solution (2.8) only reproduces the behavior of the external force. This is

due to the fact that the asymptotic functions u(i) just depend on τ . Therefore, they

can only represent long wave components of the solution and the influence of ε on

the frequency is lost [Meister, 1997].

The concept of an asymptotic expansion in Definition 2.2 is given as an ansatz

with separation of variables. Obviously, this approach is not comprehensive enough

for all purposes. On the other hand, an ansatz of the kind u(i) = u(i)(x, ε) without

other side constraints might be too general. Therefore, we introduce the notion of

multiple scales expansions.

Definition 2.3 Let u : D×I → R with (x; ε) 7→ u(x; ε), {φn(ε)}n∈N be an asymptotic

sequence and g : D × I → D̃ ⊂ Rm. The series

N∑
i=0

φi(ε)u
(i)(g(x, ε))

13



2 Asymptotic Analysis

is called an asymptotic N-term multiple scales expansion of u, if

u(x; ε)−
N∑

i=0

φi(ε)u
(i)(g(x, ε)) = O(φN(ε)) as ε→ 0 .

With this definition, the domain of the asymptotic functions u(i) has changed.

Furthermore, the function g couples the considered scales of the problem. To find a

multiple scales asymptotic solution of a given differential equation, it is still sufficient

to proceed in the same way as outlined above. However, in (2.4) the coefficients L(i)

are now dependent on ε. Consequently, it is not clear that all of them have to vanish,

but if we found a solution for (2.5) independent of ε, then the asymptotic expansion

would be valid in either case.

For our example (2.6) of the linear oscillator, a multiple scales analysis with

g(τ ; ε) = (τ, τ/
√
ε) would result in the approximate solution

yms(τ ; ε) = (1 + ε+ ε2) cos τ − ε2 cos
τ√
ε

+ O
(
ε2
)

, (2.9)

where we have used the same asymptotic sequence as before. In contrast to the

single scale expansion, this solution is an asymptotic expansion and thus also tends

to the unperturbed solution as ε → 0. The second term in (2.9) represents the fast

time scale of the problem, which was missing in the single scale expansion. Through

the mapping g the asymptotic functions u(i) are now dependent on the two different

physical scales.

2.2 Ansatz for the low Froude number limit

Looking at the low Froude number limit of the shallow water equations, we identify a

small parameter ε with the Froude number. We seek solutions to the nondimensional

shallow water equations (1.3) (including suitable initial and boundary conditions) by

using a multiple scales expansion of the unknowns. Thus, let Fr = ε ∈ I � (0, ε′]

14



2.2 Ansatz for the low Froude number limit

with ε′ � 1 and

g : Rd+1 × I → R
2d+1 with g(x, t; ε) = (x, εx, t)� (η, ξ, t) .

A quantity w(x, t; ε) with ε fixed but arbitrary small shall then be representable as

w(x, t; ε) =
N∑

i=0

φi(ε) w
(i)(g(x, t; ε)) + O(φN(ε))

=
N∑

i=0

εi w(i)(η, ξ, t) + O
(
εN
)

as ε→ 0

(2.10)

uniformly for all (x, t) ∈ Rd × R+
0 . Also, the expansion should include all the k-

term expansions with 0 ≤ k < N . Because two space coordinates are considered

in this expansion, the differentiation in space yields for an asymptotic function w(j),

j = 0, . . . , N

∂w(j)

∂xi

∣∣∣∣
ε

(g(x, t; ε)) =
∂w(j)

∂ηi

(η, ξ, t) + ε
∂w(j)

∂ξi
(η, ξ, t) .

With the notation ∂w(j)

∂xi
|ε it should be stressed that the parameter ε is a fixed quantity.

Otherwise, also the considered scales of the problem and thus the Froude number

would change.

By inserting the ansatz (2.10) into (1.3) we obtain for the dimensionless shallow

water equations

[
h

(0)
t +∇η · (hv)(0)

]
(η, ξ, t) +

ε
[
h

(1)
t +∇η · (hv)(1) +∇ξ · (hv)(0)

]
(η, ξ, t) + O(ε) = 0

(2.11)

and

1

ε2

[
(h∇ηh)

(0)
]
(η, ξ, t) +

1

ε

[
(h∇ηh)

(1) + (h∇ξh)
(0)
]
(η, ξ, t) +[

(hv)
(0)
t +∇η · (hv ◦ v)(0) + (h∇ηh)

(2) + (h∇ξh)
(1)
]
(η, ξ, t) + O(1) = 0

(2.12)
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2 Asymptotic Analysis

as ε → 0. For further conclusions we try to find solutions for which the terms in

brackets are independent of ε. As stated earlier, under these circumstances we can

use Proposition 2.1. By indicating with O(εi) the corresponding order in ε of the

equation, the continuity equation (2.11) is equivalent to

O(1) :
∂h(0)

∂t
+∇η · (hv)(0) = 0

O(ε) :
∂h(1)

∂t
+∇η · (hv)(1) +∇ξ · (hv)(0) = 0

(2.13)

and the momentum equation (2.12) is equivalent to

O(ε−2) : h(0)∇ηh
(0) = 0

O(ε−1) : h(0)∇ηh
(1) + h(1)∇ηh

(0) + h(0)∇ξh
(0) = 0

O(1) : (hv)
(0)
t +∇η · (hv ◦ v)(0) + (h∇ηh)

(2) + (h∇ξh)
(1) = 0 .

(2.14)

For an asymptotic function w(i), a sub-linear growth condition is imposed: We

assume that

w(i)(η, ξ, t) = O(r) for η ∈ ∂B(0, r) as r →∞

for all (ξ, t) ∈ Rd×R+
0 . In this formula, B(0, r)� {η ∈ Rd

∣∣|η| ≤ r} is the ball with

radius r about the origin.

2.3 Analysis of the asymptotic system

The equations (2.13) and (2.14) are now analyzed to obtain further information about

solutions in the low Froude number limit. The nondimensional equations (1.3) change

their type as Fr → 0 from a hyperbolic to a mixed elliptic-hyperbolic system. This

is already visible in the momentum equation, in which the gradient of the height

is divided by the square of the Froude number. In the asymptotic analysis, this

relationship becomes evident in the equations (2.14)1 and (2.14)2 for the two leading

order terms of the height. These equations are also the starting point for this analysis.

In particular, it will be shown that h(0) is only dependent on time and that h(1) is

independent of the short space scale η.
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2.3 Analysis of the asymptotic system

The assumption of a positive height h implies that the leading order term h(0) is

also greater than zero. Thus, (2.14)1 can be divided by h(0) to obtain ∇ηh
(0) = 0,

meaning that

h(0)(η, ξ, t) = h̃(0)(ξ, t) .

Using the independence of h(0) from the short space scale, (2.14)2 simplifies to

∇ηh
(1) +∇ξh

(0) = 0 . (2.15)

To derive that h(0) is only dependent on time, equation (2.15) is integrated over

B(0, r) � {η ∈ R
d
∣∣|η| ≤ r}. Applying the divergence theorem we get for all

(ξ, t) ∈ Rd ×R+
0∫

∂B(0,r)

h(1)(η, ξ, t) n(η) dσ = −
∫

B(0,r)

∇ξh
(0)(η, ξ, t) dη

= −|B(0, r)| ∇ξh̃
(0)(ξ, t) ,

where n is the outward pointing unit normal vector on ∂B(0, r). From the sub-linear

growth condition for h(1) in η it follows that

∇ξh̃
(0)(ξ, t) = − 1

|B(0, r)|

∫
∂B(0,r)

h(1)(η, ξ, t) n(η) dσ

= O
(
r−d
)
· O
(
rd−1

)
· O(r)

= O(1) as r →∞ .

Consequently, h(0) is just dependent on time, and using this result in (2.15) we obtain

h(0)(η, ξ, t) = h0(t)

h(1)(η, ξ, t) = h1(ξ, t) .

This means that short wave length components of the height only have an influence

of order O(ε2) on the solution and that long wave length fluctuations are of O(ε).

The conclusions for the height variable also imply a requirement for the velocity field.
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2 Asymptotic Analysis

From (2.13)1 the divergence constraint

∇η · v(0)(η, ξ, t) = − 1

h0(t)

dh0

dt
(t) (2.16)

is obtained. Also, the momentum equation of order O(1) simplifies to

(h0v
(0))t + h0∇η · (v ◦ v)(0) + h0(∇ηh

(2) +∇ξh
(1)) = 0 . (2.17)

Two different regimes of flow will be considered in the remaining discussion. In

the first case, a system with only a single length scale is considered. Thus, for any

asymptotic function w(i), i = 0, 1, . . . , N , we set

∇ξw
(i) = 0 ,

so that information on the ξ-scale becomes void. This regime can be interpreted as

a system with dimensions comparable to our reference length, in which long wave

components would have an infinitely large wavelength compared to the system di-

mensions. In the second regime, both space scales are considered. The dimensions of

such a system are large compared to the reference length scale, and long wave length

components of the solution cannot be neglected in this regime any more.

For further analysis of the first regime (2.16) is integrated in η over the whole

domain of the system. Using the divergence theorem we obtain

d

dt
(lnh0)(t) = − 1

|Ω|

∫
∂Ω

v(0)(η, ξ, t) · n(η) dσ (2.18)

with the same notations as above. This equation states that O(1) changes in height

can only be induced by flux across the boundary. Another interpretation of (2.18)

follows from the spatial homogeneity of h0. If this quantity is given, an integral

constraint for the normal velocity on ∂Ω is obtained.

Combining (2.18) with (2.16) yields

∇η · v(0)(η, ξ, t) = − 1

|Ω|

∫
∂Ω

v(0)(η, ξ, t) · n(η) dσ .
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2.3 Analysis of the asymptotic system

Thus, the divergence of v(0) is uniform in space and varies in time upon a volume

flux across the boundary of the system. Moreover, the momentum equation (2.17)

becomes

(h0v
(0))t + h0∇η · (v ◦ v)(0) + h0∇ηh

(2) = 0 .

As mentioned above, in the second regime the solution also has long wave compo-

nents. We will see that the analysis of this regime reveals an evolution equation for

h(1). The first result is obtained by integrating (2.16) over the ball B(0, ε−1). The

sub-linear growth condition for v(0) in η in conjunction with the divergence theorem

leads to

− 1

h0(t)

dh0

dt
(t) =

1

|B(0, ε−1)|

∫
∂B(0,ε−1)

v(0)(η, ξ, t) · n(η) dσ

= O
(
εd
)
· O
(
ε1−d

)
· O
(
ε−1
)

= O(1) as ε→ 0 .

Consequently, h0 is constant with respect to the time scale considered and

1

h0(t)

dh0

dt
(t) = 0 . (2.19)

When (2.19) is inserted into (2.16) we get the local divergence constraint

∇η · v(0)(η, ξ, t) = 0 .

To obtain information for the long wave components of the solution the asymptotic

equations (2.13)2 and (2.17) are averaged over the short space scale η in the limit

ε→ 0. For this reason let us define

w(i)
η

(ξ, t)� lim
ε→0

1

|B(0, ε−1)|

∫
B(0,ε−1)

w(i)(η, ξ, t) dη

for any asymptotic function w(i). Taking the average of the momentum equation

(2.17), the terms ∇η · (v ◦ v)(0) and ∇ηh
(2) vanish because of the sub-linear growth of
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2 Asymptotic Analysis

v(0) and h(2) in η. The equation becomes

(h0v(0))t

η

+ h0∇ξh
(1) = 0 . (2.20)

The application of the averaging procedure to the continuity equation (2.13)2 yields,

in conjunction with the independence of h(1) from η,

∂h(1)

∂t
+ h0∇ξ · v(0)

η

= 0 . (2.21)

Assuming now that the averaging can be interchanged both with differentiation in

time and with differentiation in the large space scale, (2.20) and (2.21) become

∂h(1)

∂t
+ h0∇ξ · v(0)

η

= 0

∂

∂t
v(0)

η

+∇ξh
(1) = 0 .

(2.22)

This is a linear system of differential equations with constant coefficients, from which

the evolution of h(1) can be computed. If the exchangeability of differentiation in

time and the large space scale holds for all t and ξ as well, we can finally combine

the two equations from above to get the wave equation

∂2h(1)

∂t2
− h0∆ξh

(1) = 0 .

This completes the asymptotic analysis of the shallow water equations in the zero

Froude number limit. Before the construction of the new scheme for the numerical

solution of the zero Froude number shallow water equations is presented, the results

for the first regime are summarized in the following section.

2.4 The zero Froude number limit

The equations, which are derived from (1.3) in the limit of a vanishing Froude number,

are identical to those obtained in the first regime. Hence, the zero Froude number
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2.4 The zero Froude number limit

shallow water equations are given by

ht + ∇ · (hv) = 0

(hv)t + ∇ · (hv ◦ v) + h∇h(2) = 0

h = h0(t) .

(2.23)

This system of equations is no longer hyperbolic, but of mixed elliptic-hyperbolic

type. An additional variable h(2) is introduced and the height is split into a time

dependent zero-gradient part h0 and a second order perturbation ε2h(2). Having

prescribed the normal velocity field on the boundary of the domain of integration,

i.e.

v(x, t) · n(x) = b(x, t) on ∂Ω ,

the change of height is given by

|Ω|dh0

dt
= −h0

∫
∂Ω

b dσ . (2.24)

If, on the other hand, (h0)t is prescribed, the above equation implies a condition for

the normal velocity field on the boundary of Ω. Integrating (2.23)1 over an arbitrary

volume V ⊂ Ω yields ∫
∂V

(hv) · n dσ = −|V |dh0

dt
. (2.25)

Thus, (2.25) in conjunction with the uniformity of h = h0 in space implies an integral

constraint for the velocity divergence in V .

We will see that the numerical scheme is constructed by solving a slightly different

system compared to (2.23) as a predictor for the flow field at the new time step. This

auxiliary system is given by

h∗t + ∇ · (hv)∗ = 0

(hv)∗t + ∇ ·
(

(hv ◦ v)∗ +
(h∗)2

2
I

)
= 0

(2.26)
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with the flux function

f∗(u∗(x, t),n(x)) =

(
h(v · n)

hv(v · n) + 1
2
h2 n

)∗
. (2.27)

The auxiliary system is hyperbolic and has the same convective fluxes as (2.23). The

eigenvalues of the Jacobian of the flux function f∗ are v∗ ·n and v∗ ·n±
√
h∗. Having

constant height h∗ and a velocity field v∗ with zero divergence at time t0, solutions

of (2.26) satisfy at time t0 + δt (cf. Appendix A.1)

∇ · v∗ = O(δt)

(h∗∇h∗) = O(δt2)

for δt→ 0.

Remark 2.1 System (2.26) can be interpreted as another system of shallow water

equations with Fr = 1. /
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3 The Numerical Scheme

In this chapter the new numerical scheme for the solution of the zero Froude number

shallow water equations is described. The basis is a semi-implicit method originally

proposed in Schneider et al. [1999] for the zero Mach number Euler equations.

Several modifications are proposed in order to improve the latter ones accuracy and

stability.

The scheme consists of two steps. First, the auxiliary system (2.26) is integrated

over one time step using a standard second order method for hyperbolic conservation

laws. In this step, predictions for the nonlinear convective flux components are cal-

culated. The next step consist of two projections of this flux, each of them involving

the solution of one Poisson-type equation for the height h(2). The solution of the

first equation is used to correct the predictions of the convective fluxes in order to

satisfy a discrete version of the divergence condition (2.25). In the second projection,

the additional non-convective components of the fluxes are computed. This correc-

tion guarantees that the discrete velocity field at the new time step satisfies another

discretization of (2.25).

