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Abstract In this paper a Godunov-type projection method for computing approx-
imate solutions of the zero Froude number (incompressible) shallow water equa-
tions is presented. It is second-order accurate and locally conserves height (mass)
and momentum. To enforce the underlying divergence constraint on the veloc-
ity field, the predicted numerical fluxes, computed with a standard second order
method for hyperbolic conservation laws and applied to an auxiliary system, are
corrected in two steps. First, a MAC-type projection adjusts the advective velocity
divergence. In a second projection step, additional momentum flux corrections are
computed to obtain new time level cell-centered velocities, which satisfy another
discrete version of the divergence constraint.

The scheme features an exact and stable second projection. It is obtained by
a Petrov-Galerkin finite element ansatz with piecewise bilinear trial functions for
the unknown height and piecewise constant test functions. The key innovation
compared to existing finite volume projection methods is a correction of the in-cell
slopes of the momentum by the second projection. The stability of the projection
is proved using a generalized theory for mixed finite elements. In order to do so,
the validity of three different inf-sup conditions has to be shown.

The results of preliminary numerical test cases demonstrate the method’s ap-
plicability. On fixed grids the accuracy is improved by a factor four compared to
a previous version of the scheme.
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1 Introduction

Starting with the fundamental work of Chorin [11] and Temam [35], the use of
projection methods for the numerical solution of the incompressible flow equa-
tions has a long tradition (see e.g. [39,6,7,28,2] and references therein). In these
methods, solutions are first advanced in time ignoring the solenoidal constraint of
the velocity field. In a second step, the velocity field is corrected using a suitable
approximation of the pressure to enforce compliance with the divergence con-
straint.

The stability of the projection step in exact projection methods for the incom-
pressible Euler or shallow water equations has been an unsolved issue in the past.
Difficulties arise in this context from a decoupling of the velocity and the pressure
variables, which, in turn, is a consequence of using discrete gradient approxima-
tions with kernel dimension larger than one. Examples of such methods are given
by [6], [7] and [28]. To resolve this problem, approximate projection methods were
introduced in [3], which use the same discrete divergence and gradient operators as
in exact projection methods, but a modified version of the discrete Laplacian. This
approach results in velocity fields that satisfy the underlying divergence constraint
only up to the order of accuracy of the gradient and divergence discretizations. In
the present paper we propose an alternative approach that utilizes discretizations
of the differential operators, which guarantee exact projections while avoiding the
velocity-pressure decoupling. The resulting discretization of the pressure Poisson
equation was first described by Süli [34] for the solution of Poisson’s equation, and
can be derived by a Petrov-Galerkin finite element ansatz with piecewise bilinear
trial functions for the pressure and piecewise constant test functions.

The divergence constraint on the velocity field, which arises in the zero Mach
number limit of the Euler equations (see [20,29,21], and also the review by [30]),
leads to a saddle point problem, in which the velocity is coupled with the gradi-
ent of the pressure. The fundamental theory of (discretizations of) such problems
goes back to Babuška [5] and Brezzi [10], who analyzed finite element schemes
for elliptic partial differential equations with additional side constraints. This the-
ory provides the so-called “inf-sup conditions” for existence and uniqueness of
solutions and stable discretizations of such problems.

To the best of the authors knowledge, stability estimates of the Babuška-Brez-
zi-type have not been derived for projection methods applied to inviscid flow prob-
lems so far. This is different in the viscous case (cf. [18] for an overview). How-
ever, in contrast to the inviscid case in the incompressible Navier-Stokes equations
the Laplacian of the velocity interacts with the pressure gradient, which leads to a
saddle point problem of the Stokes type involving higher spatial derivatives com-
pared to the inviscid case. Consequently, the stability proofs for methods solving
the Navier-Stokes equations cannot be easily transferred.

The presented method is a non-incremental pressure-correction method for the
incompressible (zero Froude number) shallow water equations. To represent ad-
vection of mass and momentum, the scheme relies on second order conservative
finite volume Godunov-type methods in its predictor step. It is shown that the pro-
jection step, which corrects the cell-centered momentum to satisfy the underlying
divergence constraint, is stable in the sense of mixed finite element methods. This
is the main result of this paper and is summarized in Theorem 8. The discretiza-
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tion features both, a compact Poisson stencil, and an exact projection. The key to
achieving both of these properties at the same time lies in the fact that we let part
of the in-cell slopes, which are normally determined by standard slope limiting
procedures, be assigned in the projection step.

After introducing the governing equations and the consequences of the zero
Froude number limit in the remainder of the introduction, we describe the con-
struction of the numerical method in Section 2. The stability of the projection step
is investigated using the theory of generalized mixed finite elements in Section 3.
To demonstrate the applicability of the scheme, some basic numerical test cases
are presented in Section 4. The major conclusions of this work are reported in the
last Section.

1.1 Governing Equations

The shallow water equations are a set of partial differential equations, which de-
scribe the depth averaged flow with velocity vvv(xxx, t) under a free surface h(xxx, t). In
their non-dimensional form and without any source terms (such as bottom topog-
raphy) they are given by the two equations

Sr
∂h
∂ t

+ ∇ · (hvvv) = 0

Sr
∂ (hvvv)

∂ t
+ ∇ ·

(
hvvv◦ vvv+

1
2Fr2 h2 III

)
= 0 ,

(1)

which express conservation of height h and momentum hvvv. The “◦” represents the
dyadic product of two vectors. Here, two dimensionless characteristic quantities
have been introduced, namely

Sr�
`′ref

t ′ref v′ref

and Fr�
v′ref√
g′ h′ref

,

which are known as the Strouhal and the Froude number, respectively. The first
one describes the ratio between the advection timescale `′ref/v′ref and the reference
timescale t ′ref, whereas the latter gives the ratio between the reference velocity v′ref

and the gravity wave speed
√

g′ h′ref (celerity). In the following, we are interested
in a reference time scale equal to the advection time scale of the fluid, so that
t ′ref = `′ref/v′ref and the Strouhal number becomes one (Sr = 1).

Since the discretization of the numerical method and the stability proof dis-
cussed in this work are restricted to axiparallel rectangles Ω ⊂ R2, we restrict
ourselves to such domains in the following. However, it is current research in the
authors’ group to extend such a projection method to more general domains using
cut-cell techniques (cf. [26]). A strategy to extend such a scheme to three dimen-
sions was given in [28] for a similar projection method applied to the variable
density zero Mach number Euler equations.

The zero Froude number limit of (1) can be analyzed by an asymptotic analysis
with a small parameter Fr [41]. This is similar to the zero Mach number limit of
the Euler equations (cf. [20,21]), except that in the case of the Euler equations



4 Stefan Vater, Rupert Klein

the divergence constraint arises from the energy equation, and not from the mass
equation. The resulting limit equations are given by

ht +∇ · (hvvv) = 0

(hvvv)t +∇ · (hvvv◦ vvv)+h∇h(2) = 000 .
(2)

An additional unknown, the second order height h(2), is introduced and the leading
order height becomes only dependent on time with zero gradient h = h0(t). This
system of equations is no longer hyperbolic, but of mixed elliptic-hyperbolic type.

Integrating the first equation of (2) over the domain Ω and applying the diver-
gence theorem leads to

1
h0

dh0

dt
=− 1
|Ω |

∫
∂Ω

vvv ·nnndσ . (3)

Thus, either the change of the leading order height is given through the normal
components of the velocity field on the boundary of Ω , or the prescription of
h0 implies an integral constraint on these normal velocity components in turn.
Furthermore, the integration over an arbitrary volume V ⊂Ω yields∫

∂V
(hvvv) ·nnndσ =−|V |dh0

dt
, (4)

which implies an integral constraint on the velocity divergence in V . Thus, in
terms of optimization problems h(2) can be viewed as a Lagrange multiplier, which
ensures that the velocity field is in compliance with the divergence constraint (4).

In the case h0 ≡ 1 system (2) is equivalent to the Euler equations for incom-
pressible flow with constant density. This underlines the applicability of numerical
methods developed in this article to incompressible flows.

2 The Numerical Method

The described method is a further development of the projection method presented
in [28] for the incompressible Euler Equations, which we revisit here for the case
of the zero Froude number shallow water equations. The main difference between
the present scheme and that of [28] lies in the discretization of the projection step
(see Subsection 2.2).

2.1 Construction of the scheme

Throughout this work we assume a Cartesian space discretization of the compu-
tational domain Ω . In this discretization, the volume of a cell C is denoted by
|C|, and two neighboring cells are separated by an interface I with area |I| (cf.
Figure 1). C and I are defined as the collections of all cells and interfaces, respec-
tively. We denote the set of all interfaces, which are part of the boundary of a cell
C, by I∂C ⊂ I.
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Fig. 1 Control volume C and interface I of the primary discretization and those (C̄ and Ī) of the
dual discretization. Cell centers are denoted by circles, nodes by squares and midpoints of the
interfaces by crosses.

For the construction of the method, a finite volume scheme in conservation
form is considered, i.e.

Un+1
C = Un

C−
δ t
|C| ∑

I∈I∂C

|I| FI . (5)

In (5) Un
C is a numerical approximation to the average of the exact solution u(xxx, t)

of problem (2) over cell C at time tn:

Un
C ≈

1
|C|
∫

C
u(xxx, tn) dxxx , u(xxx, t)�

(
h
hvvv

)
.

The numerical flux FI approximates the average of the flux function

f(u(xxx, t),h(2)(xxx, t),nnn(xxx))�
(

h(vvv ·nnn)
hvvv(vvv ·nnn) + hh(2) nnn

)
of the zero Froude number shallow water equations. For these fluxes, the average
is taken over one time step [tn, tn+1], with tn+1

� tn +δ t, and over the interface I
between two cells. The flux averages will be computed in three steps:

FI � F∗I +FMAC
I +FP2

I .

First, predictions of the advective fluxes F∗I are computed by the numerical solu-
tion of the hyperbolic auxiliary system

ht +∇ · (hvvv) = 0

(hvvv)t +∇ ·
(

(hvvv◦ vvv)+
h2

2
III
)

= 000 ,
(6)

which is the shallow water system with a rescaled Froude number. The computa-
tion of the numerical fluxes for these equations is done using an explicit high reso-
lution upwind method for hyperbolic conservation laws (see [22] for an overview).



