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Abstract. A new semi-implicit projection method for the zero
Froude number shallow water equations is presented. This method
enforces the divergence constraint on the velocity field, which arises
in the limit, in two steps. First, numerical fluxes of an auxiliary hy-
perbolic system are computed with a standard second order method.
Then, these fluxes are corrected by solving two Poisson-type equa-
tions. These corrections guarantee that the new velocity field satisfies
a discrete form of the divergence constraint.
The main feature of the new method is a unified discretization of the
two Poisson-type equations, which rests on a Petrov-Galerkin finite
element formulation with piecewise bilinear ansatz functions for the
unknown. This ansatz naturally leads to piecewise linear ansatz func-
tions for the momentum components. In order to show the stability
of the new projection step, a mixed formulation is derived, which is
equivalent to the Poisson-type equations of the scheme. Existence
and uniqueness of the continuous problem are proven and preliminary
results regarding the stability of the discrete method are presented.

Governing Equations

The shallow water equations are a hyperbolic system of conservation
laws. In their nonlinear form, they are given by

ht + ∇ · (hv) = 0

(hv)t + ∇ ·
(

hv ◦ v + 1
2 Fr2

h2 I
)

= 1
Fr2
h∇hb

where h is the height and v the velocity. The Froude number Fr is given
by the ratio between the velocity of flow and the gravity wave speed. In
the zero Froude number limit spatial height variations vanish, but they
do affect the velocity field at leading order. The limit equations can be
obtained by an asymptotic analysis. Omitting the source terms, one has

ht + ∇ · (hv) = 0

(hv)t + ∇ · (hv ◦ v) + h∇h(2) = 0

where h = h0(t) given through the boundary conditions. The spatial
homogeneity of the leading order height implies an elliptic divergence
constraint for the velocity field:

∫

∂V
(hv) · n dσ = −|V |

dh0

dt
for V ⊂ Ω

The zero Froude number shallow water system is no longer hyperbolic,
but of mixed elliptic-hyperbolic type with an additional unknown h(2).

The Numerical Scheme

For the construction of the method, a finite volume scheme in conservation
form is considered, i.e.

U
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The numerical fluxes, which are second order accurate, are computed by

• advective fluxes from a standard explicit finite volume scheme (applied to
an auxiliary system);

• a (MAC)-projection, which corrects the advection velocity divergence;

• a second (exact) projection, which adjusts the new time level divergence
of the cell-centered velocities

In the Original Scheme [Schneider et al., 1999] both Poisson-type
problems (projections) are solved for cell averages (i.e. piecewise constant
data). The resulting stencils are standard finite difference discretizations.
But the second Poisson-type problem admits local decoupling (Figure 1).

In the New (Second) Projection a Petrov-Galerkin finite element dis-
cretization [Süli, 1991] of the Poisson-type problem is applied with

• piecewise bilinear trial functions for the unknown h(2) (Figure 2), and

• piecewise constant test functions on the dual discretization.

Figure 1: Stencils for the two projections of the original method (left) and
for the new discretization (right).

Integration over Ω and using the divergence theorem leads to (h0 = const.):

δt h0

∫

∂V̄

∇h(2) · n dσ =

∫

∂V̄

((hv)∗∗ + (hv)n) · n dσ

The discrete velocity space consists of piecewise linear functions, which fits
with the gradient of h(2) (Figure 2). Using this discretization, the velocity
components at the boundary of the dual cells are piecewise linear. Thus, the
discrete divergence D(v) := 1

|V̄ |

∫

∂V̄ v ·n dσ can be exactly calculated. Fur-

thermore, the discrete divergence, Laplacian and gradient satisfy L = D(G)
and the discrete Laplacian has compact stencil (Figure 1).

Figure 2: Piecewise bilinear trial function for the unknown h(2) and
piecewise linear functions for the velocity components

Stability of the Second Projection

By using the momentum update and the divergence constraint:

(hv)n+1 = (hv)∗∗ − δt (h0∇h
(2))

1
2 ∇ ·

[

(hv)n+1 + (hv)n
]

= −dh0

dt

the Poisson-type problem can be reformulated as a generalized saddle-point
problem. The variational formulation is obtained by multiplication with test
functions ϕ and ψ and integration over Ω. Then, the discrete problem ob-
tained by using piecewise linear vector and piecewise constant scalar test
functions is equivalent to the Poisson-type equation.