In the original finite volume method, the unknowns are averages over control vol-

umes, and standard discretizations are used to solve the Poisson-type equations. The

description of this scheme concerning its application to the zero Froude number shal-

low water equations is given in the first section of this chapter. A new discretization

for the two elliptic corrections is introduced in Section 3.2. It is based on a finite

element formulation, in which h(2) is approximated by means of bilinear ansatz func-

tions. This approach involves the introduction of piecewise linear velocity distribu-

tions. The resulting scheme can be formulated as an approximate projection method

[cf. Almgren et al., 1996] as well as an exact method. Furthermore, additional

constraints on the gradient of the momentum components in each cell, which are

based on consistency considerations, are proposed in Section 3.3.
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3 The Numerical Scheme

3.1 Original projection method

The original numerical method rests on a divergence constraint on the velocity field,

which is derived in an asymptotic analysis of the low Mach number Euler equations.

This constraint is equivalent to the one that is obtained in the asymptotic analysis

in Chapter 2, and the scheme can be derived in a similar way for the zero Froude

number shallow water equations.

The asymptotic analysis demonstrates the singular behavior of the governing equa-

tions as Fr → 0. In the nondimensional equations this singularity is manifested in

an infinitely large gravity wave speed. Furthermore, the gradient of the height van-

ishes in the limit, but the term ∇h/Fr2 in (1.3) becomes ∇h(2), where h(2) is the

second order height perturbation from the asymptotic analysis. In addition to the

aforementioned divergence constraint, these characteristics have to be considered for

the construction of a numerical method for the solution of the zero Froude number

shallow water equations. The terms involving the propagation of gravity waves have

to be treated implicitly to allow a Courant-Friedrichs-Lewy (CFL) time step restric-

tion [Courant et al., 1928], which is dictated by the flow velocity.1 Besides the

spatially uniform background height, a second height variable has to be introduced

to account for the contributions of h(2).

3.1.1 Construction of the scheme

Throughout this work we assume a regular space discretization of the computational

domain Ω. In this discretization, the volume of a cell V is expressed as |V |, and two

neighboring cells are separated by an interface I with area |I| (cf. Figure 3.1). V and

I are defined as the collection of all cells and interfaces, respectively. We denote the

set of all interfaces, which are part of the boundary of a cell V , by I∂V ⊂ I.

For the construction of the method, a finite volume scheme in conservation form

is considered, i.e.

Un+1
V = Un

V −
δt

|V |
∑

I∈I∂V

|I| FI . (3.1)

1The CFL condition is a necessary condition for stability. It states that the numerical domain of
dependence has to contain the domain of dependence of the continuous partial differential equation.
See also LeVeque [2002, p. 68].
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3.1 Original projection method

In (3.1) Un
V is a numerical approximation to the average of the exact solution

u(x, t) of the problem over cell V at time tn:

Un
V ≈

1

|V |

∫
V

u(x, tn) dV , u(x, t)�

(
h

hv

)
.

FI approximates the average of the flux function

f(u(x, t),n(x))�

(
h(v · n)

hv(v · n) + h0 h
(2) n

)

of the zero Froude number shallow water equations. In this case, the average is taken

over one time step [tn, tn+1], with tn+1
� tn + δt, and over the interface I between

two cells, i.e.

FI(uI ,nI)�

(
h(v · n)

hv(v · n) + h0 h
(2) n

)
I

≈ 1

δt |I|

tn+1∫
tn

∫
I

f(u,n) dσ dt . (3.2)

We will refer to such an FI by using the term numerical flux. Addressing the

difficulties mentioned above, for the construction of a numerical flux we define the

following rules:

• FI is constructed using the fluxes of a standard finite volume scheme for hyper-

bolic systems;

• the interface velocities used in the numerical flux satisfy a discrete version of

the divergence constraint (2.25);

• for smooth solutions, the average of the exact flux is approximated by FI up

to errors of order O(δt2); and

• after each time step the divergence constraint is also satisfied by the new cell

velocities.

To achieve second order accuracy in time for the numerical fluxes, the integral

over [tn, tn+1] in (3.2) can be replaced by a suitable quadrature rule. Using the

midpoint rule, the integral is approximated by δt times the exact flux evaluated at

time tn+1/2
� tn + δt/2. Hence, the numerical scheme is motivated by integrating
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3 The Numerical Scheme

the zero Froude number shallow water system (2.23) in time, and by approximating

the time integral over the flux function with the mid point rule. This leads to the

semi-discrete equations

h(x, tn+1) = h(x, tn)− δt
[
∇ · (hv)(x, tn+1/2)

]
+O

(
δt3
)

(3.3)

and

(hv)(x, tn+1) = (hv)(x, tn)− δt
[
∇ · (hv ◦ v)(x, tn+1/2) +

(h0∇h(2))(x, tn+1/2)
]
+O(δt3) .

(3.4)

for δt → 0.2 The accuracy requirements for the numerical fluxes are satisfied, if we

compute second order accurate approximations of the values in the brackets after

half a time step.

Let us assume that appropriate approximations of the fluxes for the auxiliary

system (2.26) have been computed with initial height and velocity fields at time tn,

which are constant and divergence free, respectively. Using Taylor series expansion

of momentum and velocity about tn+1/2, leads to

(hv)(x, tn+1/2) = (hv)∗(x, tn+1/2)− δt

2
(h0∇h(2))(x, tn+1/4) +O

(
δt3
)

v(x, tn+1/2) = v∗(x, tn+1/2)− δt

2
∇h(2)(x, tn+1/4) +O

(
δt3
)

,

(3.5)

(cf. Appendix A.2). The variables with stars denote those of the auxiliary system.

Note that the second term on the right hand side of both equations could have

also been approximated at another time in the interval [tn, tn+1/2] to achieve second

order accuracy. This provides some flexibility in the interpretation of the associated

numerical variables, which are introduced in the next part.

In order to ensure that the interface velocities in the resulting numerical scheme

fulfill a discrete analogue of the divergence constraint (2.25), we impose this condition

at time tn+1/2 and insert our approximation of the momentum (3.5)1:

δt

2
∇ · (h0∇h(2))(x, tn+1/4) = ∇ · (hv)∗(x, tn+1/2) +

dh0

dt
(tn+1/2) +O

(
δt3
)

. (3.6)

2In the remaining discussion of this part, the investigated limit behavior is always δt → 0.
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3.1 Original projection method

This is a Poisson-type equation for h(2) and, by applying (3.5), the solution of this

problem can be used to compute both, the right hand side of (3.3) and the first term

in the brackets of (3.4).

The second term in (3.4) is computed by satisfying a discrete version of the diver-

gence constraint at the new time level as well. Let

(hv)∗∗(x)� (hv)(x, tn)− δt
[
∇ · (hv ◦ v)(x, tn+1/2)

]
(3.7)

be an intermediate momentum update. Then, the momentum at time tn+1 can be

expressed as

(hv)(x, tn+1) = (hv)∗∗(x)− δt (h0∇h(2))(x, tn+1/2) +O
(
δt3
)

. (3.8)

The divergence constraint is imposed once more at a half time step, but this time by

interpolating the divergence of the momentum with the values at the full time level.

This leads to

1

2

[
∇ · (hv)(x, tn+1) +∇ · (hv)(x, tn)

]
= −dh0

dt
(tn+1/2) +O

(
δt2
)

(3.9)

and, with the combination of (3.8) and (3.9), a second Poisson-type problem for h(2)

is obtained:

δt∇ · (h0∇h(2))(x, tn+1/2) = ∇ · (hv)∗∗(x) +∇ · (hv)(x, tn) +

2
dh0

dt
(tn+1/2) +O

(
δt2
)

.

(3.10)

Although h(2) could be interpreted as being calculated at a half time step in the

first elliptic problem (3.6), it has to be computed twice to obtain a zero divergence

velocity field at the new time level.

Hence, three problems have to be solved in the numerical scheme to obtain a

solution with the desired properties mentioned on page 25. First, the auxiliary system

is solved with a standard second order method for hyperbolic conservation laws. In

a following step, the fluxes of this system are corrected by solving the two elliptic

equations (3.6) and (3.10).
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3 The Numerical Scheme

3.1.2 Calculation of the numerical fluxes

To obtain a finite volume scheme in conservation form, the equations (3.3) and (3.4)

are integrated over a volume V of the given discretization. Then, by omitting the

higher order terms, the numerical fluxes FI are given by

FI = F∗I −
δt

2

(
h

n+1/4
0 ∇h(2) · n

(hv)∗∇h(2) · n + h
n+1/4
0 ∇h(2)v∗ · n

)
I

+ h
n+1/2
0

(
0

h(2)n

)
I

. (3.11)

In this formulation, F∗I is the numerical flux of the auxiliary system

F∗I(u
∗
I ,nI)�

(
h(v · n)

hv(v · n) + 1
2
h2 n

)∗
I

across the interface I. The interface values of momentum and velocity in (3.11) have

been replaced by

(hv)I = (hv)∗I −
δt

2
h

n+1/4
0 (∇h(2))I

vI = v∗I −
δt

2
(∇h(2))I ,

(3.12)

which represent approximations to the integral over I × [tn, tn+1] of momentum and

velocity. They are the discretizations of the semi-discrete equations (3.5). Note

that h(2) has actually two different meanings in (3.11): In the first brace it is the

solution of the first Poisson-type problem, while in the second brace it is the solution

of the second Poisson-type problem. Because we know that (h∗∇h∗) = O(δt2) (cf.

Appendix A.1), the approximation of the flux function (3.11) is accurate up to terms

of order O(δt2).

The computation of the numerical fluxes for the auxiliary system (2.26) is done

using an explicit high resolution upwind method for hyperbolic conservation laws

[van Leer, 1979]. In contrast to Schneider et al. [1999], our implementation

is based on a semi-discrete method with Runge-Kutta time stepping [Osher, 1985].

This approach is often referred to as the method of lines. The stability of the numer-

ical solution of the auxiliary system strongly depends on a CFL time step restriction

[Courant et al., 1928]. As mentioned in Section 2.4, the eigenvalues (characteris-

tic speeds) of this system do not depend on the Froude number. Thus, they are of
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3.1 Original projection method

order O(1) as Fr → 0, leading to δt = O(δx) on a regular discretization with grid

spacing δx.

After the computation of the F∗I , the values of (∇h(2))I can be derived with a

discrete version of the first Poisson-type equation (3.6), which has been obtained in

the previous section. The gradient is discretized at the interfaces with a linear rule

based on the yet unknown cell averages h
(2)
V :

∇h(2)|I � GVI (h
(2)
V ) = GVI (h

(2)
V )|I .

The operator GVI (h
(2)
V ) maps cell-centered values of the height to interface values of

its gradient vector field. The discrete Poisson-type problem is then obtained by the

integration of (3.6) over a volume V ∈ V . Using the divergence theorem, it can be

written as

δt

2

∑
I∈I∂V

|I|hn+1/4
0 GVI (h

(2)
V ) · nI =

∑
I∈I∂V

|I| (hv)∗I · nI + |V | dh0

dt
(tn+1/2) ∀V ∈ V .

(3.13)

Furthermore, a discrete divergence can be defined by

DI
V(·) : DI

V(aI)|V = DI
V (aI)�

1

|V |
∑

I∈I∂V

|I|aI · nI ∀V ∈ V , (3.14)

which is a linear mapping from vector fields of interface averages to scalar cell averages.

With this definition, the linear system of equations (3.13) can be written as

δt

2
DI
V

(
h

n+1/4
0 GVI (h

(2)
V )
)

= DI
V((hv)∗I) +

dh0

dt
(tn+1/2) . (3.15)

In the special case of the shallow water equations h0 can be taken out of the

divergence operator, because it only depends on time. The discrete gradient is defined

in such a way that the Laplacian DI
VG

V
I has compact stencil and that standard

iterative methods can be applied to solve (3.15). In the method by Schneider

et al. [1999], GVI andDI
V are defined to yield the standard five point finite differences
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3 The Numerical Scheme

Laplacian on a two dimensional Cartesian grid with constant grid spacing in both

coordinate directions (cf. Appendix B.1 and Figure 3.2). To obtain a well posed

problem, suitable boundary conditions have to be specified for (3.15). These are

discussed in the next part of this section.

With the solution of (3.15), the convective parts (hv · n)I and (hvv · n)I of the

numerical fluxes can be computed. This first correction is closely related to a MAC

projection [Harlow and Welch, 1965]. In contrast to the Euler equations, the

height h = h0 does not have to be updated in each cell, because it is constant in

space and uniquely defined by the boundary conditions through (2.24). To obtain

the final flux of the momentum equation, we still have to consider the contribution

of h(2), i.e. the last term of (3.11). In analogy to (3.7), intermediate cell averages of

the momentum are computed by

(hv)∗∗V � (hv)n
V −

δt

|V |
∑

I∈I∂V

|I|F ∗∗hv,I (3.16)

with the numerical flux

F ∗∗hv,I � F ∗hv,I −
δt

2

(
(hv)∗I G

V
I (h

(2)
V ) · nI + h

n+1/4
0 GVI (h

(2)
V ) v∗I · nI

)
. (3.17)

Note that, in general, the full velocity vector cannot be obtained from the numerical

fluxes of the auxiliary system. Thus, the interface values of the velocity in (3.17) are

interpolated on the basis of the cell averages

v∗I � LVI (v
∗
V) ,

in which LVI is a linear operator mapping cell centered vector fields to interface values.

Using (3.16), the momentum at the new time step is given by

(hv)n+1
V = (hv)∗∗V − δt

|V |
∑

I∈I∂V

|I|hn+1/2
0 h

(2)
I nI . (3.18)

An efficient way to compute the interface values h
(2)
I is to calculate h(2) in the grid

nodes and then to use a suitable quadrature rule. Thus, for the numerical solution
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Figure 3.1: Control volume V and interface I of the primary discretization and those (V̄
and Ī) of the dual discretization. Cell centers are denoted by circles, nodes
by squares and midpoints of the interfaces by crosses.

of (3.10) we introduce a dual discretization of the computational domain Ω. We

define V̄ to be the set of control volumes V̄ centered about nodes of the original

grid. Let Ī refer to interfaces between cells of V̄ , and Ī be the set of all such Ī (see

Figure 3.1). Using these notations, the quadrature rule for the calculation of an h
(2)
I

can be expressed by the linear operator LV̄I with

h
(2)
I � LV̄I (h

(2)

V̄ ) . (3.19)

The integration of (3.10) over V̄ ∈ V̄ , in conjuction with the divergence theorem,

yields

δt

|V̄ |

∫
∂V̄

(h0∇h(2)) · n dσ =
1

|V̄ |

∫
∂V̄

(hv)∗∗ · n dσ+

1

|V̄ |

∫
∂V̄

(hv)n · n dσ + 2
dh0

dt
(tn+1/2)

(3.20)

up to second order accuracy. This time, the integrals of (hv)n and (hv)∗∗ over the

interfaces of the dual discretization have to be approximated. These integrals have

to be computed from the cell averages of the primary discretization. Once again, a

linear quadrature rule

(hv)n
Ī � LVĪ ((hv)n

V) (3.21)
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is used, which maps cell averages to interface values of the dual discretization. The

resulting discrete divergence is then defined by

DV
V̄ (·) : DV

V̄ (aV)|V̄ = DV
V̄ (aV)�

1

|V̄ |
∑

Ī∈Ī∂V̄

|Ī|LVĪ (aV) · nĪ .

Consequently, an approximation of the gradient at the cell centers of the grid is

needed. This approximation has to be given in terms of the unknown node values of

h(2). Therefor, let us define the discrete gradient

GV̄V(·) : GV̄V(aV̄)|V = GV̄V (aV̄)�
∑

I∈I∂V

|I|
|V |

LV̄I (aV̄) nI , (3.22)

which maps node centered values to vector field averages of the primary discretization.