6 Stefan Vater, Rupert Klein

It should be stressed that the presented projection method is robust with respect to
the particular choice of such an integration scheme. The authors have successfully
implemented a version using centered-in-time approximations [40,37] with oper-
ator splitting techniques for the spatial directions [33], and one, which is based
on a semi-discretization in space and Runge-Kutta time stepping [27,32]. The nu-
merical results presented in Section 4 are based on the latter approach, and the net
flux divergence at each interface F∗I is given by the weighted sum of individual
flux divergences computed in each Runge-Kutta stage. The stability of the numer-
ical solution of the auxiliary system depends on a CFL time step restriction [12].
Since the eigenvalues (characteristic speeds) of this system do not depend on the
Froude number, they are of order O(1) as Fr→ 0, leading to δ t = O(δx) on a
regular discretization with grid spacing δx.

Then, a MAC-type projection [19] is applied, which corrects the advection ve-
locity divergence by FMAC

I to be in compliance with the divergence constraint (4)
applied to each grid cell. In a final second projection the non-convective compo-
nents of the numerical fluxes, i.e., the pressure (height) contributions to the mo-
mentum fluxes, are corrected by FP2

I , such that the new time level divergence of
the cell-centered velocities satisfies (4) for another set of control volumes defined
below. Furthermore, in the presented scheme this projection yields updates for the
linear reconstructions of momentum in each grid cell.

To achieve second order accuracy in time for the flux components FMAC
I and

FP2
I , they are evaluated at time tn+1/2

� tn +δ t/2. The construction of these quan-
tities is motivated in the following by a semi-discretization of the governing equa-
tions (2) in time (cf. [41]): Let us suppose for a moment a sufficiently smooth
solution of these equations. By Taylor series expansion, height and momentum
can be expressed at the new time level by

h(xxx, tn+1) = h(xxx, tn)−δ t
[
∇ · (hvvv)(xxx, tn+1/2)

]
+O(δ t3) (7)

and
(hvvv)(xxx, tn+1) = (hvvv)(xxx, tn)−δ t

[
∇ · (hvvv◦ vvv)(xxx, tn+1/2)

+(h0∇h(2))(xxx, tn+1/2)
]
+O(δ t3) (8)

for δ t → 0. Given the fluxes of the auxiliary system (6), momentum and velocity
can be approximated at the half time level by

(hvvv)(xxx, tn+1/2) = (hvvv)∗(xxx, tn+1/2)− δ t
2

(h0∇h(2))(xxx, tn+1/4)+O(δ t2)
vvv(xxx, tn+1/2) = vvv∗(xxx, tn+1/2)− δ t

2
∇h(2)(xxx, tn+1/4)+O(δ t2) .

(9)

Here and below, the variables with asterisks denote the quantities of the auxiliary
system, and vvv∗ ≡ (hvvv)∗/h∗. Note that – in order to achieve second order accuracy
in time – the question at which time level the unknown h(2) “lives”, can be relaxed
to any point in the interval [tn, tn+1/2]. To ensure that the velocities on the left hand
side of (9) satisfy the divergence constraint, we take the divergence of the first
equation in (9) and obtain together with the first equation in (2) a first Poisson
equation for h(2):

δ t
2

∇ · (h0∇h(2))(xxx, tn+1/4) = ∇ · (hvvv)∗(xxx, tn+1/2)+
dh0

dt
(tn+1/2)+O(δ t2) . (10)
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With the solution of this problem the right hand side of (7) and the first term in the
brackets of (8) can be calculated through (9). The second term in brackets in (8)
is computed by another application of the divergence constraint. Let

(hvvv)∗∗(xxx)� (hvvv)(xxx, tn)−δ t
[
∇ · (hvvv◦ vvv)(xxx, tn+1/2)

]
(11)

denote a preliminary prediction of the new time level momentum that still lacks
the influence of the pressure flux. Then, the momentum at the new time level is
given by

(hvvv)(xxx, tn+1) = (hvvv)∗∗(xxx)−δ t (h0∇h(2))(xxx, tn+1/2)+O(δ t2) . (12)

Imposing the divergence constraint from (2) once again at a half time step, but this
time using a linear interpolation of the momentum at the full time levels, leads to

1
2
[
∇ · (hvvv)(xxx, tn+1)+∇ · (hvvv)(xxx, tn)

]
=−dh0

dt
(tn+1/2)+O(δ t2) . (13)

Inserting (12) in (13), a second Poisson Problem for h(2) is obtained:

δ t ∇ · (h0∇h(2))(xxx, tn+1/2) = ∇ · (hvvv)∗∗(xxx)+∇ · (hvvv)(xxx, tn)

+2
dh0

dt
(tn+1/2)+O(δ t2) .

(14)

Thus, by the solution of an auxiliary hyperbolic system and two Poisson prob-
lems for the second order height h(2) numerical approximations to the fluxes of
the zero Froude number shallow water equations can be computed up to second
order accuracy in time.

At least for constant h0, we could have also just projected at time tn+1, rather
than using the average of the momenta from tn and tn+1 in (13). Both versions
are equivalent for the present case of zero Froude number. Yet, the authors are
currently working on an extension of the scheme to small but non-zero Froude
number, and in this setting, evaluation at the half-time level turns out to be required
in order to maintain second-order accuracy.

2.2 Discretization of the Projections

As stated above, equations (6)–(14) are a summary of the zero-Mach-number-
scheme by [28] applied to the shallow water case. In this section we begin to
introduce deviations from earlier work. This concerns, in particular, a new dis-
cretization of the Poisson equation, which – as we will show – leads to an exact
and stable projection.

The Poisson equations (10) and (14) are discretized using a method originally
proposed by Süli [34], who proves stability and convergence of the scheme in a
mesh-dependent H1 norm. In contrast to Süli, who considers a numerical method
for a scalar elliptic Dirichlet problem, here we focus on the projection step of a
flow solver that results in a Poisson-type problem with Neumann boundary con-
ditions (cf. [16] and [28] for a discussion on that issue). The method can be either
interpreted as a finite element or as a finite volume method. In the following, the
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scheme is introduced as a Petrov-Galerkin finite element method, which lays the
groundwork for the stability proof of the projection given in the next section. Since
the two Poisson equations are solved using slightly different discretizations, the
method is first discussed for the second projection. Thereafter, modifications to be
applied for the first Poisson problem are given.

For the derivation of the method, consider a Poisson problem with Neumann
boundary conditions: 

−∇ ·∇p = f in Ω ,

∂ p
∂nnn

= 0 on ∂Ω .
(15)

Given the r.h.s. f ∈ L2(Ω) with
∫

Ω
f dxxx = 0, this problem has a unique solu-

tion p ∈ H1(Ω)/R. Note that the space H1(Ω)/R is equivalent to the space
{p ∈ H1(Ω) | ∫

Ω
v dxxx = 0}, the latter formulation being commonly used in prac-

tical computations. Since the right hand side f is of the form −∇ · vvv with a given
velocity field vvv in the equation to be solved in the projection method, f is sub-
stituted with this term in the following discussion. The weak formulation of this
problem is derived by multiplication of (15) with a test function ψ and integration
over the whole domain Ω . Thus, we have to find p, such that∫

Ω

ψ ∇ ·∇p dxxx =
∫

Ω

ψ ∇ · vvv dxxx ∀ψ . (16)

In (16) it is left open which trial and test spaces are considered. In contrast to the
classical finite element theory, where the test function ψ is chosen to be (weakly)
differentiable and Green’s formula is applied to shift one derivative to the test
function, here, a test space containing piecewise constant test functions is consid-
ered. In this case – assuming for a moment that p and vvv are sufficiently smooth –
the divergence theorem can be applied.

In particular, for the construction of the test space, a dual discretization of the
computational domain Ω is introduced, in which C̄ is the set of control volumes
C̄ centered about nodes of the original grid (see Figure 1). In the given Cartesian
space discretization each grid cell is cut into four equally sized rectangles, and a
dual control volume is the union of all rectangles, which have one grid node in
common. Thus, control volumes which are associated with nodes on the bound-
ary of the domain, have either half or fourth size compared to the inner control
volumes. Notice that usage of the dual cells in formulating the projection is in
line with [7,28]. The difference will lie in how we account for piecewise linear
in-cell distributions of momentum and how they are affected by the divergence
correction. The interfaces between these control volumes and the set of all such
interfaces is denoted – in analogy to the primal discretization – by Ī and Ī, respec-
tively. Then, the test space is given by all functions in L2(Ω), which are constant
on the dual control volumes. This space is defined by

Qh
�

{
q ∈ L2(Ω) | ∀C̄ ∈ C̄ : q|C̄ ∈ P0(C̄)

}
, (17)

in which

Pk(U)�
{

p ∈C∞(U)
∣∣∣ p(x,y) = ∑

i+ j≤k
i, j≥0

ci j xi y j,ci j ∈R
}

(18)
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Fig. 2 Piecewise linear function for the velocity. The dashed line visualizes the projection of
the integration path of the boundary integral onto the graph of the integrated function, which is
evaluated in the discrete divergence. Thus, only piecewise linear functions have to be integrated.

is the space of polynomial functions on U ⊂R2 of degree less than or equal to k. A
basis of Qh is given by

⋃
C̄∈C̄{χC̄}, where χU is the characteristic function on the

set U . Therefore, a test function can be decomposed into ψ(x,y) = ∑C̄ ψC̄ χC̄(x,y),
and equation (16) becomes

∑
C̄∈C̄

ψC̄

(∫
C̄

∇ ·∇p dxxx−
∫

C̄
∇ · vvv dxxx

)
= 0 ∀ψ ∈Qh .

Now, the divergence theorem can be applied, and we have to find p, such that

∑
C̄∈C̄

ψC̄

(∫
∂C̄

∇p ·nnn dσ −
∫

∂C̄
vvv ·nnn dσ

)
= 0 ∀ψ ∈Qh , (19)

Since all of the C̄ are pairwise disjoint, this problem is a linear combination of the
local problems to find p, such that∫

∂C̄
∇p ·nnn dσ −

∫
∂C̄

vvv ·nnn dσ = 0 ∀C̄ ∈ C̄ , (20)

and the solution p satisfies (19), if and only if it satisfies (20).
Using the latter formulation, the trial spaces for the unknown p and the vector

valued function vvv are now defined as follows: Let us denote by Qk(U) the space
of all polynomials on U ⊂R2 that are of degree ≤ k with respect to each, x and y.
Choosing for p a trial space of continuous functions, which are piecewise bilinear
on the primal control volumes C ∈ C, i.e.

