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The Zero Froude Number (“Incompressible”) SWE

Compressible shallow water equations:

ht + ∇ · (hv) = 0

(hv)t + ∇ · (hv ◦ v) + 1
Fr2 h∇h

(2)

= 0

Fr =
v ′ref√
g ′ h ′ref

hyperbolic system of conservation laws
similar to Euler equations, no energy equation
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The Zero Froude Number (“Incompressible”) SWE

Zero Froude number shallow water equations (as Fr → 0):

ht + ∇ · (hv) = 0

(hv)t + ∇ · (hv ◦ v) +

1
Fr2

h∇h(2) = 0

h = h0(t) given through boundary conditions.
mass conservation becomes divergence constraint for velocity field:∫

∂V

hv · n dσ = −|V | dh0

dt
for V ⊂ Ω

h(2): second order height perturbation; Lagrange multiplier, which
ensures compliance with divergence constraint
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Construction of the Scheme

method should be in conservation form:

Un+1
V = Un

V − δt
|V |

∑
I∈I∂V

|I | FI

machinery of Godunov-type methods
second order accuracy
advection velocities in fluxes and final momentum
satisfy divergence constraint
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Construction of the Scheme

Method should be in conservation form:

Un+1
V = Un

V − δt
|V |

∑
I∈I∂V

|I | FI

FI � F∗I + FMAC
I + FP2

I

I advective fluxes F∗
I from second order Godunov-type method

(applied to auxiliary system)
I FMAC

I from (MAC) projection, which corrects advection velocity
divergence

I FP2
I from second projection, which adjusts new time level

divergence of cell-centered velocities
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Auxiliary System

The auxiliary system

h∗t + ∇ · (hv)∗ = 0

(hv)∗t + ∇ · (hv ◦ v)∗ + h∗∇h∗ = 0

enjoys the following properties:
same convective fluxes as incompressible SWE
system is hyperbolic.
having constant height h∗ and zero velocity divergence at time t0,
solutions satisfy at t0 + δt :

∇ · v∗ = O(δt) , (h∗∇h∗) = O
(
δt2)
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Correction of Convective Fluxes

Semi-discrete equations (from Taylor series expansion):

hn+1 = hn − δt ∇ · (hv)n+1/2

(hv)n+1 = (hv)n − δt
[
∇ · (hv ◦ v) + (h0∇h(2))

]n+1/2

Momentum for convective fluxes:

(hv)n+1/2 = (hv)∗,n+1/2 − δt
2

(h0∇h(2))n+1/4

Impose divergence constraint (first Poisson type problem):

−dh0

dt
(tn+1/2) = ∇ · (hv)∗,n+1/2 − δt

2
∇ · (h0∇h(2))n+1/4
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Final Momentum

(hv)n+1 = (hv)n − δt
[
∇ · (hv ◦ v)︸ ︷︷ ︸

�(hv)∗∗

+(h0∇h(2))
]n+1/2

Impose divergence constraint as:

∇ · (hv)n+1 = −∇ · (hv)n − 2
dh0

dt
(tn+1/2)

Second Poisson type problem:

∇ · (hv)∗∗ − δt ∇ · (h0∇h(2))n+1/2 = −∇ · (hv)n − 2
dh0

dt
(tn+1/2)

Stefan Vater (FU Berlin) Stability of a Projection Method 8th Hirschegg Workshop 2007 8 / 28



Convective Fluxes
MAC Projection

δt
2
∇ · (h0∇h(2)) = ∇ · (hv)∗ +

dh0

dt

b

b

b

b

rs rs rs

rs rs rs

rs rs rs

divergence constraint imposed on
each grid cell
corrects convective fluxes on
boundary of control volumes
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Final Momentum
Second Projection

δt ∇ · (h0∇h(2)) = ∇ · (hv)∗∗ +∇ · (hv)n + 2
dh0

dt

b

b

b

b

rs rs rs

rs rs rs

rs rs rs

divergence constraint imposed on
dual control volumes
adjusts momentum to obtain correct
divergence for new velocity field
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The (Second) Projection
Discretization of the Poisson-Type Problem

Consider a Petrov-Galerkin FE discretization [Süli, 1991]:

bilinear trial functions for the
unknown h(2)

piecewise constant test functions
on the dual discretization

Integration over Ω and divergence theorem leads to:

