Stability of a Cartesian Grid Projection Method for Incompressible Shallow Water Flows

Stefan Vater

Department of Mathematics and Computer Science Freie Universität Berlin

8th Hirschegg Workshop on Conservation Laws September, 11th 2007

Thanks to ...

- Rupert Klein (FU Berlin / ZIB)
- Nicola Botta (PIK Potsdam)

Stefan Vater (FU Berlin)

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ► ● □ ■ ● ● ● ●

Outline

Governing Equations

• The Zero Froude Number SWE

Formulation of Conservative Numerical Methods

- General Idea
- Discretization of Projection Step
- Exact Projection Method

3 Stability of the Projection Step

- Generalized Saddle-Point Problems
- Discrete Inf-Sup Conditions

Numerical Results

<ロ> < 回> < 回> < E> < E> EIE のへの

Freie Universität

Berlin

The Zero Froude Number ("Incompressible") SWE

Compressible shallow water equations:

$$h_t + \nabla \cdot (h \boldsymbol{v}) = 0$$

$$(h\boldsymbol{v})_t + \nabla \cdot (h\boldsymbol{v} \circ \boldsymbol{v}) + \frac{1}{\mathsf{Fr}^2} h \nabla h = \mathbf{0}$$

• Fr
$$= rac{v_{
m ref}'}{\sqrt{g'\,h_{
m ref}'}}$$

- hyperbolic system of conservation laws
- similar to Euler equations, no energy equation

4 / 28

Stefan Vater (FU Berlin)

> < = > = = > 000

The Zero Froude Number ("Incompressible") SWE

Zero Froude number shallow water equations (as $Fr \rightarrow 0$):

$$h_t + \nabla \cdot (h \boldsymbol{v}) = 0$$

$$(h\boldsymbol{v})_t + \nabla \cdot (h\boldsymbol{v} \circ \boldsymbol{v}) + h \nabla h^{(2)} = \mathbf{0}$$

- $h = h_0(t)$ given through boundary conditions.
- mass conservation becomes divergence constraint for velocity field:

$$\int_{\partial V} h \boldsymbol{v} \cdot \boldsymbol{n} \, d\sigma = -|V| \frac{dh_0}{dt} \quad \text{for } V \subset \Omega$$

• $h^{(2)}$: second order height perturbation; Lagrange multiplier, which ensures compliance with divergence constraint

ABA ABA BIS MAA

Freie Universität

Berlin 4 / 28

Construction of the Scheme

• method should be in conservation form:

$$\mathbf{U}_{V}^{n+1} = \mathbf{U}_{V}^{n} - \frac{\delta t}{|V|} \sum_{I \in \mathcal{I}_{\partial V}} |I| \mathbf{F}_{I}$$

- machinery of Godunov-type methods
- second order accuracy
- advection velocities in fluxes and final momentum satisfy divergence constraint

> < = > = = > 000

Construction of the Scheme

• Method should be in conservation form:

$$\mathbf{U}_{V}^{n+1} = \mathbf{U}_{V}^{n} - \frac{\delta t}{|V|} \sum_{I \in \mathcal{I}_{\partial V}} |I| \mathbf{F}_{I}$$

$$\mathbf{F}_{I} \coloneqq \mathbf{F}_{I}^{*} + \mathbf{F}_{I}^{\mathsf{MAC}} + \mathbf{F}_{I}^{\mathsf{P2}}$$

- advective fluxes F^{*}_I from second order Godunov-type method (applied to auxiliary system)
- ► **F**^{MAC}_I from (MAC) projection, which corrects advection velocity divergence
- F_I^{P2} from second projection, which adjusts new time level divergence of cell-centered velocities

5 / 28

< □ → < □ → < Ξ → < Ξ → < Ξ → 三目 つ Q () Stefan Vater (FU Berlin)