Hh
�

{
p ∈ H1(Ω)/R | ∀C ∈ C : p|C ∈Q1(C)

}
, (21)

the gradient of such functions is piecewise linear in each component on a control
volume of the primal discretization, but discontinuous at the interfaces. Thus, for
the velocity vvv a finite element space is chosen, which contains such gradients. It is
defined by

Uh
�

{
vvv = (u,v) ∈ [L2(Ω)]2 | ∀C ∈ C : vvv|C ∈ [P1(C)]2

}
. (22)
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1
∆2 × −31/2

1/2

1/2

1/2

1/4 1/4

1/4 1/4

Fig. 3 Stencil of the discrete Laplacian on a uniform Cartesian grid with the same grid spacing
∆ in both coordinate directions.

Although this space allows for discontinuities along cell interfaces, all the inte-
grals in (20) are well defined. This is true, because the normal component of vvv
and ∇p are piecewise linear along the boundaries of the dual control volumes (cf.
Figure 2), and the expressions can be exactly evaluated. Note, that piecewise lin-
ear velocity or momentum components are the natural ansatz to obtain a second
order Godunov-type scheme used in the explicit predictor step. To account for the
boundary conditions, we separately treat the integrals over ∂Ω ∩C in (19) and re-
place ∇p ·nnn by 0 as set in (15). This is in line with the procedure used for classical
finite elements.

Using a suitable normalization, the integrals on the left hand side of (20) de-
fine a discrete Laplacian and divergence. Specifically, let us define the discrete
Laplacian by

L :Hh→Qh with L(p)� ∑
C̄∈C̄

χC̄
1
|C̄|
∫

∂C̄
∇p ·nnn dσ (23)

and the discrete divergence by

D : Uh→Qh with D(vvv)� ∑
C̄∈C̄

χC̄
1
|C̄|
∫

∂C̄
vvv ·nnn dσ . (24)

Since each basis function of the test space is only nonzero on one dual control
volume, the resulting stencil of the Laplacian is compact, i.e. it only uses next
neighbors to the grid point for which the differential operator is discretized. As a
consequence, the associated linear system can be easily computed with standard
iterative methods. On a uniform Cartesian grid with the same grid spacing in both
coordinate directions the stencil is given in Figure 3.

The property that the analytical gradient of p ∈Hh is in the space Uh almost
everywhere suggests that the discrete gradient operator is defined by

G :Hh→ Uh with G(p)� ∇p a.e. (25)

These discrete operators inherit from their analytic counterparts the property that
they satisfy the equality L = D(G).

The discretization of the first projection is done in a similar way. However,
this time the advection velocity has to be corrected at the boundary of the primary
control volumes. Thus, the test functions are chosen to be piecewise constant on
each grid cell, which means that the divergence is applied to each such control



Stability of a Cartesian Grid Projection Method 11

b

b

b

b

rs rs rs

rs rs rs

rs rs rs

b

b

b

b

rs rs rs

rs rs rs

rs rs rs

Fig. 4 Application of the divergence constraint in the MAC (left) and the second projection
(right).

volume (see Figure 4). On a Cartesian grid, the discretization is essentially shifted
by half a grid cell in each coordinate direction.

The resulting flux, arising from the MAC projection, is given by

FMAC
I =−δ t

2

(
h0∇h(2) ·nnn

(hvvv)∗∇h(2) ·nnn+h0∇h(2)vvv∗ ·nnn
)

I
.

In the second projection, the local updates of the momentum are given by

(hvvv)n+1(xxx)|C = (hvvv)∗∗(xxx)|C−δ t h0∇h(2)(xxx)|C C ∈ C
(cf. (12)). This results in the flux contribution FP2

I = (0,h0h(2)nnn)T
I , and conserva-

tion of momentum is guaranteed.
We emphasize that the update of the second projection not only involves the

cell mean values, but also the gradient within a cell. This can be seen by a de-
composition of the quantities into their mean value, linear and bilinear fractions,
i.e.:

h(2)(x,y)|C = h(2)
C +(x− xC)h(2)

x,C +(y− yC)h(2)
y,C +(x− xC)(y− yC)h(2)

xy,C ,

where (xC,yC) is the center of cell C. Then, the gradient in each grid cell is given
by

∇h(2)(x,y)|C =

(
h(2)

x,C

h(2)
y,C

)
+
(

y− yC
x− xC

)
h(2)

xy,C ,

and the update of the mean values is

(hvvv)n+1
C = (hvvv)∗∗C −δ t h0

(
h(2)

x,C

h(2)
y,C

)
,

whereas the correction of the gradients is computed by

(hvvv)n+1
x,C = (hvvv)∗∗x,C−δ t h0

(
0

h(2)
xy,C

)
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and

(hvvv)n+1
y,C = (hvvv)∗∗y,C−δ t h0

(
h(2)

xy,C
0

)
.

Additionally, a reconstruction step is introduced after the first projection, which
reconstructs piecewise linear functions from cell averages of the intermediate mo-
mentum components (hu)∗∗C and (hv)∗∗C . The second projection is then applied to
this vector field to obtain a final momentum distribution. Note that the total vari-
ation diminishing (TVD) property could be destroyed in the projection step, even
if it was installed in the reconstruction step before.

2.3 Exact Projection Method

Using the discretization described above for the second Poisson equation, the nu-
merical method is formulated as an exact projection method. This means that the
incompressibility condition on the velocity

(∇ · vvvn)C̄ �
1
C̄

∫
∂C̄

vvv ·nnndσ =− 1
h0

dh0

dt

is theoretically satisfied to machine precision at each full time level (i.e. in practice
to the precision of the iterative solver for the discrete Poisson equation). As noted
above, this definition of the divergence not only incorporates the cell mean values,
but also the gradients of the velocity within each cell intersecting C̄.

To derive an exact projection method the piecewise linear functions for the
momentum have to be used throughout the whole scheme. For the solution of the
semidiscrete equations arising from the auxiliary system Heun’s method

U∗ = Un +
δ t
2

(
f (Un)+ f (U∗,int)

)
with

U∗,int = Un +δ t f (Un)

is applied for the integration in time. This approach leads to second-order accuracy
in time. To obtain second-order accuracy in space as well, the cell average values
in Un and U∗,int are reconstructed as piecewise linear functions on each grid cell.
The numerical fluxes are then evaluated with the reconstructed values on the two
sides of any particular interface.

Since the momentum components are already piecewise linear at time level tn,
they do not have to be reconstructed from the cell mean values and the gradients
of the momentum components are used for the calculation of the numerical fluxes
of the auxiliary system. These gradients are not only used for Un, but for U∗,int as
well. This does not reduce the scheme’s order, because a Taylor series expansion
for the gradient of U∗,int yields

U∗,int
xxx,C = Un

xxx,C +O(δ t) .

In this scheme Uxxx,C is always multiplied by δx to yield the numerical fluxes of
the auxiliary system. Therefore, the second order accuracy in space and time is
retained.
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With these modifications, we have a velocity field at each time level, which
satisfies the discrete divergence constraint up to the accuracy of the elliptic solver,
i.e. we have constructed an exact projection method.

3 Stability of the second projection

In proving stability of our semi-implicit method, the stability of the second projec-
tion step is an important prerequisite. Furthermore, as stated in the introduction,
the final projection often led to a velocity-pressure decoupling in former projection
methods. By using the theory of mixed finite element methods, we demonstrate
that such instabilities cannot occur in the presented method.

In the second projection, the second order height h(2) is computed to correct
the intermediate momentum update (hvvv)∗∗ in a post-processing step (cf. (12)).
Thus, we are not only interested in a stable approximation of h(2), but rather in
one of the momentum at the new time step. The associated Poisson-type problem
is derived by imposing the additional requirement that the momentum at the new
time step shall satisfy a discrete version of the divergence constraint∫

∂V
(hvvv) ·nnndσ =−|V |dh0

dt
. (26)

In the context of finite element methods, this leads to the theory of saddle point
problems (mixed finite elements), which arise from minimization problems with
additional side constraints. Starting with the fundamental work of Babuška [5]
and Brezzi [10], this theory provides conditions for existence and uniqueness of
solutions and for stable discretizations of such problems.

After having introduced the functional analytic framework, the discrete Pois-
son-type problem

δ t D
(

h0 G(h(2))
)

= D((hvvv)∗∗)+D((hvvv)n)+2
dh0

dt
(27)

is reformulated for the new projection method as a generalized saddle point prob-
lem, which is the starting point for the subsequent stability analysis.

3.1 Generalized Saddle Point Problems – Theory

The theory of finite element methods heavily benefits from the utilization of Sobo-
lev spaces. These are based on the Hilbert space L2(Ω), which includes all square
integrable functions on Ω . The latter is defined by

L2(Ω)�
{

q
∣∣∣ ∫

Ω

|q(xxx)|2 dxxx < +∞

}
,

and the inner product and norm on this space are given by

(p,q)0,Ω �

∫
Ω

p(xxx)q(xxx)dxxx , ‖q‖0,Ω �

√
(q,q)0,Ω .
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Then, the first order Sobolev space is

H1(Ω)�
{

q ∈ L2(Ω) | ∇q ∈ [L2(Ω)]2
}

.

We put |q|1,Ω � ‖∇q‖0,Ω and ‖q‖1,Ω � (‖q‖2
0,Ω + |q|21,Ω )1/2, which define a semi-

norm and a norm on H1(Ω), respectively. Note that |·|1,Ω defines a norm on
the aforementioned quotient space H1(Ω)/R, the space of equivalence classes
of functions that differ only by a constant. We also refer to spaces of vector valued
functions. For this reason, let us introduce

H(div;Ω)� {vvv ∈ [L2(Ω)]2 | ∇ · vvv ∈ L2(Ω)} .

For a vector function vvv ∈ H(div;Ω) it is possible to define its normal component
on the boundary ∂Ω [15], and the subspace with vanishing normal component on
∂Ω is denoted by

H0(div;Ω)� {vvv ∈ H(div;Ω) | vvv ·nnn = 0 on ∂Ω} .

These spaces are equipped with the Hilbertian graph norm

‖vvv‖div,Ω�

(
‖vvv‖2

0,Ω +‖∇ · vvv‖2
0,Ω

)1/2
.