Using these definitions, the discrete version of the second Poisson-type problem (3.10)

for the unknowns h
(2)

V̄ can be written as

δtDV
V̄

(
h

n+1/2
0 GV̄V(h

(2)

V̄ )
)

= DV
V̄ ((hv)∗∗V ) +DV

V̄ ((hv)n
V) + 2

dh0

dt
(tn+1/2) . (3.23)

Also in this case, the linear operators LV̄I and LVĪ are defined in order to obtain a

discrete Laplacian DV
V̄G

V̄
V with compact stencil such that the linear system (3.23)

can be solved by standard iterative methods (cf. Appendix B.2 and Figure 3.2). A

discussion of the boundary conditions for this problem will be given in the next

section.

Using (3.18), the second flux correction is finally given by

(hv)n+1
V = (hv)∗∗V − δt h

n+1/2
0 GV̄V (h

(2)

V̄ ) . (3.24)

For flows without change in the background height h0, the last term of equation

(3.23) vanishes. In this case, an initially divergence free velocity field has also zero

divergence at the new time step. This is verified by the following lemma.

Lemma 3.1 Let us consider a velocity field at time tn, which has zero divergence in

the sense that DV
V̄ (vn

V) = 0. Assuming a constant background height (i.e. ∂th0 ≡ 0),

the velocity field at the new time step satisfies DV
V̄ (vn+1

V ) = 0 as well.
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Figure 3.2: Stencils of the original discrete Laplacians for the case δx = δy. First
projection (left) and second projection (right).

Proof. With the assumption that ∂th0 ≡ 0, equation (3.23) becomes

DV
V̄ ((hv)∗∗V ) +DV

V̄ ((hv)n
V)− δtDV

V̄

(
h

n+1/2
0 GV̄V(h

(2)

V̄ )
)

= 0 . (3.25)

Using the uniformity of hn = h0(t
n) in space, the height can be taken out of the

divergence in the second term of (3.25). Because the divergence of the remaining

velocity field is zero at time tn, the whole term vanishes and we obtain with (3.24)

0 = DV
V̄

(
(hv)∗∗V − δt h

n+1/2
0 GV̄V(h

(2)

V̄ )
)

= DV
V̄
(
(hv)n+1

V
)

= hn+1
0 DV

V̄
(
vn+1
V
)

. �

3.1.3 Initial and boundary conditions

The review of the original scheme is completed by a discussion of the initial and

boundary conditions. The former are essential for the solution of the auxiliary system,

while the latter are also needed for the solution of the two elliptic problems (3.15)

and (3.23).

Initial conditions

The asymptotic analysis of the zero Froude number equations reveals that the back-

ground height h0 is uniform in space. This condition also has to hold for the initial
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conditions. The divergence constraint (2.25) implies an analogous discrete condition

for the initial velocity field

v0
V �

(hv)0
V

h0(0)
,

which shall be given by

DV
V̄ (v0

V) = − 1

h0

dh0

dt

∣∣∣∣
t=0

∀ V̄ ∈ V̄ . (3.26)

Therefore, for a problem with no change in h0 we have to ensure that the initial

velocity field is divergence free in the sense of the discrete operator defined in (3.22).

Boundary conditions

Boundary conditions for finite volume schemes are constraints for the (numerical)

fluxes at the boundary of the domain. The numerical fluxes FI of the method

presented above are computed by the fluxes of the auxiliary system and by two

implicit corrections, which are given by the Poisson-type equations (3.15) and (3.23).

Thus, we have to formulate suitable boundary conditions for each of these three

problems to satisfy the boundary conditions for the whole problem consistently. We

restrict our discussion to periodic boundary conditions and rigid non-permeable walls.

Periodic boundary conditions for the whole system can be satisfied by imposing

them on all three flux components. For rigid walls on the boundary of the computa-

tional domain, the convective part of FI has to vanish. Thus, the numerical fluxes

of the auxiliary system have to satisfy

F∗I �

(
0

1
2
h2 n

)∗
I

∀ I ∈ Iw ,

where Iw is the collection of all interfaces at walls in the boundary. Let us remark

that

∇h(2)|I · nI � GVI (h
(2)
V ) · nI

has to be computed on all interfaces belonging to the boundary of the domain. By
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3.1 Original projection method

imposing the same boundary conditions for the velocity fields, i.e.

vI · nI = v∗I · nI ∀ I ⊂ ∂Ω ,

we obtain with (3.12)2

δt

2
(∇h(2))I · nI = (v∗I − vI) · nI = 0 ∀ I ⊂ ∂Ω .

This condition implies an integral constraint for the right hand side of equation (3.15)

for the solution h(2) to exist. The constraint is given by

∑
V ∈V

|V |DI
V (F ∗h,I) + |Ω| dh0

dt
= 0 .

Note that this is the discrete counterpart of (2.24) and specifies in which discrete

sense this constraint has to be satisfied.

In the second Poisson-type equation the unknown h(2) is defined on control volumes

centered around nodes of the given grid. Along the boundary, a part of these control

volumes is outside the domain of integration. We can solve this problem for periodic

boundary conditions, because on a regular Cartesian grid, each such volume corre-

sponds to a volume on the other side of the computational domain (cf. Figure 3.3).

Therefore, all control volumes of the dual discretization are in fact inside the domain

Ω.

In the case of rigid wall boundary conditions, the control volumes have to be

split by ∂Ω, and only the part inside Ω is used for the computation of the discrete

divergence field DV
V̄ . The normal derivatives

(h∇h(2))Ī · nĪ

and the scalar products

(hv)∗∗Ī · nĪ and (hv)n
Ī · nĪ

at the new boundaries Ī ⊂ ∂Ω are set to zero in (3.20), and the linear operator LVĪ
is modified to incorporate only cell averages inside the domain.
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Figure 3.3: Boundary conditions for the dual discretization: In the periodic case (top),
control volumes at opposite boundaries coincide. For rigid non-permeable
walls (bottom), the dual control volumes are split.

3.2 A new projection method

In the original scheme described above, the discrete gradient of the second projection

maps the values of the height perturbation at the four vertices of a cell into one

average value corresponding to this cell (cf. equation (B.1)). This discretization

produces a local decoupling, and the kernel of this gradient has a dimension greater

than one.3 In the following, a new projection method is introduced that is based on

a finite element formulation of the Poisson-type problem (3.10). This discretization

was originally introduced by Süli [1991], who proved stability and convergence of

the scheme in a mesh-dependent H1 norm.

Interpreting the cell averages of the original projection method as piecewise con-

stant functions on the primary grid, the main difference is that the discrete velocity

space is enriched with piecewise linear functions. The nodal values of the scalar

variable h(2) uniquely define a finite element space consisting of piecewise bilinear

functions on the primary grid cells, which are continuous over the whole domain.

3For example, on a Cartesian grid, in which the dual control volumes are denoted by V̄i+1/2,j+1/2,
a distribution of a scalar variable q with q|V̄i+1/2,j+1/2

= C1 for i + j even and q|V̄i+1/2,j+1/2
= C2

otherwise results in a zero gradient field.
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3.2 A new projection method

This type of discretization for the unknowns has been used before in similar appli-

cations [e.g. in Almgren et al., 1996]. It has the advantage that the continuous

gradient of the scalar variable is within the velocity space. However, in contrast to

the work mentioned above, we do not use a classical finite element formulation with

identical trial and test spaces. The problem is discretized as a Petrov-Galerkin finite

element method, using a test space with piecewise constant functions on the dual

discretization of the computational domain.

For the derivation of the new projection method, a Poisson problem with natural

(Neumann) boundary conditions is considered. These boundary conditions are moti-

vated by the analysis of rigid wall boundary conditions in the previous section. Thus,

we are interested in the solution of −∇ · ∇p = f in Ω

∂p

∂n
= 0 on ∂Ω

. (3.27)

Given f ∈ L2(Ω) with
∫

Ω
f dx = 0, this problem has a unique solution p ∈ H1(Ω)/R.

In the presented numerical scheme the right hand side f is of the type −∇ · v, with

a given velocity field v. Therefore, f is substituted with this term in the following

discussion.

The corresponding weak formulation is given by multiplying (3.27) with a test

function ψ and by integrating the new equation over the whole domain Ω. Thus, we

have to find p with ∫
Ω

ψ ∇ · ∇p dx =

∫
Ω

ψ ∇ · v dx ∀ψ . (3.28)

With the choice of piecewise constant functions for the test space, Green’s formula

cannot be used any longer. Instead, the divergence theorem is applied.

For further analysis, let us define the test space as

Qh
�

{
q ∈ L2(Ω) | ∀ V̄ ∈ V̄ : q|V̄ ∈ P0(V̄ )

}
,
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in which

Pk(U)�
{
p ∈ C∞(U)

∣∣∣ p(x, y) =
∑

i+j≤k
i,j≥0

cij x
i yj
}

(3.29)

is the space of polynomial functions of degree less than or equal to k on U ⊂ R2. A

basis of Qh is given by
⋃

V̄ ∈V̄{χV̄ }, whereby χV̄ is the characteristic function on the

cell V̄ .4 Thus, if ψ ∈ Qh, ψ has a volumewise representation

ψ(x, y) =
∑
V̄ ∈V̄

ψV̄ χV̄ (x, y) , (3.30)

and the discrete problem, corresponding to (3.28), is to find p ∈ Hh ⊂ H1(Ω), such

that ∑
V̄ ∈V̄

ψV̄

(∫
V̄

∇ · ∇p dx−
∫

V̄

∇ · v dx

)
= 0 ∀ψ ∈ Qh

with ψ as in (3.30). Furthermore, by applying the divergence theorem, the problem

can be rewritten as∑
V̄ ∈V̄

ψV̄

(∫
∂V̄

∇p · n dx−
∫

∂V̄

v · n dx

)
= 0 ∀ψ ∈ Qh . (3.31)

This problem is a linear combination of the local problems to find p ∈ Hh, such that∫
∂V̄

∇p · n dx−
∫

∂V̄

v · n dx = 0 ∀ V̄ ∈ V̄ , (3.32)

and the solution p satisfies (3.31), if and only if it satisfies (3.32).

The finite element spaces for the unknown p and the velocity v still have to be

defined. As mentioned above, v is approximated by linear functions on the control

volumes V ∈ V , i.e. it is in the space

Uh
�

{
v = (u, v) ∈ (L2(Ω))2 | ∀V ∈ V : u|V , v|V ∈ P1(V )

}
.

On a Cartesian grid, a function v ∈ Uh can be represented on a cell Vi,j by

v(x, y)|Vi,j
= vi,j + (x− xi)vx,i,j + (y − yj)vy,i,j ,

4I.e. χV̄ (x, y) = 1 if (x, y) ∈ V̄ , and 0 otherwise.
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3.2 A new projection method

in which vi,j is the cell average of v(x, y) and vx,i,j and vy,i,j are the partial derivatives

of v on Vi,j. These vector coefficients uniquely define an element of Uh.

Remark 3.1 An orthogonal decomposition of the space Uh can be given as follows.

For each v ∈ Uh, let us define its piecewise constant component as

v̄ �
∑
V ∈V

χV v̄V =
∑
V ∈V

1

|V |

∫
V

v dx

and the variation as

ṽ � v − v̄ .

For each cell, this implies that
∫

V
ṽ dx = 0 and that the two components are orthog-

onal in L2(Ω). /

The space of piecewise bilinear functions on V ∈ V , which are continuous at the

interfaces between control volumes, is given by

Hh
�

{
p ∈ H1(Ω) | ∀V ∈ V : p|V ∈ P2(V ),∀ I ∈ I : p|I ∈ P1(I)

}
.

Using this definition, an element of Hh can be written as

p(x, y) =
∑
V̄ ∈V̄

pV̄ ϕV̄ (x, y) ,

in which ϕV̄ are the standard basis functions for Hh. In our framework of a Carte-

sian grid, these functions are piecewise bilinear on each Vi,j and have node values

ϕV̄i+1/2,j+1/2
(xk+1/2, yl+1/2) = δikδjl (cf. Appendix C.1 and Figure 3.4). By definition of

the finite element spaces, ∇p · n and v · n are piecewise linear along the boundary

of V̄ . Therefore, the line integrals in (3.32) can be calculated analytically to obtain

a linear system for the unknown “vector” (pi+1/2,j+1/2).

Using a suitable normalization, the integrals in (3.32) define a discrete Laplacian

and a divergence of p and v on the dual discretization, respectively. Specifically, let

us define on a Cartesian grid for pV̄ ∈ Hh

LV̄V̄(·) : LV̄V̄i+1/2,j+1/2
(pV̄)�

1

|V̄i+1/2,j+1/2|

∫
∂V̄i+1/2,j+1/2

∇pV̄ · n dx (3.33)
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Figure 3.4: Bilinear basis function of the space Hh.

and for vV ∈ Uh

DVV̄(·) : DVV̄i+1/2,j+1/2
(vV)�

1

|V̄i+1/2,j+1/2|

∫
∂V̄i+1/2,j+1/2

vV · n dx . (3.34)

In these definitions, grid functions are identified with functions defined on the

whole domain Ω. The resulting stencil of the Laplacian is given in Figure 3.5. To

distinguish them from the original ones, a different font is used for the new operators.

Note again that the gradient of p ∈ Hh is in the space Uh. In particular, on a control

volume Vi,j of the primary discretization p can also be represented by

p(x, y)|Vi,j
= pi,j + (x− xi)px,i,j + (y − yj)py,i,j + (x− xi)(y − yj)pxy,i,j , (3.35)

in which pi,j is the mean value of p on Vi,j, and px,i,j, py,i,j and pxy,i,j are the partial

and mixed derivatives of p in (xi, yj), respectively. These values can be given in terms

of the nodal values of p (cf. Appendix C.2). Using this notation, the gradient of p is

given by

∇p(x, y)|Vi,j
=

(
px,i,j + (y − yj)pxy,i,j

py,i,j + (x− xi)pxy,i,j

)
,

and a discrete gradient operator is defined by

GV̄V(·) : GV̄Vi,j
(pV̄)� ∇p(x, y)|Vi,j

. (3.36)

These discrete operators satisfy LV̄V̄ = DVV̄(G
V̄
V) as well, which becomes evident through
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i

j

i + 1/2

j + 1/2−31/2

1/2

1/2

1/2

1/4 1/4

1/4 1/4

Figure 3.5: Stencil of the new discrete Laplacian for the case δx = δy.

a comparison of (3.33) and (3.34). For a uniform Cartesian grid in two space dimen-

sions, the particular formulas for LV̄V̄ , DVV̄ and GV̄V are given in Appendix C.2.

Remark 3.2 Using piecewise constant functions for the test space, the new projection

method could also be interpreted as a finite volume method. This fact is obvious from

the problem associated with (3.32). /

3.2.1 Approximate second projection

The original scheme is constructed using variables defined as cell averages of either

the primary or the dual discretization. This is in contrast to the new projection

outlined above, in which vector functions with piecewise linear variations on the

primary discretization are used. An easy way to embed the new projection into the

original scheme is given as follows. First, the new projection is applied to piecewise

constant functions, which represent the cell averages of the velocity field. The result

of this procedure is in Uh and not necessarily piecewise constant any more. Thus, the

vector field has to be projected back onto the space of piecewise constant functions.

From Remark 3.1 it follows that this procedure can be characterized as an exact

discrete projection onto the enriched velocity space Uh, followed by an orthogonal

(L2) projection onto the subspace of piecewise constant functions. Note that in this

case the divergence constraint is no longer exactly satisfied. However, we have an

analytic characterization of the “appoximateness” as well as the stability of the final

approximation [Almgren et al., 2000].
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The combination of the exact and the L2 projection can also be interpreted as

one projection, in which an “incorrect” gradient has been used at the end of the

procedure. This type of projection with a Laplacian being only an approximation

of D(G) is called an approximate projection and was first introduced in Almgren

et al. [1996].