Auxiliary System

The auxiliary system

$$h_t^* + \nabla \cdot (h \boldsymbol{v})^* = 0$$

$$(h\boldsymbol{v})_t^* + \nabla \cdot (h\boldsymbol{v} \circ \boldsymbol{v})^* + h^* \nabla h^* = \mathbf{0}$$

enjoys the following properties:

- same convective fluxes as incompressible SWE
- system is hyperbolic.
- having constant height h^{*} and zero velocity divergence at time t₀, solutions satisfy at t₀ + δt:

$$abla \cdot oldsymbol{v}^* = \mathcal{O}(\delta t) \; , \; \; (h^*
abla h^*) = \mathcal{O}ig(\delta t^2ig)$$

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●目目 のへの

Freie Universität

Correction of Convective Fluxes

Semi-discrete equations (from Taylor series expansion):

$$h^{n+1} = h^n - \delta t \nabla \cdot (hv)^{n+1/2}$$

$$(h\boldsymbol{v})^{n+1} = (h\boldsymbol{v})^n - \delta t \left[\nabla \cdot (h\boldsymbol{v} \circ \boldsymbol{v}) + (h_0 \nabla h^{(2)}) \right]^{n+1/2}$$

Momentum for convective fluxes:

$$(hv)^{n+1/2} = (hv)^{*,n+1/2} - \frac{\delta t}{2} (h_0 \nabla h^{(2)})^{n+1/4}$$

Impose divergence constraint (first Poisson type problem):

$$-rac{dh_0}{dt}(t^{n+1/2}) =
abla \cdot (hm{v})^{*,n+1/2} - rac{\delta t}{2}
abla \cdot (h_0
abla h^{(2)})^{n+1/4}$$

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ▶

Stefan Vater (FU Berlin)

Freie Universität

Berlin 7 / 28

Final Momentum

$$(h\boldsymbol{v})^{n+1} = \underbrace{(h\boldsymbol{v})^n - \delta t \big[\nabla \cdot (h\boldsymbol{v} \circ \boldsymbol{v}) \\ =:(h\boldsymbol{v})^{**}} + (h_0 \nabla h^{(2)})\big]^{n+1/2}$$

Impose divergence constraint as:

$$abla \cdot (holdsymbol{v})^{n+1} = -
abla \cdot (holdsymbol{v})^n - 2\,rac{dh_0}{dt}(t^{n+1/2})$$

Second Poisson type problem:

$$abla \cdot (h \boldsymbol{v})^{**} - \delta t \,
abla \cdot (h_0
abla h^{(2)})^{n+1/2} = -
abla \cdot (h \boldsymbol{v})^n - 2 \, rac{dh_0}{dt} (t^{n+1/2})$$

Freie Universität

8 / 28

Stefan Vater (FU Berlin)

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ► ● □ ■ ● ● ● ●

8th Hirschegg Workshop 2007

Convective Fluxes MAC Projection

$$\frac{\delta t}{2} \nabla \cdot (h_0 \nabla h^{(2)}) = \nabla \cdot (h \boldsymbol{v})^* + \frac{dh_0}{dt}$$

NABN BIN ARA

- divergence constraint imposed on each grid cell
- corrects convective fluxes on boundary of control volumes

9 / 28

Stefan Vater (FU Berlin)

Final Momentum Second Projection

$$\delta t \, \nabla \cdot (h_0 \nabla h^{(2)}) = \nabla \cdot (h \boldsymbol{v})^{**} + \nabla \cdot (h \boldsymbol{v})^n + 2 \, rac{dh_0}{dt}$$

NOP SEL NOP

- divergence constraint imposed on dual control volumes
- adjusts momentum to obtain correct divergence for new velocity field

Stefan Vater (FU Berlin)

The (Second) Projection Discretization of the Poisson-Type Problem

Consider a Petrov-Galerkin FE discretization [SÜLI, 1991]:

- bilinear trial functions for the unknown $h^{(2)}$
- piecewise constant test functions on the dual discretization