For the analysis of the second projection we are interested in generalized
mixed formulations with three distinct bilinear forms a, b1, b2. That is, to find
(u, p) ∈ U ×H, such that{

a(u,v)+b1(p,v) =
〈
v′,v
〉 ∀v ∈ V

b2(u,q) =
〈
q′,q

〉 ∀q ∈Q .
(28)

In this formulation, H, Q, U and V are four Hilbert spaces (or, more generally,
reflexive Banach spaces) with norms ‖·‖H, ‖·‖Q, ‖·‖U and ‖·‖V . The bilinear
form a is defined on U ×V , b1 on H×V and b2 on U ×Q. Furthermore, v′ and
q′ are elements of V ′ and Q′, the dual spaces of V and Q. The abstract theory of
such problems is given in Nicolaı̈des [25] and developed further in [8].

To obtain conditions for existence, uniqueness and stability of problem (28),
let us introduce for any r′ ∈H′ and q′ ∈Q′ the closed affine spaces

K1(r′)� {v ∈ V | ∀r ∈H : b1(r,v) =
〈
r′,r
〉}

and
K2(q′)� {w ∈ U | ∀q ∈Q : b2(w,q) =

〈
q′,q

〉} .

We denote by Ki�Ki(0) (i = 1,2) the kernel of the operator induced by bi. With
these definitions the following Theorem can be stated:
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Theorem 1 [25] Let a and bi (i = 1,2) be bounded bilinear forms. Assume that
there exists a constant α > 0, such that

inf
w∈K2

sup
v∈K1

a(w,v)
‖w‖U ‖v‖V

≥ α (29)

and
sup

w∈K2

a(w,v) > 0 ∀v ∈K1 \{0} . (30)

Furthermore, assume that the bi (i = 1,2) satisfy the inf-sup conditions

inf
r∈H

sup
v∈V

b1(r,v)
‖r‖H ‖v‖V

≥ β1 > 0 (31)

and

inf
q∈Q

sup
w∈U

b2(w,q)
‖w‖U ‖q‖Q

≥ β2 > 0 . (32)

Then, problem (28) has a unique solution (u, p) for all v′ ∈ V ′ and q′ ∈Q′ and the
following estimate holds:

‖u‖U +‖p‖H ≤ c
(∥∥v′

∥∥
V ′ +

∥∥q′
∥∥
Q′
)

. (33)

For the discretization of problem (28), it is assumed that there are finite-
dimensional subspaces Hh ⊂H, Qh ⊂Q, Uh ⊂ U and Vh ⊂ V and bilinear forms
ah : Uh×Vh→R, b1h :Hh×Vh→R and b2h : Uh×Qh→R. Given the linear
functionals v′h ∈ (Vh)′ and q′h ∈ (Qh)′, we are looking for the solution (uh, ph) ∈
Uh×Hh of the discrete problemah(uh,vh)+b1h(ph,vh) =

〈
v′h,vh

〉 ∀vh ∈ Vh

b2h(uh,qh) =
〈
q′h,qh

〉 ∀qh ∈Qh ,

(34)

approximating the solution of the continuous problem. With the definition of the
discrete affine spaces Kh

1 and Kh
2, in analogy to the continuous case, Theorem 1

can be applied to problem (34), and existence, uniqueness and stability are ob-
tained given the constants α , β1 and β2 in (29), (31) and (32) are independent
of the grid parameter h. Examples of mixed finite element discretizations of such
type are given in [25] and [8]. A nonconforming discretization, where Uh * U , is
constructed in [4]. Moreover, error estimates are provided in these references for
both, the conforming and the nonconforming situation.

In the following, such a formulation is derived for the new projection in order
to analyze its stability concerning the corrected momentum field.
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3.2 Reformulation of the problem

The continuous counterpart of the discrete Poisson-type problem (27) is obtained
by a combination of the momentum update and the divergence constraint, i.e.

(hvvv)n+1 = (hvvv)∗∗−δ t (h0∇h(2))
1
2
[
∇ · (hvvv)n+1 +∇ · (hvvv)n]=−dh0

dt
.

(35)

A variational formulation of these two equations is derived by the usual procedure:
(35)1 and (35)2 are multiplied with test functions ϕϕϕ and ψ , respectively, and the
resulting equations are integrated over the whole domain Ω . This leads to(

(hvvv)n+1,ϕϕϕ
)

0,Ω
+
(

δ t h0 ∇h(2),ϕϕϕ
)

0,Ω
= ((hvvv)∗∗,ϕϕϕ)0,Ω(

∇ · (hvvv)n+1,ψ
)

0,Ω
=−

(
∇ · (hvvv)n +2

dh0

dt
,ψ

)
0,Ω

.
(36)

This formulation can be already interpreted as a generalized problem as formu-
lated in (28). The discrete method, equivalent to the Poisson-type problem (27),
is derived by introducing appropriate finite dimensional trial and test spaces. For
the choice of the trial spaces, we are confined to our selection for the momentum
(hvvv) and the height h(2). In the projection method, the momentum distribution is
approximated by discontinuous piecewise linear functions belonging to the space
Uh defined in (22). The second order height h(2) ∈ Hh is given by continuous
piecewise bilinear functions (cf. (21)).

To obtain the same divergence as in (27), also the test functions ψ for the
second equation of (36) are fixed to be piecewise constant on dual control volumes,
forming the space Qh defined in (17). The selection of the test space Vh for the
first equation is yet undetermined. Let us choose Vh = Uh, the space which is also
used for the momentum variable. A basis of Vh is given by

⋃
C∈C

{(
χC
0

)
,

(
0

χC

)
,

(
(x− xC)χC

0

)
,

(
(y− yC)χC

0

)
,(

0
(x− xC)χC

)
,

(
0

(y− yC)χC

)}
, (37)

where (xC,yC) is the center of the cell C. In our Cartesian space discretization grid
cells are defined by Ci, j, i = 1, . . . ,m, j = 1, . . . ,n, with cell centers (xi,y j). Be-
cause of the linearity of the equations (36) in ϕϕϕ and ψ , it is sufficient to “test” them
with only a basis of Uh and Qh, respectively. Let us consider the first equation in
conjunction with the test function ϕϕϕ = (χCi, j ,0)T . Because the second component
of ϕϕϕ is zero and its support is Ci, j, this yields∫

Ci, j

(hu)n+1 dxxx+δ t h0

∫
Ci, j

∂h(2)

∂x
dxxx =

∫
Ci, j

(hu)∗∗ dxxx . (38)
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Furthermore, by expanding the height h(2) in a volumewise representation, i.e.

h(2)(x,y)|Ci, j = h(2)
i, j +(x−xi)h

(2)
x,i, j +(y−y j)h

(2)
y,i, j +(x−xi)(y−y j)h

(2)
xy,i, j , (39)

the calculation of the second integral in (38) leads to∫
Ci, j

∂h(2)

∂x
dxxx =

∫
Ci, j

(
h(2)

x,i, j +(y− y j)h
(2)
xy,i, j

)
dxxx = δxδyh(2)

x,i, j .

The integral of the second term vanishes, because it is an odd function in y with
respect to y j. With similar results for the other terms in (38), we finally obtain

(hu)n+1
i, j +δ t h0 h(2)

x,i, j = (hu)∗∗i, j . (40)

By using the other five test functions in (37), this procedure yields the equations

(hv)n+1
i, j + δ t h0 h(2)

y,i, j = (hv)∗∗i, j

(hu)n+1
x,i, j = (hu)∗∗x,i, j

(hu)n+1
y,i, j + δ t h0 h(2)

xy,i, j = (hu)∗∗y,i, j

(hv)n+1
x,i, j + δ t h0 h(2)

xy,i, j = (hv)∗∗x,i, j

(hv)n+1
y,i, j = (hv)∗∗y,i, j .

(41)

Therefore, six equations are obtained for each cell Ci, j. They represent the dis-
cretization of (36)1.

The discretization of the second equation in (36) is done as follows. The appli-
cation of the test function ψ = χC̄ and the divergence theorem yields for the terms
involving the momentum the key ingredient of the discrete divergence D(·). Thus,
multiplying this equation by χC̄/|C̄| and summation over C̄ ∈ C̄ leads to

D
(
(hvvv)n+1)=−D((hvvv)n)−2

dh0

dt
. (42)

Let us recall that h(2) is uniquely defined by its nodal values and that each
velocity component has three degrees of freedom per grid cell. Then there are
7 ·m ·n unknowns in case of periodic boundary conditions, where m and n are the
number of cells in x and y direction, respectively. The analysis above yielded the
same number of linear equations. Finally, by inserting the equations from (40) and
(41) into (42), the second discrete Poisson-type problem from our new projection
method is obtained. We have derived a Petrov-Galerkin mixed formulation, which
utilizes different trial and test spaces for the scalar variables.
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3.3 Stability analysis of the mixed formulation

In order to apply the theory from Section 3.1 to the mixed formulation (36), the
corresponding continuous problem is defined which has been shown to have a
unique solution in [41]. Here, the main investigation will be on the stability of the
discrete mixed formulation.

For the analysis of the continuous problem appropriate function spaces for the
trial and test functions have to be chosen. In the Poisson-type problem

δ t ∇ · (h0∇h(2)) = ∇ · (hvvv)∗∗+∇ · (hvvv)n +2
dh0

dt
,

the continuous counterpart of (27), the second order height h(2) is only determined
up to an additive constant. This constant can be fixed by the additional condition of
a zero mean value, i.e.,

∫
Ω

h(2)dxxx = 0. Thus, a suitable trial space for h(2) is given
by H� H1(Ω)/R. An appropriate space for the momentum should also bound
the divergence of the unknown variable. Furthermore, the boundary conditions are
given by the integral constraint (26). For simplicity, let us assume that there is no
flux across the boundary, i.e. there are impermeable rigid walls and dh0/dt ≡ 0.
Then, the momentum is sought in the space U = H0(div;Ω). The test functions of
the discrete problem are discontinuous at the interfaces either of the primal or of
the dual discretization. Therefore, no particular regularity is assumed for the test
spaces in the continuous problem as well, and they are defined by V = [L2(Ω)]2
and Q= L2(Ω), respectively.