In the case of a Cartesian grid, the new exact projection combined with the L2

projection can be implemented by using the new discretizations for the divergence

and the Laplacian, but the gradient of the original method. Thus, (3.23) and (3.24)

are modified, and with the solution of the discrete Poisson-type problem for h
(2)

V̄

δtDVV̄(h
n+1/2
0 GV̄V(h

(2)

V̄ )) = DVV̄((hv)∗∗V ) + DVV̄((hv)n
V) + 2

dh0

dt
(tn+1/2) , (3.37)

the momentum is corrected by

(hv)n+1
V = (hv)∗∗V − δt h

n+1/2
0 GV̄V (h

(2)

V̄ )

= (hv)∗∗V − δt h
n+1/2
0 GV̄V (h

(2)

V̄ ) .

(3.38)

Here, the bar denotes the L2 projection onto the space of piecewise constant functions.

The equality GV̄V = GV̄V is true, because the difference between the gradients is given by

the terms involving the mixed derivatives of the scalar variable. These are eliminated

by the L2 projection.

By the following lemma an upper bound for the “appoximateness” of the divergence

at the new time level can be given.

Lemma 3.2 Let h0 be uniform in space with no change in time. Furthermore, the

velocity field at time tn shall satisfy DVV̄(v
n
V) = 0. Then, the divergence of the momen-

tum at the new time level is controlled up to terms of order O(δt (δx2 + δy2)).

Proof. The momentum update (3.38) can be written as

(hv)n+1
V = (hv)∗∗V − δt h

n+1/2
0

[
GV̄V (h

(2)

V̄ )−
(
GV̄V −GV̄V

)
(h

(2)

V̄ )
]

.
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3.2 A new projection method

On a Cartesian grid, the second term in the brackets is given by

(
GV̄i,j −GV̄i,j

)
(h

(2)

V̄ ) =

(
y − yj

x− xi

)
h

(2)
xy,i,j ,

and (using Lemma 3.1) the divergence of the momentum at the new time level is

DVV̄i+1/2,j+1/2
((hv)n+1

V ) = DVV̄i+1/2,j+1/2

(
(hv)∗∗V − δt h

n+1/2
0 GV̄V(h

(2)

V̄ )
)

︸ ︷︷ ︸
=0

+

δt h
n+1/2
0 DVV̄i+1/2,j+1/2

((
GV̄V −GV̄V

)
(h

(2)

V̄ )
)

= δt h
n+1/2
0

(
δx2 + δy2

8 δx δy

)
·(

h
(2)
xy,i+1,j − h

(2)
xy,i,j − h

(2)
xy,i+1,j+1 + h

(2)
xy,i,j+1

)
= −δt δx

2

8
h

n+1/2
0 h

(2)
xxyy,i+1/2,j+1/2 + O

(
δt δx2

)
,

where δx2 is an abbreviation for (δx2 + δy2). �

Remark 3.3 Since (hv)∗∗V and (hv)n
V have no variation for V ∈ V, in the case of the

approximate projection described above, the new divergence reduces to the original

version described in Section 3.1. /

3.2.2 Exact second projection

To derive an exact projection method the piecewise linear functions for the momen-

tum have to be used throughout the whole scheme. In the semi-discrete implemen-

tation for the solution of the auxiliary system Heun’s method is applied for the

integration in time, i.e.

U∗,int = Un + δt f(Un)

U∗ = Un +
δt

2

(
f(Un) + f(U∗,int)

)
,
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where δt� tn+1−tn. This approach leads to second-order accuracy in time. To obtain

second-order accuracy in space as well, the cell average values in Un and U∗,int have

to be reconstructed as piecewise linear functions on each cell. The numerical fluxes

are then evaluated with the reconstructed values on the two sides of any particular

interface.

Therefore, the following modifications are applied to the original scheme to obtain

the new exact projection method. A new reconstruction step is introduced after

the first projection, which reconstructs piecewise linear functions from cell averages

of the intermediate momentum components (hu)∗∗V and (hv)∗∗V . The new projection

method is then applied to this vector field to obtain a final momentum distribution.

In the new time step, the gradients of the momentum components (hv)n+1
x,V are used

for the calculation of the numerical fluxes of the auxiliary system. The variation is

not only used for Un, but for U∗,int as well. This can be done, because a Taylor series

expansion yields

U∗,int
x,V = Un

x,V +O(δt) .

In this scheme Ux,V is always multiplied by δx to yield the numerical fluxes of the

auxiliary system. Therefore, the second order accuracy in space and time is retained.

Also for this projection method Lemma 3.1 is valid. Note that the reconstruction

procedure is no longer total variation diminishing (TVD), regardless of the limiter

function being used in the reconstruction of the previous time step.5

Besides the introduction of the new Poisson-type problem (3.37), the numerical

scheme is also modified in the final momentum update (3.24), in which the new

discrete gradient GV̄V has been used. It has to be stressed that this update not only

involves the cell mean values, but also the gradient within a cell. Thus, because of

the identity GV̄V = GV̄V , this update can be defined by the two equations

(hv)n+1
V = (hv)∗∗V − δt h

n+1/2
0 GV̄V (h

(2)

V̄ )

˜(hv)n+1
V = (̃hv)∗∗V − δt h

n+1/2
0

(
GV̄V −GV̄V

)
(h

(2)

V̄ ) .

(3.39)

In (3.39), the bar once again denotes the L2 projection onto the space of piecewise

5For a definition of TVD methods see LeVeque [2002, p. 109]
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constant functions, and the tilde denotes the projection onto the orthogonal comple-

ment (the linear portion). The final momentum is then given by

(hv)n+1
V = (hv)n+1

V + ˜(hv)n+1
V .

3.2.3 Application for the first projection

The finite element formulation presented above for the second projection can be

adapted for the first projection. However, the situation is slightly different in this case.

The trial spaces for the unknown and the velocity are spanned by piecewise bilinear

scalar functions and piecewise linear vector functions on the dual discretization. The

test functions are piecewise constant on primary control volumes. In order to correct

the convective part of the numerical fluxes, the gradient of the height h(2) has to be

integrated over the boundary of a control volume of the primary discretization. This

can be done analytically again, because the gradient of h(2) is piecewise linear on

control volumes of the dual discretization in this case.

3.3 Additional consistency considerations

The result of the piecewise linear reconstruction strongly depends on the particular

limiter function that has been selected. To avoid this arbitrariness, new rules for the

reconstruction based on additional consistency considerations are introduced in this

section. In particular, the divergence constraint (2.25) and the transport property

of the vorticity are employed to further control the gradients of the reconstructed

quantities.

Let us analyze the discretization of the new divergence (3.34) on a Cartesian grid

(cf. equation (C.1)). The application of this operator on a vector field includes

additional degrees of freedom, which enable us to modify the result of the second pro-

jection. For example, the divergence is not changed, as long as the partial derivatives

uy,i,j and vx,i,j within a cell Vi,j fulfill the condition

δy

δx
uy,i,j +

δx

δy
vx,i,j = Ci,j , (3.40)
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where Ci,j is a constant for each cell Vi,j. The values of ux,i,j and vy,i,j do not influence

the discrete divergence at all.

To control these values, the divergence constraint (2.25) could also be imposed

within each cell Vi,j, i.e.

∇ · v(x, t)|Vi,j
= ux,i,j + vy,i,j = − 1

h0(t)

dh0

dt
(t) .

Moreover, the evolution equation (1.4) for the vorticity ω � vx − uy can be reformu-

lated as
∂ω

∂t
+ v · ∇ω = −ω∇ · v .

Thus, in the zero Froude number case, the vorticity satisfies an advection equation

with a source term known from the boundary conditions. For the case of no flux

across the boundary, the vorticity is just an advected quantity.

To compute the advection of vorticity, we have to extend the numerical scheme

for the zero Froude number shallow water equations by an additional equation for

ω. Note that this equation is not independent of the continuity and momentum

equations, and the vorticity acts as a tracer. The auxiliary system has to be solved

with an additional tracer equation and the numerical flux F ∗ω,I has to be corrected

by the first projection. Thus, the vorticity in the new time step is computed by

ωn+1
V � ωn

V −
δt

|V |
∑

I∈I∂V

|I|Fω,I

with the numerical flux

Fω,I � F ∗ω,I −
δt

2

(
ω∗I G

V
I (h

(2)
V ) · nI

)
.

Here, we associate the vorticity with the one we obtain from the auxiliary system,

i.e. ωI = ω∗I . Because this variable cannot be obtained from the numerical fluxes in

general, we interpolate it on the basis of the cell averages:

ω∗I � LVI (ω
∗
V) .
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Equation (3.40) together with the advected vorticity yield for each cell a linear system

of two equations for the partial derivatives uy,i,j and vx,i,j. Therefore, these values are

uniquely defined. By using the additional restriction implied by the application of the

divergence constraint within a control volume as well, the only undefined quantity

remains to be

ux,i,j − vy,i,j .

Clearly, additional (evolution) equations could have also be derived for ux,i,j or vy,i,j.

However, the vorticity equation is characterized by its simplicity and the evolution of

vorticity is straight forward to compute. The divergence constraint naturally arises

in the zero Froude number limit of the shallow water equations and is easy to apply

as well.

47





4 Stability of the New Projection

In order to prove stability of our semi-implicit method, the stability of the second

projection step is an important prerequisite. This issue will be addressed in the

following discussion.

In the second projection, we compute the height perturbation h(2) to correct the

intermediate momentum update (hv)∗∗ in a post-processing step. Thus, h(2) is only

an auxiliary variable, and we are interested rather in the momentum at the new time

step. The associated Poisson-type problem is derived by imposing the additional re-

quirement that the momentum at the new time step shall satisfy a discrete version of

the divergence constraint (2.25). In the context of finite element methods, this leads

to the theory of saddle point problems, which arise from minimization problems with

additional side conditions. Starting with the fundamental work of Babuška [1971]

and Brezzi [1974], this theory provides conditions for existence and uniqueness of

solutions and for stable discretizations of such problems.

After having introduced the fundamental functional framework, we briefly present

and review basic formulations for the discretization of saddle point problems. This

discussion serves as a basis for providing an overview of the different approaches as

well as establishing the fundamental theoretical results on these methods. Further-

more, the discrete Poisson-type problem (3.37) is reformulated for the new projection

method as a generalized saddle point problem, which is the starting point for the

subsequent stability analysis. Existence and uniqueness are shown for the continu-

ous problem, and preliminary results concerning the stability of the new method are

given in the last part of this chapter.
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4.1 Approximation of saddle point problems

For the survey on saddle point problems and their approximation by finite element

methods, first the function spaces are introduced, which are needed for the analysis.

The notion of mixed and hybrid finite element formulations are motivated by deriving

them from the Poisson problem (3.27), and the necessary and sufficient conditions

for unique solvability of the continuous problem as well as for the stability of the cor-

responding discrete approximation are stated. Finally, we introduce a generalization

of such problems.

A thorough analysis of particular approximations of boundary value problems by

mixed and hybrid finite element methods can be found in Brezzi and Fortin [1991]

and Roberts and Thomas [1991]. For an introduction to mixed problems, the

reader is also referred to Brenner and Scott [1994, pp. 237–260] and Braess

[2003, pp. 123–162].

For simplicity it is always assumed that Ω is a bounded open subset of Rn, which is

connected and has a Lipschitz-continuous boundary ∂Ω. The theory of finite element

methods heavily benefits from the utilization of Sobolev spaces.1 These are based on

L2(Ω), the space of square integrable vector functions on Ω. The latter is defined by

L2(Ω)�

{
q
∣∣∣ ∫

Ω

|q(x)|2 dx < +∞
}

,

and a norm on this space is given by

‖q‖0,Ω �

(∫
Ω

|q(x)|2dx
)1/2

.

Then, the first order Sobolev space is

H1(Ω)�
{
q ∈ L2(Ω) | ∇q ∈ (L2(Ω))n

}
.

We put

|q|1,Ω �

(∫
Ω

|∇q(x)|2dx
)1/2

and ‖q‖1,Ω �

(
‖q‖2

0,Ω + |q|21,Ω

)1/2

,

1For the general definition of Sobolev spaces see Werner [2000, pp. 180, 193].
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which define a semi-norm and a norm on H1(Ω), respectively. Note that |·|1,Ω defines

a norm on the quotient space

H � H1(Ω)/R ,

in which functions are only uniquely defined up to an additive constant. We also

refer to spaces of vector valued functions. For this reason, let us introduce

H(div; Ω)� {v ∈ (L2(Ω))n | ∇ · v ∈ L2(Ω)} .

For a vector function v ∈ H(div; Ω) it is possible to define its normal component

on the boundary ∂Ω [Girault and Raviart, 1986, Chapter I, Theorem 2.5 and

Corollary 2.8], and the subspace with vanishing normal component on ∂Ω is denoted

by

U � H0(div; Ω) = {v ∈ H(div; Ω) | v · n = 0 on ∂Ω} .

These spaces are equipped with the Hilbertian graph norm

‖v‖div,Ω �

(
‖v‖2

0,Ω + ‖∇ · v‖2
0,Ω

)1/2

.

For v ∈ H(div; Ω) and q ∈ H1(Ω) the following Green’s formula is valid [Girault

and Raviart, 1986, p. 28]:∫
Ω

v · ∇q dx +

∫
Ω

q∇ · v dx =

∫
∂Ω

q v · n dσ .

4.1.1 Mixed and hybrid formulations

The theory of saddle point problems deals with minimization problems, which are

constrained by additional side conditions. We illustrate some basic examples by the

application of the Poisson problem (3.27) that has been introduced for the derivation

of the new projection. Before dealing with multi-field formulations, two single-field

formulations of the problem are introduced.
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Primal and dual single field formulations

Let us consider again the Poisson problem (3.27) with f ∈ L2(Ω) and
∫

Ω
f dx = 0.

Then, the solution p ∈ H of (3.27) is the unique minimizer of the energy functional

[Braess, 2003]:

p = inf
q∈H

J(q) with J(q)�
1

2

∫
Ω

|∇q|2dx−
∫

Ω

f q dx . (4.1)

Equivalently, p is characterized by the weak formulation∫
Ω

∇p · ∇q dx =

∫
Ω

f q dx ∀ q ∈ H . (4.2)

Problem (4.2) is often referred to as the primal weak formulation and the unknown

p as the primal unknown of problem (3.27).

It has been already pointed out that we are particularly interested in the variable

u � ∇p, rather than in p itself. Despite the possibility of calculating u from the

solution of the Poisson problem (3.27), u is also given by the minimization of the

so-called complementary energy functional. The minimization problem is given by

[Quarteroni and Valli, 1997]

u = inf
v∈Wf

I(v) with I(v)�
1

2

∫
Ω

|v|2dx , (4.3)

where

Wf
� {v ∈ U | ∇ · v + f = 0} .

The relationship between u and p is given by u = ∇p. Furthermore, u is referred

to as the dual unknown of problem (3.27) and is characterized by the dual weak

formulation ∫
Ω

u · v dx = 0 ∀v ∈ W0 . (4.4)

This formulation has the advantage that u is calculated as an independent variable

and that it exactly satisfies the divergence relation ∇ · u + f = 0. In general, this

relation cannot be fulfilled for a u, which has been numerically computed from the

solution of the primal formulation as a post-processed quantity. Furthermore, the
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latter procedure usually leads to numerical inaccuracies [Causin, 2002]. On the

other hand, it is often difficult to construct a basis for a discrete subspace of W0,

which would be needed for the discretization of problem (4.4). This difficulty will be

circumvented by the technique of Lagrangian multipliers.