Freie Universität

Berlin

11 / 28

Integration over $\boldsymbol{\Omega}$ and divergence theorem leads to:

$$\delta t h_0 \int_{\partial \overline{V}} \nabla h^{(2)} \cdot \boldsymbol{n} \ d\sigma = \int_{\partial \overline{V}} \left[(h\boldsymbol{v})^{**} + (h\boldsymbol{v})^n \right] \cdot \boldsymbol{n} \ d\sigma$$

The (Second) Projection Discrete Velocity Space

- velocity components at boundary of the dual cells are piecewise linear
- discrete divergence can be exactly calculated

- discrete Laplacian has compact stencil
- discrete divergence, Laplacian and gradient satisfy L = D(G)
- results in exact projection method

< □ ▶ < 큔 ▶ < 글 ▶ < 글 ▶ 를 늘 의 글 ♥ 오... Stefan Vater (FU Berlin)

Stability of the Projection Step Generalized Saddle-Point Problems

Find $(u, p) \in (\mathcal{X}_2 \times \mathcal{M}_1)$, such that $\begin{cases}
a(u, v) + b_1(v, p) = \langle f, v \rangle & \forall v \in \mathcal{X}_1 \\
b_2(u, q) = \langle g, q \rangle & \forall q \in \mathcal{M}_2
\end{cases}$ (1)

Theorem (NICOLAÏDES, 1982; BERNARDI EL AL., 1988)

If $b_i(\cdot, \cdot)$ (i = 1, 2) and similarly $a(\cdot, \cdot)$ satisfy:

$$\inf_{q \in \mathcal{M}_i} \sup_{v \in \mathcal{X}_i} \frac{b_i(v, q)}{\|v\|_{\mathcal{X}_i}} \|q\|_{\mathcal{M}_i} \ge \beta_i > 0$$

Then, (1) has a unique solution for all f and g.

Stefan Vater (FU Berlin)

Freie Universität

Reformulation of the Poisson-Type Problem

Derive saddle point problem by employing momentum update and divergence constraint:

$$(hv)^{n+1} = (hv)^{**} - \delta t h_0 \nabla h^{(2)}$$

 $\frac{1}{2} \nabla \cdot [(hv)^{n+1} + (hv)^n] = -\frac{dh_0}{dt}$

- variational formulation: multiply with test functions $\pmb{\varphi}$ and ψ and integrate over Ω
- discrete problem with piecewise linear vector and piecewise constant scalar test functions

ABARABA BIS ARA

Existence & Uniqueness Continuous Problem

- find solution with $(h \boldsymbol{v})^{n+1} \in H_0(\operatorname{div}; \Omega)$ and $(\delta t \, h_0 \, h^{(2)}) \in H^1(\Omega)/\mathbb{R}$
- test functions in the spaces $[L^2(\Omega)]^2$ and $L^2(\Omega)$
- bilinear forms given by:

$$egin{array}{rcl} a(oldsymbol{u},oldsymbol{v})&\coloneqq&(oldsymbol{u},oldsymbol{v})_0\ b_1(oldsymbol{v},q)&\coloneqq&(oldsymbol{v},
ablaoldsymbol{v},q)_0\ b_2(oldsymbol{v},q)&\coloneqq&(oldsymbol{q},
ablaoldsymbol{v}\cdotoldsymbol{v})_0 \end{array}$$

Theorem (V. 2005)

The continuous generalized saddle point problem has a unique solution $((hv)^{n+1}, \delta t h_0 h^{(2)}).$

<ロ> <回> <回> < 回> < 回> < 回> < 回> < 回</p>

Stefan Vater (FU Berlin)

Freie Universität

🚛 🕅 Berlin

Stability of the Discrete Problem

find solution with

 $(h\boldsymbol{v})_{h}^{n+1} \in \mathcal{U}_{h} \coloneqq \left\{\boldsymbol{v} \mid \forall \ V : \boldsymbol{v}|_{V} \in [\mathcal{P}_{1}(V)]^{2}\right\} \nsubseteq H(\operatorname{div}; \Omega)$ $(\delta t \ h_{0} \ h_{h}^{(2)}) \in \left\{p \mid \forall \ V : p|_{V} \in Q_{1}(V)\right\} \subset H^{1}(\Omega)/\mathbb{R}$