With the definition of the bilinear forms

a : U ×V →R with a(www,vvv)� (www,vvv)0,Ω

b1 :H×V →R with b1(r,vvv)� (∇r,vvv)0,Ω

b2 : U ×Q→R with b2(www,q)� (∇ ·www,q)0,Ω ,

(43)

problem (36) can be reformulated to obtain the following continuous saddle point
problem. Find ((hvvv)n+1,δ t h0 h(2)) ∈ U ×H, such that

a
(
(hvvv)n+1,ϕϕϕ

)
+b1

(
δ t h0 h(2),ϕϕϕ

)
= ((hvvv)∗∗,ϕϕϕ)0,Ω ∀ϕϕϕ ∈ V

b2
(
(hvvv)n+1,ψ

)
=−b2((hvvv)n,ψ) ∀ψ ∈Q .

(44)

This obviously defines a problem of the form (28). The formulation is also referred
to as a primal-dual formulation [36,4]. In [41] it is shown that the given bilinear
forms are bounded and that the inf-sup conditions (29)–(32) are satisfied. Thus,
the following theorem can be stated:

Theorem 2 [41] The generalized saddle point problem defined by (44) has a
unique solution ((hvvv)n+1,δ t h0 h(2)) in U ×H.

Since Hh ⊂ H, Uh ⊂ [L2(Ω)]2 and Vh ⊂ V , and the discrete gradient G is
equal to its continuous counterpart on each grid cell, the bilinear forms a and b1
are well defined on Uh×Vh and Hh×Vh, respectively. This is different for b2,
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since Uh * U . The bilinear form which represents the discrete divergence from
(24) is defined by

b2h : Uh×Qh→R with b2h(vvvh,qh)� ∑
C̄∈C̄

qh,C̄

∫
∂C̄

vvvh ·nnndσ , (45)

where qh,C̄ is the (constant) value of qh on C̄. This definition is consistent with
the definition of its continuous counterpart b2, since for functions vvv ∈ H(div;Ω)
they both give the same result. Furthermore, the H(div;Ω) norm is no longer
appropriate for the space Uh, and a suitable mesh dependent norm ‖·‖Uh has to be
introduced (cf. [9]).

Proposition 3 A norm on the finite element space Uh is given by

‖wwwh‖Uh � ‖wwwh‖0,Ω + sup
zh∈Qh

b2h(wwwh,zh)
‖zh‖Q

for wwwh ∈ Uh .

Proof We have to show definiteness, homogeneity, and the triangle inequality of
‖·‖Uh :

– First, it follows by the definition of the norm that for wwwh ∈ Uh with ‖wwwh‖Uh = 0
one obtains ‖wwwh‖0,Ω = 0. Since wwwh is piecewise linear, i.e., piecewise contin-
uous, wwwh has to be zero almost everywhere.

– For λ ∈R and wwwh ∈ Uh we have

‖λwwwh‖Uh = ‖λwwwh‖0,Ω + sup
zh∈Qh

b2h(λwwwh,zh)
‖zh‖Q

= |λ | ‖wwwh‖Uh .

– The triangle inequality holds for wwwh, w̃wwh ∈ Uh, since

‖wwwh + w̃wwh‖Uh = ‖wwwh + w̃wwh‖0,Ω + sup
zh∈Qh

b2h(wwwh + w̃wwh,zh)
‖zh‖Q

≤ ‖wwwh‖0,Ω +‖w̃wwh‖0,Ω + sup
zh∈Qh

b2h(wwwh,zh)+b2h(w̃wwh,zh)
‖zh‖Q

≤ ‖wwwh‖Uh +‖w̃wwh‖Uh

ut
In this norm, the bilinear form b2h is continuous, since for arbitrary qh ∈ Qh

and wwwh ∈ Uh it follows that

b2h(wwwh,qh) =
‖qh‖Q b2h(wwwh,qh)

‖qh‖Q
≤ ‖qh‖Q sup

zh∈Qh

b2h(wwwh,zh)
‖zh‖Q

≤ ‖qh‖Q ‖wwwh‖Uh
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Proposition 4 For wwwh ∈ Uh one has

sup
zh∈Qh

b2h(wwwh,zh)
‖zh‖Q

=

(
∑

C̄∈C̄

1
|C̄|
(∫

∂C̄
wwwh ·nnndσ

)2
)1/2

.

Proof Taking wwwh ∈Uh and zh ∈Qh it follows from the Cauchy-Schwarz inequality
that

b2h(wwwh,zh)
‖zh‖Q

=
∑C̄ zh|C̄

∫
∂C̄ wwwh ·nnndσ(

∑C̄ |C̄|(zh|C̄)2
)1/2

=
∑C̄
(|C̄|1/2zh|C̄

)(|C̄|−1/2
∫

∂C̄ wwwh ·nnndσ
)(

∑C̄ |C̄|(zh|C̄)2
)1/2

≤
(
∑C̄ |C̄|(zh|C̄)2

)1/2
(

∑C̄ |C̄|−1 (
∫

∂C̄ wwwh ·nnndσ)2
)1/2

(
∑C̄ |C̄|(zh|C̄)2

)1/2

=

(
∑
C̄

1
|C̄|
(∫

∂C̄
wwwh ·nnndσ

)2
)1/2

Since zh is arbitrary, this provides the proof in one direction. On the other hand,
setting zh|C̄ � |C̄|−1 ∫

∂C̄ wwwh ·nnndσ gives

b2h(wwwh,zh)
‖zh‖Q

=

(
∑
C̄

1
|C̄|
(∫

∂C̄
wwwh ·nnndσ

)2
)1/2

Taking the supremum over all zh ∈Qh leads to the desired result. ut
With the definition of the bilinear form in (45), the discrete mixed formulation

derived in Section 3.2 is to find ((hvvv)n+1,δ t h0 h(2)) ∈ Uh×Hh, such that

a
(
(hvvv)n+1,ϕϕϕh

)
+b1

(
δ t h0 h(2),ϕϕϕh

)
= ((hvvv)∗∗,ϕϕϕh)0,Ω ∀ϕϕϕh ∈ Vh

b2h
(
(hvvv)n+1,ψh

)
=−b2h((hvvv)n,ψh) ∀ψh ∈Qh .

(46)

Note that the trial space Uh is not contained in its continuous counterpart U . There-
fore, the discrete problem (46) is an approximation using nonconforming finite
elements.

Now, the verification of the inf-sup-conditions can be carried out. The proof
for the b1 form is nearly identical to the continuous case (cf. [41]).

Proposition 5 There exists a constant β ∗1 > 0 independent of the mesh size, h,
such that

inf
rh∈Hh

sup
vvvh∈Vh

b1(rh,vvvh)
‖rh‖H ‖vvvh‖V

≥ β
∗
1
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Proof It has been already pointed out that rh ∈ Hh implies ∇rh ∈ Vh. Thus, we
have for arbitrary rh ∈Hh, ‖rh‖H 6= 0

sup
vvvh∈Vh

b1(rh,vvvh)
‖vvvh‖V

≥ b1(rh,∇rh)
‖∇rh‖0,Ω

=
|rh|21,Ω

|rh|1,Ω

= ‖rh‖H .

ut
Next, it is proved what is normally known as coercivity for the bilinear form

a. Since we deal with a Petrov-Galerkin method, the characterization has to be
generalized to the two conditions (29) and (30). Let us define the subspaces

Kh
1 � {vvvh ∈ Vh | ∀rh ∈Hh : b1(rh,vvvh) = 0}
Kh

2 � {wwwh ∈ Uh | ∀qh ∈Qh : b2h(wwwh,qh) = 0} .

Our strategy is to show that there is a one-to-one mapping between these spaces,
and an estimate can be given between corresponding elements. To characterize
the spaces, it suffices to test the bilinear forms that are used in defining them
against a complete set of basis functions of the test spaces. Thus, let rh ∈ Hh

with rh(xk+1/2,yl+1/2) = δikδ jl for a given node (xi+1/2,y j+1/2). Assuming a cell
wise representation of rh (cf. (39)), a careful investigation of such a basis function
reveals that rx,l,k = ± 1

2δx , ry,l,k = ± 1
2δy and rxy,l,k = ± 1

δxδy for l ∈ {i, i + 1}, k ∈
{ j, j +1}. Thus, vvvh = (u,v) ∈ Vh is in Kh

1, if and only if for all possible (i, j)

0 = b1(rh,vvvh) = ∑
l,k

∫
Clk

∇rh · vvvh dxxx

=
i+1

∑
l=i

j+1

∑
k= j

δxδy
(

ul,krx,l,k + vl,kry,l,k +
1

12
(δy2uy,l,k +δx2vx,l,k)rxy,l,k

)
=− δy

2
ui+1, j+1− δx

2
vi+1, j+1 +

δy2

12
uy,i+1, j+1 +

δx2

12
vx,i+1, j+1

+
δy
2

ui, j+1 − δx
2

vi, j+1 − δy2

12
uy,i, j+1 − δx2

12
vx,i, j+1

+
δy
2

ui, j +
δx
2

vi, j +
δy2

12
uy,i, j +

δx2

12
vx,i, j

− δy
2

ui+1, j +
δx
2

vi+1, j − δy2

12
uy,i+1, j − δx2

12
vx,i+1, j

(47)
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Similarly, let qh ∈Qh with qh = χC̄i+1/2, j+1/2
be arbitrary. Then, wwwh = (u,v) ∈ Uh is

in Kh
2, if and only if for all possible (i, j)

0 =−b2h(wwwh,qh) =−
∫

∂C̄i+1/2, j+1/2

wwwh ·nnndσ

=−δy
2

ui+1, j+1− δx
2

vi+1, j+1 +
δy2

8
uy,i+1, j+1 +

δx2

8
vx,i+1, j+1

+
δy
2

ui, j+1 − δx
2

vi, j+1 − δy2

8
uy,i, j+1 − δx2

8
vx,i, j+1

+
δy
2

ui, j +
δx
2

vi, j +
δy2

8
uy,i, j +

δx2

8
vx,i, j

− δy
2

ui+1, j +
δx
2

vi+1, j − δy2

8
uy,i+1, j − δx2

8
vx,i+1, j

(48)

Comparing (47) and (48), we observe that these conditions only differ by a
constant factor in the terms, which include partial derivatives of the velocity com-
ponents. This means that a one-to-one mapping between Kh

1 and Kh
2 can be de-

fined by multiplying the partial derivatives of an element with 8/12 = 2/3, and
the spaces have the same dimension. Furthermore, the following estimates can be
given for corresponding elements vvvh ∈ Kh

1 and wwwh ∈ Kh
2 (i.e. with the same mean

values w̄wwh = v̄vvh, and linear variations w̃wwh = 2/3ṽvvh):

a(wwwh,vvvh) = a(w̄wwh, v̄vvh)+a(w̃wwh, ṽvvh)