δt h0

∫
∂V̄

∇h(2) · n dσ =

∫
∂V̄

[(hv)∗∗ + (hv)n ] · n dσ
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The (Second) Projection
Discrete Velocity Space

velocity components at
boundary of the dual cells are
piecewise linear
discrete divergence can be
exactly calculated

i

j

i + 1/2

j + 1/2−31/2

1/2

1/2

1/2

1/4 1/4

1/4 1/4

discrete Laplacian has
compact stencil
discrete divergence, Laplacian and
gradient satisfy L = D(G)

results in exact projection method

Stefan Vater (FU Berlin) Stability of a Projection Method 8th Hirschegg Workshop 2007 12 / 28



Stability of the Projection Step
Generalized Saddle-Point Problems

Find (u, p) ∈ (X2 ×M1), such that{
a(u, v) + b1(v , p) = 〈f , v〉 ∀ v ∈ X1

b2(u, q) = 〈g , q〉 ∀ q ∈M2

(1)

Theorem (Nicolaïdes, 1982; Bernardi el al., 1988)
If bi(·, ·) (i = 1, 2) and similarly a(·, ·) satisfy:

inf
q∈Mi

sup
v∈Xi

bi(v , q)

‖v‖Xi
‖q‖Mi

≥ βi > 0

Then, (1) has a unique solution for all f and g .
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Reformulation of the Poisson-Type Problem

Derive saddle point problem by employing momentum update and
divergence constraint:

(hv)n+1 = (hv)∗∗ − δt h0∇h(2)

1
2
∇ ·

[
(hv)n+1 + (hv)n]

= −dh0

dt

variational formulation: multiply with test functions ϕ and ψ
and integrate over Ω

discrete problem with piecewise linear vector and piecewise
constant scalar test functions

Stefan Vater (FU Berlin) Stability of a Projection Method 8th Hirschegg Workshop 2007 14 / 28



Existence & Uniqueness
Continuous Problem

find solution with (hv)n+1 ∈ H0(div; Ω) and (δt h0 h(2)) ∈ H 1(Ω)/R

test functions in the spaces [L2(Ω)]2 and L2(Ω)

bilinear forms given by:

a(u , v) � (u , v)0

b1(v , q) � (v ,∇q)0

b2(v , q) � (q ,∇ · v)0

Theorem (V. 2005)
The continuous generalized saddle point problem has a unique solution
((hv)n+1, δt h0 h(2)).
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Stability of the Discrete Problem

find solution with

(hv)n+1
h ∈ Uh �

{
v | ∀V : v |V ∈ [P1(V )]2

}
* H (div; Ω)

(δt h0 h(2)
h ) ∈ {p | ∀V : p|V ∈ Q1(V )} ⊂ H 1(Ω)/R

test functions in the spaces Uh ⊂ [L2(Ω)]2 and P0 ⊂ L2(Ω)

problem: piecewise linear vector functions not in H (div; Ω)
in general (nonconforming finite elements)

conforming (e.g. Raviart-Thomas) elements do not match with
the piecewise linear, discontinuous ansatz functions from the
Godunov-Type method
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Stability of the Discrete Problem
The nonconforming space Uh

discrete norm defined by

‖wh‖Uh � ‖wh‖0 + sup
zh∈Qh

b2h(wh , zh)

‖zh‖Q
for wh ∈ Uh

bilinear form b2 has to be changed  b2h : Uh ×Qh → R with

b2h(vh , qh)�
∑
V̄∈V̄

qh,V̄

∫
∂V̄

vh · n dσ

definition consistent with its continuous counterpart b2
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Inf-Sup Condition for a(·, ·)
Discrete Problem

To show (“coercivity”):

inf
u∈Kh

2

sup
v∈Kh

1

a(u , v)

‖u‖ ‖v‖
≥ α and sup

u∈Kh
2

a(u , v) > 0 ∀ v ∈ Kh
1 \ {0}

v ∈ Kh
1 ⇔ 0 =

1
δx

f (uĳ , vĳ) +
1
6

g(uy,ĳ , vx ,ĳ)

v ∈ Kh
2 ⇔ 0 =

1
δx

f (uĳ , vĳ) +
1
4

g(uy,ĳ , vx ,ĳ)

 one-to-one mapping from Kh
1 to Kh

2 by multiplying
partial derivatives of each element with 4/6
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Inf-Sup Condition for a(·, ·) (cont.)
Discrete Problem

the following estimates can be given for corresponding elements
v ∈ Kh

1 and u ∈ Kh
2 (with ū = v̄ and ∇ũ = 2/3∇ṽ):

4
9

a(v , v) ≤ a(u ,u) ≤ a(u , v)

This gives for each u ∈ Kh
2 , ‖u‖Uh = ‖u‖0 6= 0

sup
v∈Kh

1

a(u , v)

‖v‖0
≥ a(u ,u)