Dual-mixed formulation

By relaxing the divergence constraint ∇ · u + f = 0, the minimization problem (4.3)

can be rewritten as a saddle point problem. For this reason, let us introduce the

Lagrange multiplier q ∈ L2(Ω). Then, the problem is given by

inf
v∈U

sup
q∈L2(Ω)

LDM(v, q)

with the Lagrangian

LDM(v, q)� I(v) +

∫
Ω

(∇ · v + f)q dx .

The unique saddle point (u, p) is characterized by the variational system
∫

Ω

u · v dx +

∫
Ω

p (∇ · v) dx = 0 ∀v ∈ U∫
Ω

(∇ · u + f)q dx = 0 ∀ q ∈ L2(Ω)
. (4.5)

Furthermore, (u, p) is the solution of (4.5) if, and only if, p is the solution of the

Poisson problem (3.27) [Causin, 2002]. The relation between the two unknowns is

again given by u = ∇p. We refer to (4.5) as the dual mixed formulation of the

Poisson problem.

Primal-hybrid formulation

Hybrid formulations are based on a partition Th of Ω̄ into disjoint subsets T . This

partition can be chosen independently of any discretization. In all cases, we deal

with variables which are defined either on the interior of each subdomain T or on

their boundary (hybrid variables).
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4 Stability of the New Projection

Given the partition Th, the energy functional of the primal formulation can be

written as

J(q) =
∑
T∈Th

(
1

2

∫
T

|∇q|2dx−
∫

T

f q dx

)
.

Moreover, with the partition Th, the space H can also be characterized as being a

subset of the “broken” space

Y � {q ∈ L2(Ω) | ∀T ∈ Th : q|T ∈ H1(T )} =
∏

T∈Th

H1(T ) ,

in which a function q ∈ H is characterized by

∑
T∈Th

∫
∂T

q (v · n) dσ = 0 ∀v ∈ U .

This constraint expresses the continuity of q at the interfaces between subdomains

of Th. The variable v · n may be interpreted as the Lagrange multiplier and the

minimization problem (4.1) can be replaced by

inf
q∈Y

sup
v∈U

LPH(q,v)

with the Lagrangian

LPH(q,v)�J(q)−
∑
T∈Th

∫
∂T

q (v · n) dσ .

Thus, we seek (p,u) ∈ Y × U , such that
∑
T∈Th

(∫
T

∇p · ∇q dx−
∫

∂T

q (u · n) dσ

)
=

∫
Ω

f q dx ∀ q ∈ Y∑
T∈Th

∫
∂T

p (v · n) dσ = 0 ∀v ∈ U
. (4.6)

Note that in this primal-hybrid weak formulation only the normal trace of the variable

u is uniquely defined. Therefore, (4.6) can be reformulated with the hybrid variable

µ � u · n, which represents the Lagrangian multiplier and is only defined on the

interfaces between the subdomains of Th.
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4.1 Approximation of saddle point problems

Of course, it is also possible to formulate primal-mixed and dual-hybrid meth-

ods for the Poisson problem (3.27). Here, the motivation was to present the basic

principles of the approximation of saddle point problems by finite element methods.

We conclude this part with a remark about the terminology regarding the methods

mentioned above.

Remark 4.1 Formulations derived from the minimization of the energy functional

J(q) are called primal, whereas methods which are based on the minimization of

I(v) are called dual. A mixed method is given in the case of saddle point problems,

when constraints are relaxed by the application of Lagrangian multipliers. If the

relaxation of constraints arises from a partitioning of the domain, the formulation is

called hybrid. /

4.1.2 Existence and uniqueness of solutions

The weak formulations given above can be written in a common general form. We

are always interested in finding the saddle point (u, p) ∈ X ×M, such that a(u, v) + b(v, p) = 〈f, v〉 ∀ v ∈ X

b(u, q) = 〈g, q〉 ∀ q ∈M
. (4.7)

In this formulation, X and M are two (real) Hilbert spaces with norms ‖·‖X and

‖·‖M. Furthermore,

a : X × X → R and b : X ×M→ R

are suitably defined bilinear forms. The linear functionals f and g are in the dual

spaces X ′ and M′, respectively, and 〈·, ·〉 denotes the dual pairing between a Hilbert

space and its dual. The stability and convergence properties of such problems are

given by the theory of saddle point problems, which originates from the work of

Babuška [1971] and Brezzi [1974].

To guarantee existence, uniqueness and stability for (4.7), both of the bilinear

forms a(·, ·) and b(·, ·) have to satisfy in a certain coercivity condition. In particular,
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4 Stability of the New Projection

a(·, ·) is coercive on the subspace

K � {v ∈ X | b(v, q) = 0 ∀ q ∈M} , (4.8)

if there exists a constant α > 0 with

a(v, v) ≥ α ‖v‖2
X ∀ v ∈ K .

Moreover, b(·, ·) satisfies the inf-sup condition, if there exists a constant β > 0, such

that

inf
q∈M

sup
v∈X

b(v, q)

‖v‖X ‖q‖M
≥ β > 0 . (4.9)

The following theorem can be stated [cf. Braess, 2003, Chapter III, Proposition 4.3].

Theorem 4.1 Let us assume that a(·, ·) and b(·, ·) are bounded on X ×X and X ×M,

respectively. Furthermore, let a(·, ·) be coercive on K and b(·, ·) satisfy the inf-sup

condition (4.9). Then, problem (4.7) has a unique solution (u, p) for all f ∈ X ′ and

g ∈M′. The solution satisfies the stability bound

‖u‖X + ‖p‖M ≤ c (‖f‖X ′ + ‖g‖M′) .

For the approximation by finite elements, appropriate finite dimensional subspaces

X h ⊂ X and Mh ⊂ M have to be chosen and (4.7) is reformulated with X h and

Mh instead of X and M. Therefore, we seek the solution (uh, ph) ∈ X h ×Mh, such

that  a(uh, vh) + b(vh, ph) = 〈f, vh〉 ∀ vh ∈ X h

b(uh, qh) = 〈g, qh〉 ∀ qh ∈Mh
. (4.10)

For the stability of problem (4.10), the discrete spaces X h and Mh cannot be chosen

independently from each other. They have to be compatible in some sense. This state-

ment is supported by the following theorem [Braess, 2003, Chapter III, Proposition

4.5].

Theorem 4.2 Let us assume that a(·, ·) is coercive with coercivity constant αh on the

subspace Kh ⊂ X h, analogously defined to (4.8). Furthermore, let b(·, ·) satisfy the

56



4.1 Approximation of saddle point problems

discrete inf-sup condition

inf
qh∈Mh

sup
vh∈Xh

b(vh, qh)

‖vh‖X ‖qh‖M
≥ βh > 0 . (4.11)

Then, (4.10) has a unique solution (uh, ph), which satisfies

‖uh‖X + ‖ph‖M ≤ ch (‖f‖X ′ + ‖g‖M′) ,

and stability is obtained, if the constant ch = ch(αh, βh) is independent of h. Addi-

tionally, the solution satisfies the error estimate

‖u− uh‖X + ‖p− ph‖M ≤ C

(
inf

vh∈Xh
‖u− vh‖X + inf

qh∈Mh
‖p− qh‖M

)
.

It is important to observe that the coercivity of a(·, ·) on K does not imply its

coercivity on Kh, since, in general, Kh * K. Likewise, the discrete inf-sup condition

for b(·, ·) is not necessarily implied by its continuous counterpart. This is due to the

fact that in the majority of cases X h is a proper subspace of X .

Remark 4.2 Condition (4.9) is often referred to as the Babuška-Brezzi compatibility

condition or as the Ladyzhenskaya-Babuška-Brezzi (LBB) condition. The discrete

condition (4.11) is also called the discrete LBB condition. However, these names are

not always employed in the same way. We will refer to (4.9) as the inf-sup condition

and to (4.11) as the discrete inf-sup condition, respectively. /

4.1.3 Generalized problems

The results of the preceding section can be easily extended to more general problems.

In particular, in the analysis of the new projection we will be interested in formula-

tions with three distinct bilinear forms instead of two. That is, find (u, p) ∈ (X2×M1),

such that  a(u, v) + b1(v, p) = 〈f, v〉 ∀ v ∈ X1

b2(u, q) = 〈g, q〉 ∀ q ∈M2 .
(4.12)
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4 Stability of the New Projection

In this formulation, Xi and Mi (i = 1, 2) are four Hilbert spaces with norms ‖·‖Xi

and ‖·‖Mi
. The bilinear form a(·, ·) is defined on X2 × X1 and the bilinear forms

bi(·, ·) are defined on Xi ×Mi (i = 1, 2). Furthermore, f and g are elements of X ′
1

and M′
2, the dual spaces of X1 and M2. The abstract theory of such problems is

given in Nicoläıdes [1982] and furtherly developed in Bernardi et al. [1988].

To obtain conditions for existence, uniqueness and stability of problem (4.12), let

us introduce for any g ∈M′
i (i = 1, 2) the closed affine spaces

Ki(g)� {v ∈ Xi | ∀ q ∈Mi : bi(v, q) = 〈g, q〉} .

We denote by Ki � Ki(0) the kernel of the operator induced by bi(·, ·).

Theorem 4.3 Let a(·, ·) and bi(·, ·) (i = 1, 2) be bounded. Assume that there exists a

constant α > 0, such that

inf
u∈K2

sup
v∈K1

a(u, v)

‖u‖X2
‖v‖X1

≥ α (4.13)

and

sup
u∈K2

a(u, v) > 0 ∀ v ∈ K1 \ {0} . (4.14)

Furthermore, assume that bi(·, ·) (i = 1, 2) satisfies the inf-sup condition

inf
q∈Mi

sup
v∈Xi

bi(v, q)

‖v‖Xi
‖q‖Mi

≥ βi > 0 . (4.15)

Then, problem (4.12) has a unique solution (u, p) for all f ∈ X ′
1 and g ∈M′

2 and the

following estimate holds:

‖u‖X2
+ ‖p‖M1

≤ c
(
‖f‖X ′

1
+ ‖g‖M′

2

)
. (4.16)

Remark 4.3 In case of finite-dimensional spaces K1 and K2, the conditions (4.13)

and (4.14) are equivalent to the requirement [Bernardi et al., 1988]

dimK1 = dimK2 . /
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4.2 Reformulation of the problem

For the discretization of problem (4.12), it is assumed that there are finite-dimensio-

nal subspaces X h
i ⊂ Xi and Mh

i ⊂ Mi (i = 1, 2). We are looking for the solution

(uh, ph) ∈ (X h
2 ×Mh

1) of the approximation a(uh, vh) + b1(ph, vh) = 〈f, vh〉 ∀ vh ∈ X h
1

b2(uh, qh) = 〈g, qh〉 ∀ qh ∈Mh
2

. (4.17)

With the definition of the discrete affine spaces

Kh
i (g)� {vh ∈ X h

i | ∀ qh ∈Mh
i : bi(vh, qh) = 〈g, qh〉} ,

in which g ∈ Mh
i
′
(i = 1, 2), Theorem 4.3 can be applied to problem (4.17), and

existence, uniqueness and stability are obtained given the constant c in (4.16) is

independent of h. Moreover, the following error estimate concerning the approximate

solution can be stated.

Theorem 4.4 Assuming that Theorem 4.3 holds for the continuous problem (4.12)

as well as for its approximation (4.17), the error is bounded by

‖u− uh‖X2
+ ‖p− ph‖M1

≤

C

(
inf

wh∈Kh
2 (g)

‖u− wh‖X2
+ inf

vh∈Xh
2

‖u− vh‖X2
+ inf

qh∈Mh
1

‖p− qh‖M1

)
.

(4.18)

This completes the review of finite element methods for the approximation of sad-

dle point problems. As we have seen, the different approaches all lead to a similar

abstract formulation, for which the theory can be applied. In the following, such a for-

mulation is derived for the new projection in order to analyze its stability concerning

the corrected momentum field.

4.2 Reformulation of the problem

The derivation of a mixed formulation equivalent to the Poisson-type problem (3.37)

is easily established. The continuous counterpart of this equation is obtained by a
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4 Stability of the New Projection

combination of the momentum update (3.8) and the divergence constraint (3.9), i.e.

(hv)n+1 = (hv)∗∗ − δt (h0∇h(2))

1

2

[
∇ · (hv)n+1 +∇ · (hv)n

]
= −dh0

dt
.

(4.19)

A variational formulation of these two equations is derived by the usual procedure:

(4.19)1 and (4.19)2 are multiplied with test functions ϕ and ψ and the resulting

equations are integrated over the whole domain Ω. This leads to

∫
Ω

(
(hv)n+1 ·ϕ + δt h0∇h(2) ·ϕ

)
dx =

∫
Ω

(hv)∗∗ ·ϕ dx

∫
Ω

ψ∇ · (hv)n+1 dx = −
∫
Ω

ψ

(
∇ · (hv)n + 2

dh0

dt

)
dx .

(4.20)

Note that this formulation can be already interpreted as a generalized problem as

formulated in (4.12). The discrete method – equivalent to the Poisson-type problem

(3.37) – is derived by introducing appropriate finite dimensional trial and test spaces.

For the choice of the trial spaces, we are confined to our selection for the momentum

(hv) and the height h(2) in Section 3.2. In the new projection method, the momentum

distribution is approximated by piecewise linear functions belonging to the space

Uh
�

{
v = (u, v) ∈ (L2(Ω))2 | ∀V ∈ V : u|V , v|V ∈ P1(V )

}
in which Pk(U) is the space of k-th order polynomials defined in (3.29). The height

perturbation h(2) is given by piecewise bilinear functions. This space was defined by

Hh
�

{
p ∈ H1(Ω) | ∀V ∈ V : p|V ∈ P2(V ),∀ I ∈ I : p|I ∈ P1(I)

}
.

To obtain the same divergence as in Section 3.2, also the test functions ψ for the
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4.2 Reformulation of the problem

second equation of (4.20) are fixed. As noted above, these functions span the space

Qh
�

{
q ∈ L2(Ω) | ∀ V̄ ∈ V̄ : q|V̄ ∈ P0(V̄ )

}
,

and a basis of Qh is given by
⋃

V̄ ∈V̄{χV̄ }. The selection of the test space for the first

equation is yet undetermined. Let us choose Uh, the space which is also used for the

momentum variable. A basis of Uh is given by

⋃
V ∈V

{(
χV

0

)
,

(
0

χV

)
,

(
(x− xV )χV

0

)
,

(
(y − yV )χV

0

)
,(

0

(x− xV )χV

)
,

(
0

(y − yV )χV

)}
,

(4.21)

where (xV , yV ) is the center of the cell V .

The following discussion is focused on Cartesian grids with cells Vi,j, i = 1, . . . ,m,

j = 1, . . . , n, and cell centers (xi, yj). Because of the linearity of the equations (4.20)

in ϕ and ψ, it is sufficient to “test” them with only a basis of Uh and Qh, respectively.

Let us consider the first equation in conjunction with the test function ϕ = (χVi,j
, 0)T .

Because the second component of ϕ is zero and its support is Vi,j, this yields∫
Vi,j

(hu)n+1 dx + δt h0

∫
Vi,j

∂h(2)

∂x
dx =

∫
Vi,j

(hu)∗∗ dx . (4.22)

Furthermore, by expanding the height h(2) in a volumewise representation, as in

(3.35), the calculation of the second integral in (4.22) leads to∫
Vi,j

∂h(2)

∂x
dx =

∫
Vi,j

(
h

(2)
x,i,j + (y − yj)h

(2)
xy,i,j

)
dx = δx δy h

(2)
x,i,j .