= a(v̄vvh, v̄vvh)+
2
3

a(ṽvvh, ṽvvh)≥ 2
3

a(vvvh,vvvh)

and
a(wwwh,vvvh) = a(w̄wwh, w̄wwh)+

3
2

a(w̃wwh, w̃wwh)≥ a(wwwh,wwwh)

and

a(vvvh,vvvh)≤ 3
2

a(wwwh,vvvh) =
3
2

(
a(w̄wwh, w̄wwh)+

3
2

a(w̃wwh, w̃wwh)
)

≤ 9
4

a(wwwh,wwwh)

With these estimates, we can prove the desired properties for the a form in the
discrete case:

Proposition 6 There exists a constant α∗ > 0 independent of the mesh size, h,
such that

inf
wwwh∈Kh

2

sup
vvvh∈Kh

1

a(wwwh,vvvh)
‖wwwh‖Uh ‖vvvh‖V

≥ α
∗ . (49)

Furthermore,
sup

wwwh∈Kh
2

a(wwwh,vvvh) > 0 ∀vvvh ∈Kh
1 \{0} . (50)
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Proof For wwwh ∈ Kh
2, ‖wwwh‖Uh 6= 0 it holds ‖wwwh‖Uh = ‖wwwh‖0,Ω . Thus, using the

estimates derived from the one-to-one mapping above, for each such wwwh we have

sup
vvvh∈Kh

1

a(wwwh,vvvh)
‖vvvh‖Vh

≥ a(wwwh,wwwh)
3
2 ‖wwwh‖0,Ω

=
2
3

‖wwwh‖2
0,Ω

‖wwwh‖0,Ω

=
2
3
‖wwwh‖Uh ,

and for vvvh ∈Kh
1 \{0}

sup
wwwh∈Kh

2

a(wwwh,vvvh)≥ 2
3

a(vvvh,vvvh) > 0 .

Therefore, the conditions (49) and (50) are satisfied. ut
Before the inf-sup condition for the bilinear form b2h is also proved, a lumping

operator Λ :Hh→Qh is introduced, which is given by

Λrh� ∑
C̄∈C̄

χC̄ rh(xC̄,yC̄) ∀rh ∈Hh ,

where (xC̄,yC̄) again is the midpoint of C̄, i.e. the coordinate of the grid node
around which C̄ is centered. Thus, in each dual control volume, the value of Λrh is
the value of rh at the corresponding node in the middle of the control volume. This
operator has the following properties, which are proven by Propositions 9 and 10
in the Appendix 6.2:

For rh ∈Hh with ∇rh ·nnn≡ 0 on ∂Ω we have

‖∇rh‖2
0,Ω ≤−b2h(∇rh,Λrh) .

and

For rh ∈Hh the estimate

‖Λrh‖0,Ω ≤C‖rh‖0,Ω

where C is a constant, holds.

Now, we are in the position to prove the inf-sup condition for b2h. The general
idea is adapted from a proof of a similar problem in [4].

Proposition 7 There exists a constant β ∗2 > 0 independent of the mesh size, h,
such that

inf
qh∈Qh

sup
wwwh∈Uh

b2h(wwwh,qh)
‖wwwh‖Uh ‖qh‖Q

≥ β
∗
2

Proof To show the inf-sup condition for the b2h form an auxiliary mapping Gh :
Qh→ Uh is introduced. It is defined by the solution of the Poisson problem

rh ∈Hh : −L(rh) = qh

for qh ∈Qh, where Ghqh� ∇rh ∈ Uh. This is to find rh ∈Hh, such that

b2h(∇rh,zh) = (qh,zh)0,Ω ∀zh ∈Qh . (51)
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Using the properties of the lumping operator Λ and a not so common version
of the Poincaré inequality for H1 functions (see e.g. [14]), the following estimate
can be given for the solution rh of the Poisson problem (51) (which can be shown
to have a unique solution for fixed mesh size h):

‖∇rh‖2
0,Ω ≤−b2h(∇rh,Λrh) (Proposition 9)

= (qh,Λrh)0,Ω (Poisson problem (51))

≤ ‖qh‖0,Ω ‖Λrh‖0,Ω (Cauchy-Schwarz inequality)

≤C1 ‖qh‖0,Ω ‖rh‖0,Ω (Proposition 10)

≤C2 ‖qh‖0,Ω ‖∇rh‖0,Ω . (Poincaré inequality)

Thus, we have
‖∇rh‖0,Ω ≤C2 ‖qh‖0,Ω .

Furthermore, this solution satisfies

sup
zh∈Qh

b2h(∇rh,zh)
‖zh‖Q

= sup
zh∈Qh

(qh,zh)0,Ω

‖zh‖Q
= ‖qh‖Q .

By the definition of the norm on Uh, it then follows that

‖Ghqh‖Uh = ‖∇rh‖0,Ω + sup
zh∈Qh

b2h(∇rh,zh)
‖zh‖Q

≤C‖qh‖Q

where C = 1+C2, and

‖Ghqh‖Uh ‖qh‖Q ≤C‖qh‖2
Q = C b2h(∇rh,qh) = C b2h(Ghqh,qh)

which leads to

1
C
≤ b2h(Ghqh,qh)
‖Ghqh‖Uh ‖qh‖Q

≤ sup
wwwh∈Uh

b2h(wwwh,qh)
‖wwwh‖Uh ‖qh‖Q

Since qh was chosen arbitrarily, this proves the inf-sup condition for b2h. ut
As a summary of this section, we can conclude with the main result of this

work:

Theorem 8 The generalized mixed formulation (46) has a unique and stable so-
lution ((hvvv)n+1,δ t h0 h(2)) in Uh×Hh.

We have successfully established a mixed formulation equivalent to the second
projection of the new scheme. Using this formulation for the stability analysis
of the projection step, stability has been shown for the discrete problem. This
gives approximations, in which the solution of the Poisson problem h(2) and the
momentum update (hvvv)n+1 cannot decouple.

In comparison with other projection methods like the ones from [7] and [28],
the stability is established by an augmented velocity space in the projection. With
this modification, the discrete gradient operator has only a one dimensional ker-
nel. Thus, essentially all modes of the pressure have an influence on the velocity
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correction. Furthermore, as outlined above, Süli [34] showed that the nine point
stencil of the discrete Laplacian results in a stable and robust solution scheme for
the Poisson problem. In contrast, the discretizations in [7] and [28] result in gra-
dient operators with higher dimensional kernels. These admit a local decoupling,
which is basically the reason for their failure concerning the stability.

4 Numerical Results

To illustrate the performance of the described projection method, the results of two
test cases are presented. The main goal is to assess its accuracy and to compare
it with a previous version of the method, which rests on standard discretizations
for the differential operators used in the projection step and was introduced in
[28]. Furthermore, the differences between an exact and an approximate projection
formulation are assessed. In the first test case, the second-order convergence of
the method is demonstrated for smooth solutions. The second test deals with the
translation of a vortex.

For both test cases the exact solution of the particular problem is known, and
the error of the numerical approximation can be computed. The computations are
performed on a uniform Cartesian grid with equal grid spacing δx = δy. The
boundary conditions are those discussed in [41]. So far, we have only investigated
the case of constant background height h0 ≡ 1. Thus, in all calculations, the term
dh0/dt is set to zero. To start with initial data, which have zero divergence, i.e.

D(vvv0) =− 1
h0

dh0

dt

∣∣∣
t=0

= 0 ,

the given values for the momentum are corrected by the solution of the Poisson
problem

L(ϕ) = D
(
(hvvv)0,r)

for ϕ ∈ Hh. Here, (hvvv)0,r is a linear reconstruction of the exact solution (hvvv) at
time t = 0. The initial momentum distribution is then given by

(hvvv)0 = (hvvv)0,r−G(ϕ) .

As mentioned earlier, the auxiliary system is solved using an explicit standard
second-order Godunov-type method for hyperbolic conservation laws. Since the
stability of this method strongly relies on a CFL time step restriction, in all the
computations presented in this chapter a time step has been chosen, which is at
most C = 0.8 of the maximum allowed by the CFL condition.

The discrete divergence and gradient operators, which are used in the two
elliptic correction steps, are those given in Appendix 6.1. The linear systems for
computing the height h(2) on the primary and on the dual discretizations are solved
using the Bi-CGSTAB algorithm [38]. In each iteration, the Euclidean norm

‖rC‖2�
√

∑
C∈C

r2
C
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(similarly for the second Poisson problem with
∥∥rC̄
∥∥

2) of the residual vector

rP1

(
h(2)
)
� D((hvvv)∗)− δ t

2
D
(

hn+1/4
0 G(h(2))

)
rP2

(
h(2)
)
� D((hvvv)∗∗)+D((hvvv)n)−δ t D

(
hn+1/2

0 G(h(2))
)

is calculated. The algorithm is terminated when either this absolute value or the
ratio between the norm of the current residual and that of the initial residual is less
than 10−11.

4.1 Convergence study

The first test case demonstrates the second-order convergence of numerical so-
lutions to the exact solution for smooth data. This test, which involves a Taylor
vortex being translated at a constant speed, was originally proposed in [23] and
[1] for the incompressible flow equations. Here it has been adapted for the zero
Froude number shallow water equations.

For constant height h0 and an initial velocity distribution

u0(x,y) = 1−2cos(2πx)sin(2πy)
v0(x,y) = 1+2sin(2πx)cos(2πy) ,

the exact solution of the zero Froude number shallow water equations is given by

u(x,y, t) = 1−2cos(2π(x− t))sin(2π(y− t))
v(x,y, t) = 1+2sin(2π(x− t))cos(2π(y− t))

h(2)(x,y, t) =−cos(4π(x− t))− cos(4π(y− t)) .

The problem is solved on the unit square with (x,y)∈ [0,1]2 and periodic boundary
conditions. It describes the advection of four vortices in the (1,1) direction. The
piecewise linear reconstruction of the momentum field components is done using
central differences with no slope limiter.