- test functions in the spaces $\mathcal{U}_h \subset [L^2(\Omega)]^2$ and $\mathcal{P}_0 \subset L^2(\Omega)$
- problem: piecewise linear vector functions not in H(div; Ω) in general (nonconforming finite elements)
- conforming (e.g. Raviart-Thomas) elements do not match with the piecewise linear, discontinuous ansatz functions from the Godunov-Type method

16 / 28

Stefan Vater (FU Berlin)

Stability of the Discrete Problem The nonconforming space U_h

• discrete norm defined by

$$egin{aligned} \|oldsymbol{w}_h\|_{\mathcal{U}^h}\coloneqq \|oldsymbol{w}_h\|_0 + \sup_{z_h\in\mathcal{Q}^h}rac{b_{2h}(oldsymbol{w}_h,z_h)}{\|z_h\|_\mathcal{Q}} & ext{for }oldsymbol{w}_h\in\mathcal{U}^h \end{aligned}$$

• bilinear form b_2 has to be changed $\rightsquigarrow b_{2h}: \mathcal{U}^h \times \mathcal{Q}^h \to \mathbb{R}$ with

$$b_{2h}(\boldsymbol{v}_h,q_h)\coloneqq\sum_{ar{V}\inar{\mathcal{V}}}q_{h,ar{V}}\int_{\partialar{V}}\boldsymbol{v}_h\cdot\boldsymbol{n}\;d\sigma$$

definition consistent with its continuous counterpart b_2

17 / 28

Stefan Vater (FU Berlin)

Inf-Sup Condition for $a(\cdot, \cdot)$ Discrete Problem

To show ("coercivity"):

$$\inf_{\boldsymbol{u}\in\mathcal{K}_2^h}\sup_{\boldsymbol{v}\in\mathcal{K}_1^h}\frac{a(\boldsymbol{u},\boldsymbol{v})}{\|\boldsymbol{u}\|\;\|\boldsymbol{v}\|}\geq\alpha\quad\text{and}\quad\sup_{\boldsymbol{u}\in\mathcal{K}_2^h}a(\boldsymbol{u},\boldsymbol{v})>0\quad\forall\,\boldsymbol{v}\in\mathcal{K}_1^h\setminus\{0\}$$

$$oldsymbol{v} \in \mathcal{K}_1^h \Leftrightarrow 0 = rac{1}{\delta x} f(u_{ij}, v_{ij}) + rac{1}{6} g(u_{y,ij}, v_{x,ij})$$
 $oldsymbol{v} \in \mathcal{K}_2^h \Leftrightarrow 0 = rac{1}{\delta x} f(u_{ij}, v_{ij}) + rac{1}{4} g(u_{y,ij}, v_{x,ij})$

 \rightsquigarrow one-to-one mapping from \mathcal{K}_1^h to \mathcal{K}_2^h by multiplying partial derivatives of each element with 4/6

Stefan Vater (FU Berlin)

Freie Universität

Berlin

18 / 28

Inf-Sup Condition for $a(\cdot, \cdot)$ (cont.) Discrete Problem

• the following estimates can be given for corresponding elements $v \in \mathcal{K}_1^h$ and $u \in \mathcal{K}_2^h$ (with $\bar{u} = \bar{v}$ and $\nabla \tilde{u} = 2/3\nabla \tilde{v}$):

$$rac{4}{9}\,a(oldsymbol{v},oldsymbol{v})\leq a(oldsymbol{u},oldsymbol{u})\leq a(oldsymbol{u},oldsymbol{v})$$