The integral of the second term vanishes, because it is an odd function in y with

respect to yj. With similar results for the other terms in (4.22), we finally obtain

(hu)n+1
i,j + δt h0 h

(2)
x,i,j = (hu)∗∗i,j . (4.23)
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4 Stability of the New Projection

By using the other five test functions in (4.21), this procedure yields the equations

(hv)n+1
i,j + δt h0 h

(2)
y,i,j = (hv)∗∗i,j

(hu)n+1
x,i,j = (hv)∗∗x,i,j

(hu)n+1
y,i,j + δt h0 h

(2)
xy,i,j = (hu)∗∗y,i,j

(hv)n+1
x,i,j + δt h0 h

(2)
xy,i,j = (hv)∗∗x,i,j

(hv)n+1
y,i,j = (hv)∗∗y,i,j .

(4.24)

Therefore, six equations are obtained for each cell Vi,j. They represent the discretiza-

tion of (4.20)1.

The discretization of the second equation in (4.20) is similar to the discretization

of the right hand side of the Poisson problem (3.28). The application of the test

function ψ = χV̄i+1/2,j+1/2
yields for the terms involving the momentum the discrete

divergence from Section 3.2 multiplied by |V̄i+1/2,j+1/2|. Thus, dividing this equation

by |V̄i+1/2,j+1/2| leads to

DVi+1/2,j+1/2

(
(hv)n+1

V
)

= −DVi+1/2,j+1/2((hv)n
V)− 2

dh0

dt
. (4.25)

Let us recall that h(2) is uniquely defined by its node values and that each velocity

component has three degrees of freedom per cell. Then there are 7 ·m ·n unknowns in

case of periodic boundary conditions. The analysis above yielded the same number of

linear equations, leading to a well-defined problem. Finally, by inserting the equations

from (4.23) and (4.24) into (4.25), the second discrete Poisson-type problem from

our new projection method is obtained. We have derived a Petrov-Galerkin mixed

formulation, which utilizes different trial and test spaces for the scalar variables.

Remark 4.4 The original second discrete Poisson-type problem (3.23) described by

Schneider et al. [1999] is obtained with the same procedure, but with the trial and
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4.3 Stability analysis of the mixed formulation

test spaces

Ũh
� {v = (u, v) ∈ (L2(Ω))2 | ∀V ∈ V : u|V ∈ P0(V ), v|V ∈ P0(V )} (4.26)

for the first equation in (4.20). Thus, essentially the space for the momentum variable

has been enriched by linear functions on the cells V ∈ V to obtain the new projection

method for the second discrete Poisson-type problem. /

In the primal-hybrid formulation derived in Section 4.1.1 the constraints on the

function space were relaxed by the introduction of the “broken” space Y . This leads

to a discretization, in which the discrete spaces are in general not contained in the

original continuous spaces.2 It will be outlined in the stability analysis of our mixed

formulation that also in our case some of the above defined spaces are not in their

continuous counterparts, leading to a nonconforming finite element method. Thus,

the possibility of formulating our discrete Poisson-type problem as a hybrid method

was investigated. However, under the given time constraints it was not possible to

find a suitable formulation. It remains to be analyzed, whether or not this is possible.

4.3 Stability analysis of the mixed formulation

In order to apply the theory from Section 4.1.3 to the mixed formulation (4.20), the

corresponding continuous problem is defined which can be shown to have a unique

solution. The section concludes with an investigation of the discrete mixed formula-

tion.

For the derivation of the continuous problem the function spaces for the trial

and test functions have to be chosen. In the Poisson-type problem (3.10) – the

continuous counterpart of (3.37) – the height perturbation h(2) is only determined up

to an additive constant. This constant can be fixed by the additional condition of a

zero mean value, i.e.
∫

Ω
h(2)dx = 0. Thus, a suitable space is given by the previously

defined H � H1(Ω)/R. An appropriate space for the momentum should also bound

the divergence of the unknown variable. Furthermore, the boundary conditions are

given by the integral constraint (2.25). For simplicity, let us assume, that there is

2See also [Causin, 2002] for further examples.
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4 Stability of the New Projection

no flux across the boundary, i.e. there are non-permeable rigid walls and dh0/dt ≡ 0.

Therefore, the momentum is sought in the space U = H0(div; Ω). The test functions

of the discrete problem are discontinuous at the interfaces either of the primal or of

the dual discretization. Therefore, no regularity is assumed for the test functions in

the continuous problem as well.

With the definition of the bilinear forms

a : U × (L2(Ω))2 → R with a(u,v) �

∫
Ω

u · v dx

b1 : (L2(Ω))2 ×H → R with b1(v, q) � δt h0

∫
Ω

v · ∇q dx

b2 : U × L2(Ω) → R with b2(v, q) �

∫
Ω

q (∇ · v) dx ,

(4.27)

problem (4.20) can be reformulated to obtain the following continuous saddle point

problem. Find ((hv)n+1, h(2)) ∈ (U ×H), such that

a
(
(hv)n+1,ϕ

)
+ b1

(
ϕ, h(2)

)
= 〈(hv)∗∗,ϕ〉 ∀ϕ ∈ (L2(Ω))2

b2
(
(hv)n+1, ψ

)
= 〈−∇ · (hv)n, ψ〉 ∀ψ ∈ L2(Ω) .

(4.28)

By setting X1 � (L2(Ω))2, X2 � U , M1 � H and M2 � L2(Ω) a problem of the

form (4.12) is defined. This formulation is also referred to as a primal-dual formula-

tion [Thomas and Trujillo, 1999]. In order to show existence and uniqueness of

the solution, the bilinear forms have to be bounded.

Lemma 4.5 Let a(·, ·), b1(·, ·) and b2(·, ·) be defined as above. Then, all three bilinear

forms are bounded.

Proof. Using the Cauchy-Schwarz inequality we obtain for arbitrary u ∈ U , v ∈
(L2(Ω))2

a(u,v) =

∫
Ω

u · v dx ≤
(∫

Ω

|u|2 dx
)1/2(∫

Ω

|v|2 dx
)1/2

≤ ‖u‖div,Ω ‖v‖0,Ω .
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4.3 Stability analysis of the mixed formulation

Similarly, it follows from v ∈ (L2(Ω))2, q ∈ H that

b1(v, q) ≤ δt h0

(∫
Ω

|v|2 dx
)1/2(∫

Ω

|∇q|2 dx
)1/2

= δt h0 ‖v‖0,Ω |q|1,Ω

and from v ∈ U , q ∈ L2(Ω) that

b2(v, q) ≤
(∫

Ω

(∇ · v)2 dx

)1/2(∫
Ω

q2 dx

)1/2

≤ ‖v‖div,Ω ‖q‖0,Ω . �

In the following, it is shown that the bilinear forms satisfy the assumptions of

Theorem 4.3, and therefore, problem (4.28) has a unique solution. For this purpose,

let us define the subspaces

K1 � {v ∈ (L2(Ω))2 | ∀ q ∈ H : b1(v, q) = 0}

K2 � {v ∈ U | ∀ q ∈ L2(Ω) : b2(v, q) = 0} .

These spaces can be characterized more precisely. An orthogonal decomposition of

(L2(Ω))2 is given by

(L2(Ω))2 = {v ∈ U | ∇ · v = 0} ⊕ {∇q | q ∈ H1(Ω)}

[Girault and Raviart, 1986, Chapter I, Theorem 2.7]. This is a generalization of

the Helmholtz-Decomposition-Principle, which states that every smooth vector field

can be uniquely decomposed into an irrotational (no vorticity) and a solenoidal (no

divergence) part. Thus, by the definition of b1(·, ·), K1 can also be written as

K1 = {v ∈ U | ∇ · v = 0} .

Furthermore, since ∇ · v ∈ L2(Ω) for all v ∈ H(div; Ω), the definition of the bilinear

form b2(·, ·) implies that the divergence also has to vanish for all functions in K2,

resulting in K1 = K2.

With this characterization of Ki (i = 1, 2) the identity ‖v‖div,Ω = ‖v‖0,Ω is obtained

for v ∈ Ki. Additionally, the following estimates can be derived. For each u ∈ K2,
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4 Stability of the New Projection

‖u‖0,Ω 6= 0, a(·, ·) satisfies

sup
v∈K1

a(u,v)

‖v‖0,Ω

≥ a(u,u)

‖u‖0,Ω

=
‖u‖2

0,Ω

‖u‖0,Ω

= ‖u‖div,Ω ,

and for v ∈ K1 \ {0} we obtain

sup
u∈K2

a(u,v) ≥ a(v,v) > 0 .

Therefore, the conditions (4.13) and (4.14) are satisfied.

Using the fact that p ∈ H implies ∇p ∈ (L2(Ω))2, leads to

sup
v∈(L2(Ω))2

b1(v, p)

‖v‖0,Ω

≥ b1(∇p, p)
‖∇p‖0,Ω

= δt h0 |p|1,Ω ,

which satisfies condition (4.15) for b1(·, ·).
The condition (4.15) for b2(·, ·) is established using the auxiliary problem to find

ϕq ∈ H1/R with ∆ϕq = q in Ω and ∂ϕq/∂ν = 0 on ∂Ω [cf. Roberts and Thomas,

1991]. For q ∈ L2(Ω),
∫

Ω
q dx = 0, this problem has a unique solution with |ϕq|1,Ω ≤

c ‖q‖0,Ω. The function vq � ∇ϕq belongs to H(div; Ω), which leads to ∇ · vq = q.

Additionally, vq fulfills

‖vq‖2
div,Ω =

∫
Ω

|vq|2 + (∇ · vq)
2 dx

= |ϕq|21,Ω + ‖q‖2
0,Ω

≤ C ‖q‖2
0,Ω .

Thus, b2(·, ·) satisfies the estimate

sup
u∈U

b2(u, q)

‖u‖div,Ω

≥ b2(vq, q)

‖vq‖div,Ω

≥
‖q‖2

0,Ω

C ‖q‖0,Ω

=
1

C
‖q‖0,Ω ,

and the following theorem can be concluded from the results above.

Theorem 4.6 The generalized saddle point problem (4.28) has a unique solution

((hv)n+1, h(2)) in (U ×H).
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4.3 Stability analysis of the mixed formulation

With the definition of the bilinear forms in (4.27), the mixed formulation derived

in Section 4.2 is to find ((hv)n+1, h(2)) ∈ (Uh ×Hh), such that

a
(
(hv)n+1,ϕ

)
+ b1

(
ϕ, h(2)

)
= 〈(hv)∗∗,ϕ〉 ∀ϕ ∈ Uh

b2
(
(hv)n+1, ψ

)
= 〈−∇ · (hv)n, ψ〉 ∀ψ ∈ Qh .

(4.29)

Note that the trial space Uh is not contained in its continuous counterpart U . The

use of common discrete subspaces of H(div; Ω) like Raviart-Thomas [Raviart and

Thomas, 1977] or BDFM elements [Brezzi et al., 1987], which restrict the degrees

of freedom by imposing additional constraints on the boundary of each element, is

unsuitable for our purposes. The piecewise linear versions of these spaces demand

continuity of the normal velocity components at the boundary of an element. This

is in contrast to the idea of solving Riemann problems in the predictor step of our

projection method. Therefore, the discrete problem (4.29) is an approximation using

nonconforming elements, and an error estimate like (4.18) would have to be modified

using a similar statement as the second Strang Lemma [Braess, 2003, Chapter III,

Proposition 1.2].

For the stability analysis of the mixed formulation, let us define the spaces

Kh
1 � {vh ∈ Uh | ∀ qh ∈ Hh : b1(vh, qh) = 0}

Kh
2 � {vh ∈ Uh | ∀ qh ∈ Qh : b2(vh, qh) = 0} .

The characterization of these spaces is slightly more complicated than it was for

their continuous counterparts. A preliminary analysis reveals that Kh
1 contains those

elements v ∈ Uh, which satisfy on Vi,j

ui,j = vi,j = 0 , δy2 uy,i,j = δx2 vx,i,j .

In Kh
2 , there are at least the elements v ∈ Uh with

ui,j = vi,j = 0 , uy,i,j = vx,i,j .
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4 Stability of the New Projection

This suggests an application of Remark 4.3, but it has to be further analyzed, if these

are the only functions contained in Kh
1 and Kh

2 , respectively.

Since this is a nonconforming finite element method, the H(div; Ω) norm is no

longer appropriate for the space Uh, and a suitable mesh dependent norm has to be

introduced [cf. Braess, 2003, p. 101]. Thus, the characterization of Kh
1 and Kh

2 and

the choice of the norm for Uh are the necessary requirements to show the conditions

(4.13) and (4.14) for the discrete case.

For the discrete inf-sup condition concerning b1(·, ·) the following can be stated.

It has been already pointed out that p ∈ Hh implies ∇p ∈ Uh. Thus, as in the

continuous case, we have for arbitrary p ∈ Hh

sup
v∈Uh

b1(v, p)

‖v‖0,Ω

≥ b1(∇p, p)
‖∇p‖0,Ω

=
δt h0 |p|21,Ω

|p|1,Ω

= δt h0 |p|1,Ω .

Note that, if our projection is considered as part of a time step method, δt goes to

zero as δx does, and the above inf-sup estimate is not independent of the grid size.

Here, δt h0 is assumed to be fixed.

Remark 4.5 A simple counter-example can be presented, which shows that the origi-

nal projection method does not satisfy condition (4.15) for b1(·, ·). Let us consider a

scalar function q ∈ Hh with

q(xi+1/2, yj+1/2) =

{
1 if i+ j is even,

−1 if i+ j is odd.

On Vi,j, this function is given by

q(x, y)|Vi,j
= ±(x− xi)(y − yj)

4

δx δy
.

For any v being in the space of piecewise constant functions (4.26), v is given on Vi,j
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4.3 Stability analysis of the mixed formulation

by v|Vi,j
� vi,j = (ui,j, vi,j), which leads to

b1(v, q) = δt h0

∑
i,j

∫
Vi,j

∇q · v dx

= δt h0

∑
i,j

(
± 4

δx δy

∫
Vi,j

(y − yj)ui,j + (x− xi)vi,j dx

)
= 0 ,

because the integral of both terms vanishes on Vi,j, regardless of the value of vi,j. /

The bilinear form b2(·, ·) acts on functions defined on the primary discretization

as well as on functions defined on the dual discretization, and therefore complicating

its analysis. A possible strategy for a prove of the discrete inf-sup condition (4.15)

is outlined as follows: Since each element of Qh has a volumewise representation as

given in (3.30), for ψ ∈ Qh and v ∈ Uh we can rewrite

b2(v, ψ) = b2

(
v,
∑
V̄ ∈V̄

ψV̄ χV̄

)
=
∑
V̄ ∈V̄

ψV̄ b2(v, χV̄ ) .

Then, (4.15) is clearly satisfied, if for each ψ ∈ Qh there exists a v ∈ Uh with

b2(v, χV̄ ) = ψV̄ . (4.30)

This leads to a linear system for ui,j, uy,i,j, vi,j and vx,i,j (i = 1, . . . , n; j = 1, . . . ,m)

that has to be analyzed in order to complete the prove.

Under the given time constraints a more profound analysis of the discrete problem

was not possible. However, we have successfully established a mixed formulation

equivalent to the second projection of the new scheme presented in Section 3.2. Using

this formulation for the stability analysis of the projection, existence and uniqueness

have been shown for the associated continuous saddle point problem. In the discrete

case, one out of four discrete conditions on the three bilinear forms (4.27) in the

formulation has been shown to hold.
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5 Numerical Tests and Simulations

To illustrate the performance of the new projection method, the results of two test

cases are presented. The main goal is to assess its accuracy and to compare it with

the original scheme which rests on standard discretizations. In the first case, the

second-order convergence of the method is demonstrated for smooth solutions. The

second test deals with the translation of a vortex. Furthermore, we verify that our im-

plementation is consistent with the theoretical estimate about the velocity divergence

of the approximate projection method, which has been derived in Section 3.2.1.