Generalized Saddle-Point Problems: Find (u, p) ∈ (X2 ×M1), such
that

{

a(u, v) + b1(v, p) = 〈f, v〉 ∀ v ∈ X1

b2(u, q) = 〈g, q〉 ∀ q ∈ M2
(1)

The abstract theory is given by Nicoläıdes [1982] and Bernardi el

al. [1988]: If bi(·, ·) (and similarly a(·, ·)) satisfies:

inf
q∈Mi

sup
v∈Xi

bi(v, q)

‖v‖Xi
‖q‖Mi

≥ βi > 0

Then, (1) has a unique solution for all f and g.

Existence & Uniqueness of the continuous problem is analyzed for the
following case:

• find a solution with (hv)n+1 ∈ H0(div; Ω) and h(2) ∈ H1(Ω)/R,

• the test functions are in the spaces (L2(Ω))2 and L2(Ω),

• the bilinear forms are given by:

a(u,v) :=

∫

Ω
u · v dx , b1(v, q) := δt h0

∫

Ω
v · ∇q dx

b2(v, q) :=

∫

Ω
q (∇ · v) dx

Theorem: Vater [2005] The continuous generalized saddle point problem

has a unique solution ((hv)n+1, h(2)).

Stability of the discrete problem:

• It could be proved that b1(·, ·) satisfies a discrete inf-sup condition, but it
is still an open question for a(·, ·) and b2(·, ·)

• Problem: the piecewise linear vector functions are not in H(div; Ω) in gen-
eral (nonconforming finite elements), and common (e.g. Raviart-Thomas)
elements do not match with the piecewise linear, discontinuous ansatz
functions from the Godunov-Type method.

• The discretization by Schneider et al. [1999] can also be formulated
as saddle point problem; but this problem is unstable.

Construction of the Fluxes

The auxiliary system

h∗t + ∇ · (hv)∗ = 0

(hv)∗t + ∇ ·
(

(hv ◦ v)∗ + 1
2(h

∗)2I
)

= 0

enjoys the following properties:
• it has the same convective fluxes as the zero Froude number shallow

water equations;

• the system is hyperbolic ;

• having constant height h∗ and a zero velocity divergence at time t0,
solutions satisfy at t0 + δt:

∇ · v∗ = O(δt) , (h∗∇h∗) = O
(

δt2
)

The 1. Projection corrects the convective parts of the fluxes. The
divergence constraint is imposed at a half time level tn+1/2:

dh0

dt
= −∇ · (hv)∗ +

δt

2
∇ · (h0∇h

(2)) + O
(

δt3
)

The divergence constraint is imposed on each grid cell (Figure 3). This
corrects the convective fluxes on the boundary of each volume.

The 2. Projection adjusts the interface heights. A second application
of the divergence constraint yields:

δt∇ · (h0∇h
(2)) = ∇ · (hv)∗∗ + ∇ · (hv)n + 2

dh0

dt
+ O

(

δt2
)

Here, the divergence constraint is imposed on a dual discretization (Fig-
ure 3). This corrects the momentum to obtain a correct divergence for
the new velocity field at time tn+1.

Figure 3: Application of the divergence constraint
in the 1. and 2. projection.

Approximate and Exact Projection

The new discrete divergence is affected by the mean values and the partial
derivatives uy and vx of the velocity field. To apply this discretization
into the whole scheme, there are two possibilities:

• Approximate projection method: Using just the mean values to correct
momentum

(hv)n+1
V = (hv)∗∗V − δt h0 G(h(2))

we obtain D(vn+1) = O
(

δt δx2
)

.

• Exact projection method: An additional correction of the derivatives
of the momentum components within one cell and their employment
in the reconstruction of the next predictor step.

Numerical Results

In a Convergence Study a Taylor Vortex is advected in diagonal
direction [cf. Minion, 1996; Almgren et al., 1998]. The
numerical solution is computed on three different grids and compared
to the exact solution at t = 3. It showed that:
• second order accuracy is obtained in the L2 and the L∞ norms;

• the absolute error obtained with the new exact projection is about
four times smaller on fixed grids.

Advection of a Vortex: In this test a stationary vortex is advected
by constant background flow on a rectangular domain with 80 × 20
grid cells [Gresho and Chan, 1990].

orig.

new

Using central differences (no limiter), the results for the new exact
projection show that there is less deviation from the center line of
the channel and the loss in vorticity is slightly reduced compared to
the original discretization.
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