• This gives for each $\boldsymbol{u} \in \mathcal{K}_2^h$, $\|\boldsymbol{u}\|_{\mathcal{U}^h} = \|\boldsymbol{u}\|_0 \neq 0$

$$\sup_{\boldsymbol{v}\in\mathcal{K}_1^h}\frac{a(\boldsymbol{u},\boldsymbol{v})}{\|\boldsymbol{v}\|_0}\geq \frac{a(\boldsymbol{u},\boldsymbol{u})}{\frac{3}{2}\,\|\boldsymbol{u}\|_0}=\frac{2}{3}\,\|\boldsymbol{u}\|_{\mathcal{U}^h}$$

and for $oldsymbol{v} \in \mathcal{K}_1^h \setminus \{0\}$ we obtain

$$\sup_{\boldsymbol{u}\in\mathcal{K}_2^h}a(\boldsymbol{u},\boldsymbol{v})\geq\frac{4}{9}a(\boldsymbol{v},\boldsymbol{v})>0$$

Stefan Vater (FU Berlin)

8th Hirschegg Workshop 2007

Freie Universität

M Berlin

19 / 28

Inf-Sup Condition for $b_1(\cdot, \cdot)$ Discrete Problem

- for piecewise bilinear p ∈ H^h ⊂ H¹(Ω)/ℝ it follows that ∇p ∈ U^h; i.e. piecewise linear
- thus, for arbitrary $p \in \mathcal{H}^h$, we have

$$\begin{split} \sup_{\boldsymbol{v}\in\mathcal{U}^{h}}\frac{b_{1}(\boldsymbol{v},p)}{\|\boldsymbol{v}\|_{0}} &\geq \frac{b_{1}(\nabla p,p)}{\|\nabla p\|_{0}}\\ &= \frac{(\nabla p,\nabla p)_{0}}{\|\nabla p\|_{0}}\\ &= |p|_{1} \end{split}$$

analogous to continuous case

Berlin 20 / 28

Freie Universität

Inf-Sup Condition for $b_{2h}(\cdot, \cdot)$ Discrete Problem

• introduce lumping operator $L: \mathcal{H}^h \to \mathcal{Q}^h$ with

$$Lr_h \coloneqq \sum_{ar{V} \in ar{\mathcal{V}}} \chi_{ar{V}} r_h(x_{ar{V}}, y_{ar{V}}) \quad \forall r_h \in \mathcal{H}^h$$

have to show

$$\sup_{\boldsymbol{w}_h \in \mathcal{U}^h} \frac{b_{2h}(\boldsymbol{w}_h, q_h)}{\|\boldsymbol{w}_h\|_{\mathcal{U}^h}} \geq \beta_2^* \|q_h\|_{\mathcal{Q}^h} \quad \forall q_h$$

• proof is done by definition of an auxiliary mapping $G_h : \mathcal{Q}^h \to \mathcal{U}^h$, where $G_h q_h \coloneqq \nabla r_h$ and $r_h \in \mathcal{H}^h$ is the solution of

$$b_{2h}(
abla r_h, z_h) = (q_h, z_h)_{0,\Omega} \quad \forall z_h \in \mathcal{Q}^h$$

Freie Universität

Berlin

21 / 28

Stability of the Discrete Problem

Theorem (V. & Klein 2007)

The generalized mixed formulation has a unique and stable solution $((hv)_h^{n+1}, \delta t h_0 h_h^{(2)}).$

- we obtain approximations, in which the solution of the Poisson problem $h^{(2)}$ and the momentum update $(hv)^{n+1}$ cannot decouple!
- former version [SCHNEIDER ET AL. 1999] can also be formulated as mixed method; but unstable!