3
2 ‖u‖0

=
2
3
‖u‖Uh

and for v ∈ Kh
1 \ {0} we obtain

sup
u∈Kh

2

a(u , v) ≥ 4
9

a(v , v) > 0
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Inf-Sup Condition for b1(·, ·)
Discrete Problem

for piecewise bilinear p ∈ Hh ⊂ H 1(Ω)/R it follows
that ∇p ∈ Uh ; i.e. piecewise linear
thus, for arbitrary p ∈ Hh , we have

sup
v∈Uh

b1(v , p)

‖v‖0
≥ b1(∇p, p)

‖∇p‖0

=
(∇p,∇p)0
‖∇p‖0

= |p|1

analogous to continuous case
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Inf-Sup Condition for b2h(·, ·)
Discrete Problem

introduce lumping operator L : Hh → Qh with

Lrh �
∑
V̄∈V̄

χV̄ rh(xV̄ , yV̄ ) ∀rh ∈ Hh

have to show

sup
wh∈Uh

b2h(wh , qh)

‖wh‖Uh
≥ β∗2 ‖qh‖Qh ∀qh

proof is done by definition of an auxiliary mapping Gh : Qh → Uh ,
where Ghqh � ∇rh and rh ∈ Hh is the solution of

b2h(∇rh , zh) = (qh , zh)0,Ω ∀zh ∈ Qh
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Stability of the Discrete Problem

Theorem (V. & Klein 2007)
The generalized mixed formulation has a unique and stable solution
((hv)n+1

h , δt h0 h(2)
h ).

we obtain approximations, in which the solution of the Poisson
problem h(2) and the momentum update (hv)n+1 cannot decouple!

former version [Schneider et al. 1999] can also be
formulated as mixed method; but unstable!
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Convergence Studies
Taylor Vortex

Originally proposed by Minion [1996] and Almgren et al. [1998] for
the incompressible flow equations

smooth velocity field
nontrivial solution for h(2)

solved on unit square with
periodic BC
32× 32, 64× 64 and 128× 128
grid cells
error to exact solution at t = 3 0

�
�

��

0.5 1
0

0.5

1
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Convergence Studies
Errors and Convergence Rates

Method Norm 32x32 Rate 64x64 Rate 128x128

Schneider
et al.

L2 0.2929 2.16 0.0656 2.16 0.0146

L∞ 0.4207 2.15 0.0945 2.18 0.0209

new exact
projection

L2 0.0816 2.64 0.0131 2.17 0.0029

L∞ 0.1277 2.45 0.0234 2.32 0.0047

second order accuracy is obtained in the L2 and
the L∞ norms
absolute error obtained with the new exact projection method
about four times smaller on fixed grids
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Advection of a Vortex
Results for the New Projection Method

Exact projection, central differences (no limiter):

t = 0 t = 1 t = 2 t = 3
0

0.5

1

Schneider et al.

t = 0 t = 1 t = 2 t = 3
0

0.5

1

new exact projection

Less deviation from the center line of the channel, loss in
vorticity is slightly reduced.

Stefan Vater (FU Berlin) Stability of a Projection Method 8th Hirschegg Workshop 2007 25 / 28



Summary

A Cartesian grid projection method has been presented.
conservative and exact projection method with two projections
based on a FE formulation
second projection stable in the sense of generalized inf-sup /
Babuška-Brezzi theory; no local decoupling of the pressure gradient
numerical results of the new method show considerable accuracy
improvements on fixed grids compared to the old formulation

Outlook
I convergence of the mixed formulation
I extention to weakly compressible case (incorporation of results

from asymptotic analysis)
I inclusion of bottom topography
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Approximate vs. Exact Projection

discrete divergence also affected by partial derivatives
uy and vx

using just the mean values to correct momentum:

(hv)n+1 = (hv)∗∗ − δt h0 G(h(2))

we obtain D(vn+1) = O
(
δt δx 2); approximate

projection method
additional correction of derivatives and their employment in the
reconstruction of the predictor step: exact projection method
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Inf-Sup Condition for a(·, ·)
Continuous Problem

an orthogonal decomposition of (L2(Ω))2 is given by

{v ∈ H0(div; Ω) | ∇ · v = 0} ⊕ {∇q | q ∈ H 1(Ω)}

⇒ K1 = {v ∈ H0(div; Ω) | ∇ · v = 0} = K2

for each u ∈ K2, ‖u‖0,Ω 6= 0, a(·, ·) satisfies

sup
v∈K1

a(u , v)

‖v‖0,Ω

≥ a(u ,u)

‖u‖0,Ω

=
‖u‖2

0,Ω

‖u‖0,Ω

= ‖u‖div,Ω
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