The numerical solution is computed on three different grids with 32×32, 64×
64 and 128× 128 cells. We start the calculation at t = 0, and the error vector in
the velocity eeeN with elements

eN
i, j �

∣∣∣u(x,y, tN)
Ci, j −uN

i, j

∣∣∣+ ∣∣∣v(x,y, tN)
Ci, j − vN

i, j

∣∣∣
is evaluated at time tN = 3. This corresponds to 750, 1500 and 3000 time steps,
respectively. Note that we could have also incorporated the linear variation of the
velocity on each grid cell in the error analysis of the new projection. We do not
choose this alternative in favor of a better comparison with the original method.
The global error is measured using a discrete L2 norm and the L∞ norm. These are
defined by

∥∥eeeN∥∥
0�

(
∑
i, j
|Ci, j| |eN

i, j|2
)1/2

and
∥∥eeeN∥∥

∞
�max

i, j
{eN

i, j} .
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Table 1 Errors and convergence rates for the different projection methods.

Method Norm 32x32 Rate γ 64x64 Rate γ 128x128

Projection from [28]
L2 0.292096 2.16 0.065415 2.17 0.014566

L∞ 0.419370 2.16 0.094106 2.18 0.020747

Approximate
projection

L2 0.291967 2.16 0.065412 2.17 0.014566

L∞ 0.419130 2.16 0.094098 2.18 0.020747

Exact projection
L2 0.082379 2.65 0.013129 2.23 0.002796

L∞ 0.126207 2.46 0.022999 2.33 0.004573

We have summarized these error measures for the aforementioned previous
version of the projection method [28] as well as for the approximate and the exact
projection methods in Table 1. Here, the “approximate projection method” utilizes
the same stencil as the exact projection method, but it leaves slope computations
for the in-cell distributions of momentum entirely to classical slope limiting pro-
cedures instead of letting several components of these derivatives be determined
by the projection step.

Additionally, the corresponding convergence rate γ is given, which is calcu-
lated by

γ �
log(‖eeeN

c ‖/‖eeeN
f ‖)

log(δxc/δx f )
. (52)

In this definition, eeeN
c and eeeN

f are the computed error vectors of the solution on
the coarse and the fine grid and δxc and δx f are the corresponding grid spacings.
Clearly, second order accuracy is obtained in the L2 as well as in the L∞ norm.
Also note that the absolute error obtained with the exact projection is about four
times smaller than the one obtained with the approximate projection method and
with the scheme from [28].

4.2 Advection of a vortex

Let us consider the advection of a vortex by a constant background flow. For the
implementation of this test case, originally proposed in [17], a rectangular domain
with size [0,4]× [0,1] is examined. The domain has periodic boundary conditions
at the short sides and walls at the long sides. The initial conditions are defined to
be

u0(x,y) = 1− vθ (r)sinθ and v0(x,y) = vθ (r)cosθ ,

in which

vθ (r) =


5r vmax for 0≤ r < 1

5
(2−5r)vmax for 1

5 ≤ r < 2
5

0 for 2
5 ≤ r

(53)

and
r =

√(
x− 1

2

)2 +
(
y− 1

2

)2
.
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Fig. 5 Advection of a vortex: tangential velocity (solid line) and height profile (dashed line)
with respect to the distance r from the center of the vortex.

In equation (53) vmax is the maximum tangential velocity of the vortex. The height
h(2) must then satisfy the constraint ∂rh(2) = v2

θ
/r. This relationship is visualized

in Figure 5.
The test is set up with vmax = 1 and background height h0 ≡ 1. The computa-

tional domain consists of 80×20 grid cells. Three different strategies for the linear
reconstruction of the components in the momentum variable are investigated. In
particular, we consider central differences (no limiter), the monotonized central
difference (MC) limiter and Sweby’s limiter [31] with k = 1.8, the latter being a
convex combination of the minmod (k = 1) and the superbee limiter (k = 2).

For comparison, the results for the scheme from [28] are given in Figure 6, in
which the stream function of the velocity distribution is displayed at four different
times of the simulation. Similar to the results in [28] for the incompressible Euler
equations, the core is advected almost along the center line of the channel. Also,
the vortex experiences a considerable deformation due to the coarse discretization
we have chosen for this test.

As in the convergence studies, the new exact projection method shows some
improvement in the numerical results for this test (cf. Figure 7). All reconstruc-
tion strategies show less deviation from the center line of the channel than in the
original method. Furthermore, the loss in vorticity is slightly reduced. Again, the
results of the approximate projection method (not shown) are comparable to the
ones obtained by the method from [28].

The presented numerical test cases are primarily given to show the applica-
bility of the presented method. They are not designed to highlight the improved
stability properties of the method. To demonstrate that the described projection
method provides significant gains over existing schemes is a matter of more ex-
tensive studies and goes beyond the scope of this paper.

5 Conclusions

In this paper, we demonstrate that it is possible to formulate a finite volume pro-
jection method for incompressible flows with an exact and stable projection step.
No further stabilization techniques are required to prevent a velocity-pressure de-
coupling, which is often observed in former exact projection methods. This is
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Fig. 6 Advection of a vortex at times t = 0,1,2 and 3 for the method by [28]. Contour lines of
the stream function are shown at [-0.02, -0.04, . . . , -0.18] starting from outside of the vortex.
Top: unlimited slopes, middle: monotonized central difference (MC) limiter, bottom: Sweby’s
limiter (k = 1.8).

achieved by using a Petrov-Galerkin finite element discretization of the associated
Poisson problem, originally proposed in [34]. Furthermore, the method locally
conserves mass and momentum.

In order to prove stability of the second projection step, which corrects the
cell-centered momentum to be in compliance with the divergence constraint, we
have used the theory of mixed finite element methods, the latter providing strong
results about the stability of discretizations. This technique is well known from
finite element methods for viscous incompressible flows, where the Laplacian of
the velocity field interacts with the pressure gradient. Here, the theory is applied in
the case of a finite volume method for inviscid incompressible flows, which means
that the velocity directly interacts with the pressure gradient.

The numerical results, obtained from the application of the new method, show
practical accuracy improvements on fixed grids compared to the method presented
in [28], with both methods being second order accurate. The discretization for the
new projection can be also used for the first projection of the method, yielding
a unified discretization for both Poisson-type problems. Furthermore, the linear
systems associated with the Poisson equations can be solved with the same algo-
rithms that are used for standard second order discretizations of the differential
operators.
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Fig. 7 Same as Figure 6 for the new exact projection method.

However, there are still some open questions, and the analysis of them is on-
going research. It was mentioned that the second projection adjusts the piecewise
linear portions of the momentum field, which, in turn, results in a possible loss of
the TVD property of the whole method. This is a delicate issue, because it con-
cerns the stability of the predictor step. So far, we have only numerical evidence
that this still results in stable approximations.

In the present paper, it was only proved that the projection step yields a sta-
ble approximation and does not admit any pressure-velocity decoupling. One of
the next steps is to investigate the convergence of this mixed formulation to the
continuous solution (mentioned in Theorem 2). Furthermore, it would be desir-
able to extend our results to zero Mach number variable density flows, where the
Projection results in a Poisson-type problem with a weighted Laplace operator.

The overall motivation for this work stems from meteorological and combus-
tion applications. The solution of such problems requires large scale computation
techniques such as locally refined meshes. Coupling the presented method to such
technologies is ongoing research. Furthermore, one has small, but non-zero Mach
numbers (resp. Froude numbers) in these problems. The extension of the current
method to allow for smooth transitions from fully compressible to zero Froude
number flows would hopefully yield favorable results for these application areas.
Such attempts were already reported in Klein [21] for one space dimension and in
Geratz [13] and Munz et al. [24] for higher dimensional problems. We are plan-
ning to advance the ideas outlined in these references.



Stability of a Cartesian Grid Projection Method 31

Acknowledgements The authors are grateful to Eberhard Bänsch and Nicola Botta for help-
ful discussions and remarks that improved the content of the paper. Furthermore, Nicola Botta
provided the software environment (the compressible flow solver), in which the algorithm was
implemented and the presented calculations were accomplished. This work benefitted greatly
from free software products. Without these tools – such as LATEX, the GNU C/C++ compiler
and the Linux operating system – a lot of tasks would not have been so easy to realize. It is our
pleasure to thank all developers for their excellent products.

The authors thank Deutsche Forschungsgemeinschaft for their partial support of this work
through grants KL 611/6 and KL 611/14.

6 Appendix

6.1 Discretization of the new projection

Here, the discrete gradient, divergence and Laplacian of the second projection are
given for a two-dimensional Cartesian grid with constant grid spacings δx and
δy. The operators for the first projection are derived by shifting the indices by
one half. The double index (i, j) is used to refer to a cell value, while the index
(i+ 1/2, j + 1/2) is used for node values.

Let us define

px,i, j �
1

2δx

(
pi+1/2, j+1/2− pi−1/2, j+1/2 + pi+1/2, j−1/2− pi−1/2, j−1/2

)
py,i, j �

1
2δy

(
pi+1/2, j+1/2− pi+1/2, j−1/2 + pi−1/2, j+1/2− pi−1/2, j−1/2

)
pxy,i, j �

1
δxδy

(
pi+1/2, j+1/2− pi−1/2, j+1/2− pi+1/2, j−1/2 + pi−1/2, j−1/2

)
.

The discrete gradient G is then given by

G(p) |Ci, j =
(

px,i, j
py,i, j

)
+
(

y− y j
x− xi

)
pxy,i, j .

The divergence D is defined by

D(vvv)|C̄i+1/2, j+1/2
=

1
2δx

(
ui+1, j+1−ui, j+1 +ui+1, j−ui, j

)
+

δy
8δx

(−uy,i+1, j+1 +uy,i, j+1 +uy,i+1, j−uy,i, j
)

+
1

2δy

(
vi+1, j+1− vi+1, j + vi, j+1− vi, j

)
+

δx
8δy

(−vx,i+1, j+1 + vx,i+1, j + vx,i, j+1− vx,i, j
)

.

With the above definitions D(G(·)) is the 9-points Laplacian proposed by [34] (cf.
Figure 3):

L(p)|C̄i+1/2, j+1/2
= D(G(p))|C̄i+1/2, j+1/2
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=
1
8
(4xx,i+1/2, j+3/2(p)+64xx,i+1/2, j+1/2(p)+4xx,i+1/2, j−1/2(p)

)
+

1
8
(4yy,i+3/2, j+1/2(p)+64yy,i+1/2, j+1/2(p)+4yy,i−1/2, j+1/2(p)

)
with

4xx,i+1/2, j+1/2(p)�
1

δx2

(
pi+3/2, j+1/2−2pi+1/2, j+1/2 + pi−1/2, j+1/2

)
4yy,i+1/2, j+1/2(p)�

1
δy2

(
pi+1/2, j+3/2−2pi+1/2, j+1/2 + pi+1/2, j−1/2

)
.