Stefan Vater (FU Berlin)

Convergence Studies Taylor Vortex

Originally proposed by MINION [1996] and ALMGREN ET AL. [1998] for the incompressible flow equations

- smooth velocity field
- nontrivial solution for $h^{(2)}$
- solved on unit square with periodic BC
- 32×32 , 64×64 and 128×128 grid cells
- error to exact solution at t = 3

●●● 西南 《田》《田》《田》 《□

23 / 28

Convergence Studies Errors and Convergence Rates

Method	Norm	32x32	Rate	64x64	Rate	128x128
Schneider et al.	L^2	0.2929	2.16	0.0656	2.16	0.0146
	L^{∞}	0.4207	2.15	0.0945	2.18	0.0209
new exact projection	L^2	0.0816	2.64	0.0131	2.17	0.0029
	L^{∞}	0.1277	2.45	0.0234	2.32	0.0047

- second order accuracy is obtained in the L^2 and the L^∞ norms
- absolute error obtained with the new exact projection method about four times smaller on fixed grids

Stefan Vater (FU Berlin)

Advection of a Vortex Results for the New Projection Method

Exact projection, central differences (no limiter):

Less deviation from the center line of the channel, loss in vorticity is slightly reduced.

Stefan Vater (FU Berlin)

25 / 28

Summary

A Cartesian grid projection method has been presented.

- conservative and exact projection method with two projections based on a FE formulation
- second projection stable in the sense of generalized inf-sup / Babuška-Brezzi theory; no local decoupling of the pressure gradient
- numerical results of the new method show considerable accuracy improvements on fixed grids compared to the old formulation

Outlook

- convergence of the mixed formulation
- extention to weakly compressible case (incorporation of results from asymptotic analysis)
- inclusion of bottom topography

26 / 28

For Further Information/Reading

Th. Schneider, N. Botta, K.J. Geratz and R. Klein.

Extension of Finite Volume Compressible Flow Solvers to Multi-dimensional, Variable Density Zero Mach Number Flows.

Journal of Computational Physics, 155: 248–286, 1999.

S. Vater.

A New Projection Method for the Zero Froude Number Shallow Water Equations.

PIK Report No. 97, Potsdam Institute for Climate Impact Research, 2005.

S. Vater & R. Klein.

Stability of a Cartesian Grid Projection Method for Zero Froude Number Shallow Water Flows.

submitted to: Numerische Mathematik, 2007. also available as ZIB-Report No. 07-13 (http://www.zib.de)

27 / 28

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Approximate vs. Exact Projection

- discrete divergence also affected by partial derivatives u_y and v_x
- using just the mean values to correct momentum:

$$(h\boldsymbol{v})^{n+1} = (h\boldsymbol{v})^{**} - \delta t h_0 \,\overline{\mathsf{G}(h^{(2)})}$$

we obtain $D(v^{n+1}) = O(\delta t \, \delta x^2)$; approximate projection method

 additional correction of derivatives and their employment in the reconstruction of the predictor step: exact projection method

28 / 28

Inf-Sup Condition for $a(\cdot, \cdot)$ Continuous Problem

• an orthogonal decomposition of $(L^2(\Omega))^2$ is given by

$$\{ oldsymbol{v} \in H_0(\operatorname{div}; \Omega) \mid
abla \cdot oldsymbol{v} = 0 \} \oplus \{
abla q \mid q \in H^1(\Omega) \}$$

- $\Rightarrow \mathcal{K}_1 = \{ \boldsymbol{v} \in H_0(\operatorname{div}; \Omega) \mid \nabla \cdot \boldsymbol{v} = 0 \} = \mathcal{K}_2$
- for each $oldsymbol{u}\in\mathcal{K}_2$, $\|oldsymbol{u}\|_{0,\Omega}
 eq 0$, $a(\cdot,\cdot)$ satisfies

$$\sup_{\boldsymbol{v}\in\mathcal{K}_1}\frac{a(\boldsymbol{u},\boldsymbol{v})}{\|\boldsymbol{v}\|_{0,\Omega}}\geq \frac{a(\boldsymbol{u},\boldsymbol{u})}{\|\boldsymbol{u}\|_{0,\Omega}}=\frac{\|\boldsymbol{u}\|_{0,\Omega}^2}{\|\boldsymbol{u}\|_{0,\Omega}}=\|\boldsymbol{u}\|_{\mathrm{div},\Omega}$$

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ● ● ●

Stefan Vater (FU Berlin)

29 / 28

🚛 🕅 Berlin

Freie Universität