For both test cases the exact solution of the particular problem is known, and the

error of the numerical approximation can be computed. The computations are per-

formed on a uniform Cartesian grid with equal grid spacing δx = δy. The boundary

conditions are those discussed in Section 3.1.3. So far, we have only investigated the

case of constant background height h0 ≡ 1. Thus, in all calculations, the term dh0/dt

is set to zero. To start with initial data, which have zero divergence in the sense of

(3.26), the given values for the momentum are corrected by the solution of a Poisson

problem

DV
V̄

(
h0(0)GV̄i,j(h

(2),0

V̄ )
)

= DV
V̄

(
(hv)(x, y, 0)

Vi,j
)

for the initial height h
(2),0

V̄ . Here, (hv)
Vi,j

is the average of the exact solution (hv) on

Vi,j. The momentum distribution is then given by

(hv)0
i,j = (hv)(x, y, 0)

Vi,j − h0(0)G
V̄
i,j(h

(2),0

V̄ ) .

A similar procedure is used for the new projection method with the operators DVV̄
and GV̄V instead of DV

V̄ and GV̄V .

As mentioned earlier, the auxiliary system is solved using an explicit standard

second-order method for hyperbolic conservation laws. The stability of this method
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5 Numerical Tests and Simulations

strongly relies on a CFL time step restriction. In all the computations presented in

this chapter, a time step has been chosen, which is C = 0.8 times smaller than the

maximum allowed by the CFL condition.

The discrete divergence and gradient operators, which are used in the two ellip-

tic correction steps, are those given in the Appendices B.1 and B.2 for the original

projection method and in Appendix C.2 for the new projection method. The linear

systems for computing the height h(2) on the primary and on the dual discretiza-

tions are solved using the Bi-CGSTAB algorithm [van der Vorst, 1992]. In each

iteration, the Euclidean norm

‖aV‖2 �

(∑
V ∈V

a2
V

)1/2

(similarly for ‖aV̄‖2) of the residual vector

rP1

(
h

(2)
V

)
� DI

V((hv)∗I)−
δt

2
DI
V

(
h

n+1/4
0 GVI (h

(2)
V )
)

rP2

(
h

(2)

V̄

)
� DV

V̄ ((hv)∗∗V ) +DV
V̄ ((hv)n

V)− δtDV
V̄

(
h

n+1/2
0 GV̄V(h

(2)

V̄ )
)

is calculated. The algorithm is terminated when either this absolute value or the

ratio between the norm of the current residual and that of the initial residual is less

than 10−11.

5.1 Convergence studies

The first test case demonstrates the second-order convergence of numerical solutions

to the exact solution for smooth data. This test was originally proposed in Minion

[1996] and Almgren et al. [1998] for the incompressible flow equations. Here it

has been adapted for the zero Froude number shallow water equations.

For constant height h0 and an initial velocity distribution

u0(x, y) = 1− 2 cos(2πx) sin(2πy)

v0(x, y) = 1 + 2 sin(2πx) cos(2πy) ,
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5.1 Convergence studies

the exact solution of the zero Froude number shallow water equations is given by

u(x, y, t) = 1− 2 cos(2π(x− t)) sin(2π(y − t))

v(x, y, t) = 1 + 2 sin(2π(x− t)) cos(2π(y − t))

h(2)(x, y, t) = − cos(4π(x− t))− cos(4π(y − t)) .

The problem is solved on the unit square with (x, y) ∈ [0, 1] × [0, 1] and periodic

boundary conditions. The piecewise linear reconstruction of the momentum field

components is done using central differences with no slope limiter.

The numerical solution is computed on three different grids with 32× 32, 64× 64

and 128 × 128 cells. We start the calculation at t = 0, and the error vector in the

velocity eN with elements

eN
i,j �

∣∣∣u(x, y, tN)
Vi,j − uN

i,j

∣∣∣+ ∣∣∣v(x, y, tN)
Vi,j − vN

i,j

∣∣∣
is evaluated at time tN = 3. This corresponds to approximately 735, 1460 and

2900 time steps, respectively. Note that we could have also incorporated the linear

variation of the velocity on each cell in the error analysis of the new projection. We do

not choose this alternative in favor of a better comparison with the original method.

The global error is measured using the discrete L2 norm and the L∞ norm. These

are defined by

∥∥eN
∥∥

0
�

(∑
i,j

(
|Vi,j| eN

i,j

)2)1/2

and
∥∥eN

∥∥
∞ � max

i,j
{eN

i,j} .

We have summarized these error measures for the original projection method as

well as for the new approximate and the new exact projection methods in Table 5.1.

Additionally, the corresponding convergence rate γ is given, which is calculated by

γ �
log(

∥∥eN
c

∥∥ /∥∥eN
f

∥∥)
log(δxc/δxf )

. (5.1)

In this definition, eN
c and eN

f are the computed error vectors of the solution on the

coarse and the fine grid and δxc and δxf are the corresponding grid spacings. Clearly,
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Method Norm 32x32 Rate γ 64x64 Rate γ 128x128

original
projection

L2 0.292947 2.16 0.065641 2.16 0.014645

L∞ 0.420732 2.15 0.094521 2.18 0.020871

new approximate
projection

L2 0.292943 2.16 0.065641 2.16 0.014645

L∞ 0.420726 2.15 0.094521 2.18 0.020871

new exact
projection

L2 0.081603 2.64 0.013051 2.17 0.002898

L∞ 0.127741 2.45 0.023417 2.32 0.004687

Table 5.1: Errors and convergence rates for the original and the new projection method.

second order accuracy is obtained in the L2 as well as in the L∞ norm. Also note

that the absolute error obtained with the new exact projection is about four times

smaller than the one obtained with the original method.

Table 5.2 shows the same calculations for the computations, in which the piecewise

linear components of the velocity field are modified based on additional consistency

considerations (cf. Section 3.3). Second-order accuracy is also retained for these cases.

By solving an auxiliary equation for the vorticity field, similar results are obtained

as in the case, in which the new exact projection is applied without correction. This

is in contrast to the case, where the divergence constraint (2.25) is applied within

a cell. The latter procedure produces an error of the same order as for the original

projection.

Method Norm 32x32 Rate γ 64x64 Rate γ 128x128

vorticity correction
L2 0.070770 2.50 0.012498 1.94 0.003257

L∞ 0.107118 2.47 0.019346 2.08 0.004585

divergence
correction

L2 0.331333 2.11 0.076824 2.29 0.015671

L∞ 0.473625 2.11 0.109463 2.29 0.022382

both
corrections

L2 0.366079 1.82 0.103773 2.09 0.024291

L∞ 0.518214 1.82 0.146918 2.09 0.034472

Table 5.2: Errors and convergence rates for the new exact projection method with cor-
rection based on additional consistency considerations.
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5.2 Advection of a vortex

5.2 Advection of a vortex

Let us consider the advection of a vortex by a constant background flow. For the

implementation of this test case, originally proposed by Gresho and Chan [1990],

a rectangular domain with size [0, 4] × [0, 1] is examined. The domain has periodic

boundary conditions at the short sides and walls at the long sides. The initial condi-

tions are defined to be

u(x, y, 0) = 1− vθ(r) sin θ and v(x, y, 0) = vθ(r) cos θ ,

in which

vθ(r) =


5r vmax for 0 ≤ r < 1

5

(2− 5r) vmax for 1
5
≤ r < 2

5

0 for 2
5
≤ r

(5.2)

and

r =
√(

x− 1
2

)2
+
(
y − 1

2

)2
.

In equation (5.2) vmax is the maximum tangential velocity of the vortex. The height

h(2) must then satisfy the constraint ∂rh
(2) = v2

θ/r. This relationship is visualized in

Figure 5.1.
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Figure 5.1: Advection of a vortex: tangential velocity (solid red) and height profile
(dashed green) with respect to the distance r from the center of the vortex.
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The test is set up with vmax = 1 and background height h0 ≡ 1. The computa-

tional domain consists of 80 × 20 grid cells. Three different strategies for the linear

reconstruction of the components of the momentum variable are investigated. In

particular, we consider central differences (no limiter), the monotonized central dif-

ference (MC) limiter and Sweby’s limiter [Schulz-Rinne, 1993] with k = 1.8, the

latter being a convex combination of the minmod (k = 1) and the superbee limiter

(k = 2).

The results for the original scheme are given in Figure 5.2, in which the streamfunc-

tion of the velocity distribution is displayed at four different times of the simulation.
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Figure 5.2: Advection of a vortex at times t = 0, 1, 2 and 3 for the original method.
Contour lines of the streamfunction are shown at [-0.02, -0.04, . . . , -0.18]
starting from outside of the vortex. Top: unlimited slopes, middle: mono-
tonized central difference (MC) limiter, bottom: Sweby’s limiter (k = 1.8).
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5.2 Advection of a vortex

Similar to the results in Schneider et al. [1999] for the incompressible Euler equa-

tions, the core is advected almost along the center line of the channel. Also, the

vortex experiences a considerable deformation due to the coarse discretization we

have chosen for this test.

As in the convergence studies, the new exact projection method shows a significant

improvement in the numerical results for this test (cf. Figure 5.3). All reconstruction

strategies show less deviation from the center line of the channel than in the original

method. Furthermore, the loss in vorticity is slightly reduced. These features become

more evident in Figure 5.4, which shows the advected vortex at time t = 10 for the

case of unlimited slopes. The results of the new approximate projection method (not

shown) are comparable to the ones of the original projection.
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Figure 5.3: Same as Figure 5.2 for the new exact projection method.
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Figure 5.4: Advection of a vortex at time t = 10 for the original (left) and the new
exact projection method (right), unlimited slopes. Contour lines of the
streamfunction are shown at [-0.02, -0.03, . . . , -0.13].

Figure 5.5 presents the results, in which the outcome of the new second projection

is corrected based on the additional consistency considerations. For these cases, only

the computations with unlimited slopes are displayed. Using the advected vorticity as

a constraint on the piecewise linear velocity components, the vortex becomes highly

distorted and the maximum of the vorticity is increased (from initially 0.188 to 0.218

at time t = 3). Unlike the vorticity correction, the correction due to the application

of the divergence constraint within a cell does not affect the quality of the solution

in this case. The combination of both corrections mostly reproduces the behavior of

the computation in which only the advected vorticity was used for the correction.

5.3 Divergence of the new approximate projection

To verify the consistency of our implementation with Lemma 3.2 concerning the be-

havior of the velocity divergence in the approximate projection method, we reuse the

test case described in Section 5.1 for the convergence studies. This time, numerical

solutions for four different grids with 32 × 32, 64 × 64, 128 × 128 and 256 × 256

cells are computed on the unit square after one time step at t1. The initial velocity

field has been corrected using the original projection method. Note that this yields

a zero divergence field with piecewise constant vector functions in terms of the new

projection as well. The divergence of the resulting velocity field is measured with
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Figure 5.5: Same as Figure 5.2 for the new exact projection method with correction
based on additional consistency considerations, unlimited slopes. Top: vor-
ticity correction, middle: divergence correction, bottom: both corrections.
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Norm 32x32 Rate µ 64x64 Rate µ 128x128 Rate µ 256x256

L2 4.504e-05 3.84 3.152e-06 3.54 2.713e-07 3.45 2.474e-08

L∞ 1.839e-04 2.54 3.163e-05 2.84 4.418e-06 2.94 5.742e-07

Table 5.3: L2 and L∞ norm of the divergence in the new approximate projection method.
Additionally, the convergence rates µ for δx ∼ δt→ 0 are given.

the L2 and the L∞ norm, respectively. These values are given in Table 5.3. For the

estimation of how the divergence behaves for δx ∼ δt→ 0, the rates

µ�
log(‖∇ · v1

c‖ /
∥∥∇ · v1

f

∥∥)
log(δxc/δxf )

,

are calculated similarly to (5.1).

In both norms, the asymptotic behavior of the velocity divergence approaches third

order rates as the grid spacing goes to zero. This is consistent with the theoretical

results derived in Section 3.2.1.
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6 Discussion

In this thesis, we have introduced a new projection method for the zero Froude num-

ber shallow water equations. The method is based on the solution of two Poisson-type

equations using a Petrov-Galerkin finite element formulation with piecewise bilinear

ansatz functions for the unknown height variable. This discretization naturally leads

to a piecewise linear approximation for the velocity variable.

The following section provides a discussion about the specific properties of the two

different versions of the new projection method. In particular, the numerical results

from Chapter 5 are analyzed in more detail. The stability of the new projection

is discussed in Section 6.2, and directions for its further analysis are proposed. We

conclude this chapter with an outlook for possible future research paths on this topic.

6.1 Comparison of the different methods

The convergence test in Section 5.1 and the test about the advection of a vortex

in Section 5.2 reveal two major results. First, the approximate method, described

in Section 3.2.1, and the “original” scheme, which rests on standard discretizations

for the solution of the elliptic equations, yield almost indistinguishable results. By

the choice of an approximate method, no deteriorations could be observed in the

computational results. Second, the new projection method (cf. Section 3.2.2) shows

results with considerable improvements in the accuracy.

The numerical evidence is supported by the theoretical analysis of the new pro-

jection method. The discrete gradient of the new method does not result in a local

decoupling as described on page 36 for the original second projection. This was the

main motivation for the development of the new method. Further results have been

derived in the course of this work:

81



6 Discussion

It has been outlined, that the approximate projection can be also seen as an exact

projection followed by a L2 projection onto the space of piecewise constant vector

functions. This interpretation together with the upper bound for the divergence at

the new time level, given in Lemma 3.2, characterize the “approximateness” of the

method and show stability of the approximation compared to the outcome of the

exact projection. However, approximate projection methods have been also found to

produce poor results when applied to “difficult” problems [Almgren et al., 2000].

It has to be analyzed, what are the consequences of the unprecise control of the

discrete divergence in the case of the presented method. In the exact projection

method, the gradients of the momentum components, which are computed in the

second projection of the method, are used for the calculation of the numerical fluxes

of the auxiliary system at the new time level. This is done in order to obtain an exact

projection method, but with this ansatz, the TVD property of the reconstruction is

lost. This is a delicate issue, because it concerns the stability of the method for the

solution of the auxiliary system.

We have outlined in Section 3.2.3 that the discretization for the new projection can

be also used for the first projection of the method, yielding a unified discretization

for both Poisson-type problems. Furthermore, the linear systems associated with the

Poisson-type equations, can be solved with the same algorithms that are used for the

original discretizations. These facts support the application of the new discretization

instead of the old approach.

The numerical simulations, in which the additional consistency constraints were

imposed on the partial derivatives of the velocity components within a cell, show no

further improvement of the method. On the contrary, in the convergence test the

application of the divergence constraint within a cell deteriorates the quality of the

numerical solution, yielding a performance comparable to the original method (cf.

Table 5.2). In the second test, in which a vortex with discontinuous vorticity distri-

bution is advected, the results are considerably worse, when the advected vorticity

constraints the reconstruction (cf. Figure 5.5). These results do not allow to draw

clear-cut conclusions and the approach has to be further analyzed. The outcome of

the second test case with correction based on the vorticity equation might be due

to a poor representation of the vorticity advection. This is supported by the result
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of another simulation, in which the gradients within a cell were corrected using the

analytically derived vorticity (not shown), and that resulted in considerably better

results.