6.2 Properties of the Lumping-Operator Λ

Proposition 9 For rh ∈Hh with ∇rh ·nnn≡ 0 on ∂Ω we have

‖∇rh‖2
0,Ω ≤−b2h(∇rh,Λrh)

Proof Let us consider a cell-wise representation of rh, i.e. on a control volume
Ci, j of the primary discretization rh can be also represented by

rh(x,y)|Ci, j = ri, j +(x− xi)rx,i, j +(y− y j)ry,i, j +(x− xi)(y− y j)rxy,i, j ,

in which ri, j is the mean value of rh on Ci, j, and rx,i, j, ry,i, j and rxy,i, j are the partial
and mixed derivatives of rh in (xi,y j), respectively. With this definition, we have

[∇rh(x,y)]2|Ci, j = r2
x,i, j +2(y− y j)rx,i, j rxy,i, j +(y− y j)2r2

xy,i, j

+ r2
y,i, j +2(x− xi)ry,i, j rxy,i, j +(x− xi)2r2

xy,i, j

Furthermore, we obtain

‖∇rh‖2
0,Ω = ∑

i, j

∫
Ci, j

[∇rh]2dx

= δxδy∑
i, j

(
r2

x,i, j + r2
y,i, j +

δx2 +δy2

12
r2

xy,i, j

)
To compare this result with the expression in the b2h form, the bilinear form

has to be written as sum over the primary cells. Using partial summation, this leads
to

b2h(∇rh,Λrh) = r1/2,1/2

[
δy
2

rx,1,1 +
δx
2

ry,1,1− δx2 +δy2

8
rxy,1,1

]
+

n−1

∑
j=1

r1/2, j+1/2

[
δy
2

(rx,1, j+1 + rx,1, j)+
δx
2

(ry,1, j+1− ry,1, j)+
δx2 +δy2

8
(−rxy,1, j+1 + rxy,1, j)

]

+ r1/2,n+1/2

[
δy
2

rx,1,n− δx
2

ry,1,n +
δx2 +δy2

8
rxy,1,n

]
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+
m−1

∑
i=1

(
ri+1/2,1/2

[
δy
2

(rx,i+1,1− rx,i,1)+
δx
2

(ry,i+1,1 + ry,i,1)+
δx2 +δy2

8
(−rxy,i+1,1 + rxy,i,1)

]

+
n−1

∑
j=1

ri+1/2, j+1/2

[
δy
2

(rx,i+1, j+1− rx,i, j+1 + rx,i+1, j− rx,i, j)

+
δx
2

(ry,i+1, j+1 + ry,i, j+1− ry,i+1, j− ry,i, j)

+
δx2 +δy2

8
(−rxy,i+1, j+1 + rxy,i, j+1 + rxy,i+1, j− rxy,i, j)

]

+ ri+1/2,n+1/2

[
δy
2

(rx,i+1,n− rx,i,n)+
δx
2

(−ry,i+1,n− ry,i,n)+
δx2 +δy2

8
(rxy,i+1,n− rxy,i,n)

])
+ rm+1/2,1/2

[
− δy

2
rx,m,1 +

δx
2

ry,m,1 +
δx2 +δy2

8
rxy,m,1

]
+

n−1

∑
j=1

rm+1/2, j+1/2

[
δy
2

(−rx,m, j+1− rx,m, j)+
δx
2

(ry,m, j+1− ry,m, j)+
δx2 +δy2

8
(rxy,m, j+1− rxy,m, j)

]

+ rm+1/2,n+1/2

[
− δy

2
rx,m,n− δx

2
ry,m,n− δx2 +δy2

8
rxy,m,n

]
=

n

∑
j=1

[
δy
2

rx,1, j(r1/2, j−1/2 + r1/2, j+1/2)+
δx
2

ry,1, j(r1/2, j−1/2− r1/2, j+1/2)

+
δx2 +δy2

8
rxy,1, j(−r1/2, j−1/2 + r1/2, j+1/2)

]

+
m−1

∑
i=1

( n

∑
j=1

[
δy
2

rx,i, j(−ri+1/2, j−1/2− ri+1/2, j+1/2)+
δy
2

rx,i+1, j(ri+1/2, j−1/2 + ri+1/2, j+1/2)

+
δx
2

ry,i, j(ri+1/2, j−1/2− ri+1/2, j+1/2)+
δx
2

ry,i+1, j(ri+1/2, j−1/2− ri+1/2, j+1/2)

+
δx2 +δy2

8
rxy,i, j(ri+1/2, j−1/2− ri+1/2, j+1/2)

+
δx2 +δy2

8
rxy,i+1, j(−ri+1/2, j−1/2 + ri+1/2, j+1/2)

])

+
n

∑
j=1

[
δy
2

rx,m, j(−rm+1/2, j−1/2− rm+1/2, j+1/2)+
δx
2

ry,m, j(rm+1/2, j−1/2− rm+1/2, j+1/2)

+
δx2 +δy2

8
rxy,m, j(rm+1/2, j−1/2− rm+1/2, j+1/2)

]

=
m

∑
i=1

n

∑
j=1

[
δy
2

rx,i, j(−ri+1/2, j−1/2− ri+1/2, j+1/2 + ri−1/2, j−1/2 + ri−1/2, j+1/2)

+
δx
2

ry,i, j(ri+1/2, j−1/2− ri+1/2, j+1/2 + ri−1/2, j−1/2− ri−1/2, j+1/2)

+
δx2 +δy2

8
rxy,i, j(ri+1/2, j−1/2− ri+1/2, j+1/2− ri−1/2, j−1/2 + ri−1/2, j+1/2)

]

=
m

∑
i=1

n

∑
j=1

[
δy
2

rx,i, j(−2δx rx,i, j)+
δx
2

ry,i, j(−2δy ry,i, j)+
δx2 +δy2

8
rxy,i, j(−δxδy rxy,i, j)

]

=−δxδy∑
i, j

(
r2

x,i, j + r2
y,i, j +

δx2 +δy2

8
r2

xy,i, j

)

These results lead to the desired estimate:

‖∇rh‖2
0,Ω = δxδy∑

i, j

(
r2

x,i, j + r2
y,i, j +

δx2 +δy2

12
r2

xy,i, j

)
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≤ δxδy∑
i, j

(
r2

x,i, j + r2
y,i, j +

δx2 +δy2

8
r2

xy,i, j

)
=−b2h(∇rh,Λrh)

ut
Proposition 10 For rh ∈Hh the estimate

‖Λrh‖0,Ω ≤C‖rh‖0,Ω

where C is a constant, is true.

Proof Since rh is piecewise bilinear, its L2-norm can be rewritten as

‖rh‖2
0,Ω =

∫
Ω

r2
h dx

= ∑
i, j

∫
Ci, j

[ri, j +(x− xi)rx,i, j +(y− y j)ry,i, j +(x− xi)(y− y j)rxy,i, j]
2 dx

= ∑
i, j

∫
Ci, j

[
r2

i, j +(x− xi)2r2
x,i, j +(y− y j)2r2

y,i, j +(x− xi)2(y− y j)2r2
xy,i, j

]
dx

= δxδy∑
i, j

[
r2

i, j +
δx2

3 ·4 r2
x,i, j +

δy2

3 ·4 r2
y,i, j +

δx2 δy2

9 ·16
r2

xy,i, j

]
= δxδy∑

i, j

[
1
16

(ri+1/2, j+1/2 + ri+1/2, j−1/2 + ri−1/2, j+1/2 + ri−1/2, j−1/2)
2

+
1
48

(ri+1/2, j+1/2 + ri+1/2, j−1/2− ri−1/2, j+1/2− ri−1/2, j−1/2)
2

+
1
48

(ri+1/2, j+1/2− ri+1/2, j−1/2 + ri−1/2, j+1/2− ri−1/2, j−1/2)
2

+
1

144
(ri+1/2, j+1/2− ri+1/2, j−1/2− ri−1/2, j+1/2 + ri−1/2, j−1/2)

2
]

= δxδy∑
i, j

[
1
9
(r2

i+1/2, j+1/2 + r2
i+1/2, j−1/2 + r2

i−1/2, j+1/2 + r2
i−1/2, j−1/2)

+
1
9
(ri+1/2, j+1/2ri+1/2, j−1/2 + ri+1/2, j+1/2ri−1/2, j+1/2

+ ri+1/2, j−1/2ri−1/2, j−1/2 + ri−1/2, j+1/2ri−1/2, j−1/2)

+
1
18

(ri+1/2, j+1/2ri−1/2, j−1/2 + ri+1/2, j−1/2ri−1/2, j+1/2)
]
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=
δxδy

18 ∑
i, j

[
(r2

i+1/2, j+1/2 + r2
i+1/2, j−1/2 + r2

i−1/2, j+1/2 + r2
i−1/2, j−1/2)

+(ri+1/2, j+1/2 + ri+1/2, j−1/2 + ri−1/2, j+1/2 + ri−1/2, j−1/2)
2

− (ri+1/2, j+1/2ri−1/2, j−1/2 + ri+1/2, j−1/2ri−1/2, j+1/2)
]

Since

ri+1/2, j+1/2 ri−1/2, j−1/2 + ri+1/2, j−1/2 ri−1/2, j+1/2

≤ 1
2

(
r2

i+1/2, j+1/2 + r2
i+1/2, j−1/2 + r2

i−1/2, j+1/2 + r2
i−1/2, j−1/2

)
it follows that

‖rh‖2
0,Ω ≥

δxδy
18

m

∑
i=1

n

∑
j=1

1
2
(r2

i+1/2, j+1/2 + r2
i+1/2, j−1/2 + r2

i−1/2, j+1/2 + r2
i−1/2, j−1/2)

=
δxδy

36

[
r2

1/2,1/2 +
n−1

∑
j=1

2r2
1/2, j+1/2 + r2

1/2,n+1/2

+2
m−1

∑
i=1

(
r2

i+1/2,1/2 +
n−1

∑
j=1

2r2
i+1/2, j+1/2 + r2

i+1/2,n+1/2

)

+ r2
m+1/2,1/2 +

n−1

∑
j=1

2r2
m+1/2, j+1/2 + r2

m+1/2,n+1/2

]
=

1
9
‖Λrh‖2

0,Ω

ut
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