6.2 The question of stability

The numerical results presented in Chapter 5 suggest that the new numerical method

is stable and converges towards smooth solutions of the zero Froude number limit of

the shallow water equations with second order accuracy. Of course, we would like

to prove that this is indeed the case. For this, some form of stability is needed. In

this thesis, we propose a formulation of the stability problem by deriving a mixed

Petrov-Galerkin finite element formulation (cf. equation (4.28)), which is equivalent

to the Poisson-type problem (3.23) of our semi-implicit method. Using the theory

of Nicoläıdes [1982], we have proven that the associated continuous saddle point

problem has a unique solution. To do this, three inf-sup conditions (and one addi-

tional condition for a(·, ·)) have been derived for the bilinear forms a(·, ·) and bi(·, ·)
(i = 1, 2), given in (4.27).

The finite element spaces that have to be used for the discrete mixed formulation,

lead to a nonconforming method, and thus complicating the convergence analysis. In

the stability analysis, only the inf-sup condition for the bilinear form b1(·, ·) could

be proven. The conditions on a(·, ·) and the inf-sup condition on b2(·, ·) have to

be further investigated. For the condition on a(·, ·), the subspaces Kh
1 and Kh

2 have

to be specified. A possible solution for this purpose is to follow Micheletti and

Sacco [2001], who have formulated a discrete Helmholtz decomposition principle

for a similar generalized saddle point problem. This approach leads to the same

argumentation that has been used in the proof for existence and uniqueness of our

continuous saddle point problem. Furthermore, since the discrete finite element space

for the momentum is not contained in the function space, which has been used in

the continuous problem (i.e. Uh * U), a suitable mesh dependent norm has to be

defined on Uh. Because the second projection of the original method, interpreted as

a mixed formulation, turned out to be unstable in this analysis (cf. Remark 4.5), we

consider the new projection to be more stable.
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6 Discussion

Other approaches have been investigated in order to find an appropriate formula-

tion equivalent to the Poisson-type problem (3.37). Following Causin [2002], it was

attempted to use the technique of hybrid finite element methods. These were used

to relax the constraints implied by the continuous function spaces and to obtain a

formulation with piecewise linear functions for the discrete momentum components.

In contrast to Causin, who investigated only one discretization, our problem is based

on a primary discretization, which consists of the cells of the given grid, as well as a

dual discretization with node centered control volumes, making it difficult to adapt

the approach for our purposes.

6.3 Conclusion and future research prospects

The new semi-implicit projection method yields significant accuracy enhancements

compared to the original scheme. Both, the numerical results as well as the theoretical

analyses suggest that the new method has better stability properties. The mixed

finite element formulation that we have derived, provides the necessary analytical

framework for a stability proof.

The applied test cases were straightforward, and in the future the behavior of the

method in more complex simulations has to be tested. For the stability analysis of

the method, also other approaches should be considered. The finite element space for

the approximation of the velocity variable is based on local ansatz functions, whose

support is only one grid cell. This approach is also utilized in discontinuous Galerkin

and interior penalty methods [see e.g. Arnold et al., 1998]. It would be interesting

to apply analyses derived for these methods to our approach.

Besides a stability and convergence proof of the new method, there are several

other open research paths. An extension of the scheme to the low Froude number

regime is certainly desirable. Such a method would be capable of computing free-

surface waves on the ocean. Similar extensions have been proposed by Le Mâıtre

et al. [2001] and for the weakly compressible (low Mach number) Euler equations

by Geratz [1997], Munz et al. [2003] and recently by Klein and Geratz [2004].

To explicitly account for the results of the asymptotic analysis from Chapter 2, we

suggest to consider the application of multigrid methods in such an approach.
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6.3 Conclusion and future research prospects

Another possible research direction concerns the piecewise linear ansatz functions

of the velocity space in the second projection of our scheme. The proposed exact

projection method consists of a Godunov-type finite volume solver for the solution

of the auxiliary system and the initial gradients are determined by a reconstruction

based on local cell averages. We proposed two approaches to account for the evolu-

tion of the gradients in Section 3.3. Similar ideas are also pursued in discontinuous

Galerkin methods for convection dominated problems [see e.g. Cockburn, 1999],

and it would be worthwhile to study these approaches in order to improve the new

scheme.

Currently, our method is only formulated for Cartesian grids. For the application

of the scheme to realistic geometries, the scheme should be extended to more general

grids (e.g. triangulations). The finite element formulation of the second projection

promises to be a first step into this direction, because its formulation is more flexible.

An equivalent version for a discretization consisting of triangular elements might

consist of piecewise linear instead of piecewise bilinear elements for the unknown

h(2).
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Appendix A

The Role of the Auxiliary System

A.1 Error of the predicted variables

Let us assume that (h,v)∗(x, t0 + δt) is a smooth solution of the auxiliary system

(2.26) with initial values (h,v)∗(x, t0). With the additional constraints

∇ · v∗(x, t0) = 0 and ∇h∗(x, t0) = 0

it follows that

h∗t (x, t0) = −∇ · ((hv)∗(x, t0))

= −h∗(x, t0) ∇ · v∗(x, t0)︸ ︷︷ ︸
=0

−v∗(x, t0) · ∇h∗(x, t0)︸ ︷︷ ︸
=0

= 0 .

Expanding v∗(x, t) and h∗(x, t) about t0 yields

∇ · v∗(x, t0 + δt) = ∇ ·
(
v∗(x, t0) + δtv∗t (x, t0) +O

(
δt2
))

= O(δt)

and

∇h∗(x, t0 + δt) = ∇
(
h∗(x, t0) + δt h∗t (x, t0) +O

(
δt2
))

= O
(
δt2
)

.

Finally, from h∗(x, t) = O(1) we obtain

(h∗∇h∗)(x, t0 + δt) = O
(
δt2
)

. (A.1)
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Appendix A The Role of the Auxiliary System

A.2 Relationship to the unknown variables

If the zero Froude number shallow water equations (2.23) are applied to the same

flow field as the auxiliary system, the difference between the changes in momentum

is

((hv)t − (hv)∗t )(x, t0) = −(h∇h(2))(x, t0) . (A.2)

Similarly we get for the difference between the changes of the velocity fields

(vt − v∗t )(x, t0) = −∇h(2)(x, t0) . (A.3)

To obtain a representation of the momentum at a half time step t0 + δt/2, a Taylor

series expansion of (hv) and (hv)∗ is performed about (x, t0 + δt/2):

(hv)(x, t0 + δt
2
) = (hv)(x, t0) +

δt

2

∂

∂t
(hv)(x, t0) +

δt2

8

∂2

∂t2
(hv)(x, t0) +O

(
δt3
)

(hv)∗(x, t0 + δt
2
) = (hv)∗(x, t0) +

δt

2

∂

∂t
(hv)∗(x, t0) +

δt2

8

∂2

∂t2
(hv)∗(x, t0) +O

(
δt3
)

Using (A.2), the combination of these two expansions yields

(hv)(x, t0 + δt/2) = (hv)∗(x, t0 + δt/2)− δt

2
(h∇h(2))(x, t0)

−δt
2

8

(
∂

∂t
(h∇h(2))(x, t0)

)
+O

(
δt3
)

.

Finally, another Taylor series expansion of (h∇h(2)) about (x, t0) yields

(hv)(x, t0 + δt/2) = (hv)∗(x, t0 + δt/2)− δt

2
(h∇h(2))(x, t0 + δt/4) +O

(
δt3
)

.

The same procedure applied to the velocities of the two systems together with (A.3)

leads to

v(x, t0 + δt/2) = v∗(x, t0 + δt/2)− δt

2
∇h(2)(x, t0 + δt/4) +O

(
δt3
)

.
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Appendix B

Discretization of the Original

Projections

The discrete gradients and divergences of the two projections from Section 3.1 are

given for a two-dimensional Cartesian grid with constant grid spacings δx and δy.

B.1 First projection

The double index (i, j) is used to refer to a cell value, while the indices (i + 1/2, j)

and (i, j + 1/2) are used for interface values between the cells (i, j)-(i + 1, j) and

(i, j)-(i, j + 1), respectively. In the original first projection, the gradient GVI is given

by

GVIi+1/2,j
(pV)�


pi+1,j − pi,j

δx
pi,j+1 − pi,j−1 + pi+1,j+1 − pi+1,j−1

4δy


and

GVIi,j+1/2
(pV)�


pi+1,j − pi−1,j + pi+1,j+1 − pi−1,j+1

4δx
pi,j+1 − pi,j

δy

 .

According to (3.14), the discrete divergence DI
V is defined as

DI
Vi,j

(vI)�
ui+1/2,j − ui−1/2,j

δx
+
vi,j+1/2 − vi,j−1/2

δy
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Appendix B Discretization of the Original Projections

with vI � (uI , vI). With these definitions DI
VG

V
I is the standard 5-points Laplacian

(cf. Figure 3.2)

DI
Vi,j

(
GVI (pV)

)
�

pi+1,j − 2pi,j + pi−1,j

δx2
+
pi,j+1 − 2pi,j + pi,j−1

δy2
.

B.2 Second projection

Additionally to the notation from the previous section the double index (i+1/2, j+1/2)

is used for node values. The indices (i + 1, j + 1/2) and (i + 1/2, j + 1) are used for

interface values of the dual discretization, which are between the control volumes

(i+ 1/2, j + 1/2)-(i+ 3/2, j + 1/2) and (i+ 1/2, j + 1/2)-(i+ 1/2, j + 3/2), respectively. The

linear operators LV̄I (pV̄) from (3.19) and LVĪ (vV) from (3.21) are defined as follows

LV̄Ii+1/2,j
(pV̄) �

1

2

(
pi+1/2,j+1/2 + pi+1/2,j−1/2

)
LV̄Ii,j+1/2

(pV̄) �
1

2

(
pi−1/2,j+1/2 + pi+1/2,j+1/2

)
LVĪi+1,j+1/2

(vV) �
1

2
(vi+1,j+1 + vi+1,j)

LVĪi+1/2,j+1
(vV) �

1

2
(vi,j+1 + vi+1,j+1) .

With these definitions the discrete gradient GV̄V is defined by

GV̄Vi,j
(pV̄) =


LV̄Ii+1/2,j

(pV̄)− LV̄Ii−1/2,j
(pV̄)

δx

LV̄Ii,j+1/2
(pV̄)− LV̄Ii,j−1/2

(pV̄)

δy



=


pi+1/2,j+1/2 − pi−1/2,j+1/2 + pi+1/2,j−1/2 − pi−1/2,j−1/2

2δx
pi+1/2,j+1/2 − pi+1/2,j−1/2 + pi−1/2,j+1/2 − pi−1/2,j−1/2

2δy

 .

(B.1)
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B.2 Second projection

The divergence DV
V̄ is

DV
V̄i+1/2,j+1/2

(vV) =
LV

Īi+1,j+1/2
(uV)− LV

Īi,j+1/2
(uV)

δx
+
LV

Īi+1/2,j+1
(vV)− LV

Īi+1/2,j
(vV)

δy

=
ui+1,j+1 − ui,j+1 + ui+1,j − ui,j

2δx
+
vi+1,j+1 − vi+1,j + vi,j+1 − vi,j

2δy
.

With the above definitions DV
V̄ (GV̄V(pV̄)) is the standard 9-points Laplacian

DV
V̄i+1/2,j+1/2

(
GV̄V (pV̄)

)
=

1

4

δx2 + δy2

δx2δy2
ai+1/2,j+1/2 −

1

2

δx2 − δy2

δx2δy2
bi+1/2,j+1/2 ,

where

ai+1/2,j+1/2 � pi+3/2,j+3/2 + pi−1/2,j+3/2 + pi−1/2,j−1/2 + pi+3/2,j−1/2 − 4pi+1/2,j+1/2

bi+1/2,j+1/2 � pi+3/2,j+1/2 − pi+1/2,j+3/2 + pi−1/2,j+1/2 − pi+1/2,j−1/2 .

For δx = δy, the second term on the right hand side of the discrete Laplacian

disappears and the stencil of DV
V̄ (GV̄V(pV̄)) reduces to a 5-points diagonal stencil (cf.

Figure 3.2).
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Appendix C

The New Projection

C.1 Basis functions for the scalar trial space

An element of Hh can be written as

p(x, y) =
∑
V̄ ∈V̄

pV̄ ϕV̄ (x, y)

in which ϕV̄ is a basis for this discrete finite element space given by (cf. Figure 3.4)

ϕV̄i+1/2,j+1/2
=



(x− xi−1/2)(y − yj−1/2)

for (x, y) ∈ [xi−1/2, xi+1/2[×[yj−1/2, yj+1/2[ ,

(y − yj−1/2)− (x− xi−1/2)(y − yj−1/2)

for (x, y) ∈ [xi+1/2, xi+3/2[×[yj−1/2, yj+1/2[ ,

(x− xi−1/2)− (x− xi−1/2)(y − yj−1/2)

for (x, y) ∈ [xi−1/2, xi+1/2[×[yj+1/2, yj+3/2[ ,

1− (x− xi−1/2)− (y − yj−1/2) + (x− xi−1/2)(y − yj−1/2)

for (x, y) ∈ [xi+1/2, xi+3/2[×[yj+1/2, yj+3/2[ ,

0 elsewhere.
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Appendix C The New Projection

C.2 Discretization of the new projection

With the same notation as for the original method, the discretization of the operators

in the new projection is given in the following. Only, the case for the second projection

is given. The operators for the first projection are derived by shifting the indices by

one half. Let us define

px,i,j �
1

δx

(
pi+1/2,j+1/2 − pi−1/2,j+1/2 + pi+1/2,j−1/2 − pi−1/2,j−1/2

)
py,i,j �

1

δy

(
pi+1/2,j+1/2 − pi+1/2,j−1/2 + pi−1/2,j+1/2 − pi−1/2,j−1/2

)
pxy,i,j �

1

δx δy

(
pi+1/2,j+1/2 − pi−1/2,j+1/2 − pi+1/2,j−1/2 + pi−1/2,j−1/2

)
.

The discrete gradient GV̄V is then given by

GV̄Vi,j
(pV̄) =

 px,i,j

py,i,j

+

 y − yj

x− xi

 pxy,i,j .

The divergence DVV̄ is defined by

DV
V̄i+1/2,j+1/2

(vV) =
1

2 δx
(ui+1,j+1 − ui,j+1 + ui+1,j − ui,j) +

δy

8 δx
(−uy,i+1,j+1 + uy,i,j+1 + uy,i+1,j − uy,i,j) +

1

2 δy
(vi+1,j+1 − vi+1,j + vi,j+1 − vi,j) +

δx

8 δy
(−vx,i+1,j+1 + vx,i+1,j + vx,i,j+1 − vx,i,j) .

(C.1)
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C.2 Discretization of the new projection

With the above definitions DVV̄(G
V̄
V(pV̄)) is the 9-points Laplacian proposed by Süli

[1991] (cf. Figure 3.5):

LV̄
V̄i+1/2,j+1/2

(pV̄) = DVV̄i+1/2,j+1/2

(
GV̄V(pV̄)

)
=

1

8

(
4xx,i+1/2,j+3/2(pV̄) + 64xx,i+1/2,j+1/2(pV̄) +4xx,i+1/2,j−1/2(pV̄)

)
+

1

8

(
4yy,i+3/2,j+1/2(pV̄) + 64yy,i+1/2,j+1/2(pV̄) +4yy,i−1/2,j+1/2(pV̄)

)
with

4xx,i+1/2,j+1/2(pV̄) �
1

δx2

(
pi+3/2,j+1/2 − 2pi+1/2,j+1/2 + pi−1/2,j+1/2

)
4yy,i+1/2,j+1/2(pV̄) �

1

δy2

(
pi+1/2,j+3/2 − 2pi+1/2,j+1/2 + pi+1/2,j−1/2

)
.
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